LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Mips16ISelLowering.cpp
Go to the documentation of this file.
1 //===-- Mips16ISelLowering.h - Mips16 DAG Lowering Interface ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsTargetLowering specialized for mips16.
11 //
12 //===----------------------------------------------------------------------===//
13 #define DEBUG_TYPE "mips-lower"
14 #include "Mips16ISelLowering.h"
15 #include "MipsRegisterInfo.h"
16 #include "MipsTargetMachine.h"
21 
22 using namespace llvm;
23 
25  "mips16-dont-expand-cond-pseudo",
26  cl::init(false),
27  cl::desc("Dont expand conditional move related "
28  "pseudos for Mips 16"),
29  cl::Hidden);
30 
31 namespace {
32 struct Mips16Libcall {
34  const char *Name;
35 
36  bool operator<(const Mips16Libcall &RHS) const {
37  return std::strcmp(Name, RHS.Name) < 0;
38  }
39 };
40 
41 struct Mips16IntrinsicHelperType{
42  const char* Name;
43  const char* Helper;
44 
45  bool operator<(const Mips16IntrinsicHelperType &RHS) const {
46  return std::strcmp(Name, RHS.Name) < 0;
47  }
48  bool operator==(const Mips16IntrinsicHelperType &RHS) const {
49  return std::strcmp(Name, RHS.Name) == 0;
50  }
51 };
52 }
53 
54 // Libcalls for which no helper is generated. Sorted by name for binary search.
55 static const Mips16Libcall HardFloatLibCalls[] = {
56  { RTLIB::ADD_F64, "__mips16_adddf3" },
57  { RTLIB::ADD_F32, "__mips16_addsf3" },
58  { RTLIB::DIV_F64, "__mips16_divdf3" },
59  { RTLIB::DIV_F32, "__mips16_divsf3" },
60  { RTLIB::OEQ_F64, "__mips16_eqdf2" },
61  { RTLIB::OEQ_F32, "__mips16_eqsf2" },
62  { RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2" },
63  { RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi" },
64  { RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi" },
65  { RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf" },
66  { RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf" },
67  { RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf" },
68  { RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf" },
69  { RTLIB::OGE_F64, "__mips16_gedf2" },
70  { RTLIB::OGE_F32, "__mips16_gesf2" },
71  { RTLIB::OGT_F64, "__mips16_gtdf2" },
72  { RTLIB::OGT_F32, "__mips16_gtsf2" },
73  { RTLIB::OLE_F64, "__mips16_ledf2" },
74  { RTLIB::OLE_F32, "__mips16_lesf2" },
75  { RTLIB::OLT_F64, "__mips16_ltdf2" },
76  { RTLIB::OLT_F32, "__mips16_ltsf2" },
77  { RTLIB::MUL_F64, "__mips16_muldf3" },
78  { RTLIB::MUL_F32, "__mips16_mulsf3" },
79  { RTLIB::UNE_F64, "__mips16_nedf2" },
80  { RTLIB::UNE_F32, "__mips16_nesf2" },
81  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_dc" }, // No associated libcall.
82  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_df" }, // No associated libcall.
83  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sc" }, // No associated libcall.
84  { RTLIB::UNKNOWN_LIBCALL, "__mips16_ret_sf" }, // No associated libcall.
85  { RTLIB::SUB_F64, "__mips16_subdf3" },
86  { RTLIB::SUB_F32, "__mips16_subsf3" },
87  { RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2" },
88  { RTLIB::UO_F64, "__mips16_unorddf2" },
89  { RTLIB::UO_F32, "__mips16_unordsf2" }
90 };
91 
92 static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[] = {
93  {"__fixunsdfsi", "__mips16_call_stub_2" },
94  {"ceil", "__mips16_call_stub_df_2"},
95  {"ceilf", "__mips16_call_stub_sf_1"},
96  {"copysign", "__mips16_call_stub_df_10"},
97  {"copysignf", "__mips16_call_stub_sf_5"},
98  {"cos", "__mips16_call_stub_df_2"},
99  {"cosf", "__mips16_call_stub_sf_1"},
100  {"exp2", "__mips16_call_stub_df_2"},
101  {"exp2f", "__mips16_call_stub_sf_1"},
102  {"floor", "__mips16_call_stub_df_2"},
103  {"floorf", "__mips16_call_stub_sf_1"},
104  {"log2", "__mips16_call_stub_df_2"},
105  {"log2f", "__mips16_call_stub_sf_1"},
106  {"nearbyint", "__mips16_call_stub_df_2"},
107  {"nearbyintf", "__mips16_call_stub_sf_1"},
108  {"rint", "__mips16_call_stub_df_2"},
109  {"rintf", "__mips16_call_stub_sf_1"},
110  {"sin", "__mips16_call_stub_df_2"},
111  {"sinf", "__mips16_call_stub_sf_1"},
112  {"sqrt", "__mips16_call_stub_df_2"},
113  {"sqrtf", "__mips16_call_stub_sf_1"},
114  {"trunc", "__mips16_call_stub_df_2"},
115  {"truncf", "__mips16_call_stub_sf_1"},
116 };
117 
119  : MipsTargetLowering(TM) {
120  //
121  // set up as if mips32 and then revert so we can test the mechanism
122  // for switching
123  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
124  addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
127 
128  // Set up the register classes
129  addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
130 
132  setMips16HardFloatLibCalls();
133 
147 
152 
154 }
155 
156 const MipsTargetLowering *
158  return new Mips16TargetLowering(TM);
159 }
160 
161 bool
163  return false;
164 }
165 
168  MachineBasicBlock *BB) const {
169  switch (MI->getOpcode()) {
170  default:
172  case Mips::SelBeqZ:
173  return emitSel16(Mips::BeqzRxImm16, MI, BB);
174  case Mips::SelBneZ:
175  return emitSel16(Mips::BnezRxImm16, MI, BB);
176  case Mips::SelTBteqZCmpi:
177  return emitSeliT16(Mips::Bteqz16, Mips::CmpiRxImmX16, MI, BB);
178  case Mips::SelTBteqZSlti:
179  return emitSeliT16(Mips::Bteqz16, Mips::SltiRxImmX16, MI, BB);
180  case Mips::SelTBteqZSltiu:
181  return emitSeliT16(Mips::Bteqz16, Mips::SltiuRxImmX16, MI, BB);
182  case Mips::SelTBtneZCmpi:
183  return emitSeliT16(Mips::Btnez16, Mips::CmpiRxImmX16, MI, BB);
184  case Mips::SelTBtneZSlti:
185  return emitSeliT16(Mips::Btnez16, Mips::SltiRxImmX16, MI, BB);
186  case Mips::SelTBtneZSltiu:
187  return emitSeliT16(Mips::Btnez16, Mips::SltiuRxImmX16, MI, BB);
188  case Mips::SelTBteqZCmp:
189  return emitSelT16(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
190  case Mips::SelTBteqZSlt:
191  return emitSelT16(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
192  case Mips::SelTBteqZSltu:
193  return emitSelT16(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
194  case Mips::SelTBtneZCmp:
195  return emitSelT16(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
196  case Mips::SelTBtneZSlt:
197  return emitSelT16(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
198  case Mips::SelTBtneZSltu:
199  return emitSelT16(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
200  case Mips::BteqzT8CmpX16:
201  return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::CmpRxRy16, MI, BB);
202  case Mips::BteqzT8SltX16:
203  return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltRxRy16, MI, BB);
204  case Mips::BteqzT8SltuX16:
205  // TBD: figure out a way to get this or remove the instruction
206  // altogether.
207  return emitFEXT_T8I816_ins(Mips::Bteqz16, Mips::SltuRxRy16, MI, BB);
208  case Mips::BtnezT8CmpX16:
209  return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::CmpRxRy16, MI, BB);
210  case Mips::BtnezT8SltX16:
211  return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltRxRy16, MI, BB);
212  case Mips::BtnezT8SltuX16:
213  // TBD: figure out a way to get this or remove the instruction
214  // altogether.
215  return emitFEXT_T8I816_ins(Mips::Btnez16, Mips::SltuRxRy16, MI, BB);
216  case Mips::BteqzT8CmpiX16: return emitFEXT_T8I8I16_ins(
217  Mips::Bteqz16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
218  case Mips::BteqzT8SltiX16: return emitFEXT_T8I8I16_ins(
219  Mips::Bteqz16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
220  case Mips::BteqzT8SltiuX16: return emitFEXT_T8I8I16_ins(
221  Mips::Bteqz16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
222  case Mips::BtnezT8CmpiX16: return emitFEXT_T8I8I16_ins(
223  Mips::Btnez16, Mips::CmpiRxImm16, Mips::CmpiRxImmX16, false, MI, BB);
224  case Mips::BtnezT8SltiX16: return emitFEXT_T8I8I16_ins(
225  Mips::Btnez16, Mips::SltiRxImm16, Mips::SltiRxImmX16, true, MI, BB);
226  case Mips::BtnezT8SltiuX16: return emitFEXT_T8I8I16_ins(
227  Mips::Btnez16, Mips::SltiuRxImm16, Mips::SltiuRxImmX16, false, MI, BB);
228  break;
229  case Mips::SltCCRxRy16:
230  return emitFEXT_CCRX16_ins(Mips::SltRxRy16, MI, BB);
231  break;
232  case Mips::SltiCCRxImmX16:
233  return emitFEXT_CCRXI16_ins
234  (Mips::SltiRxImm16, Mips::SltiRxImmX16, MI, BB);
235  case Mips::SltiuCCRxImmX16:
236  return emitFEXT_CCRXI16_ins
237  (Mips::SltiuRxImm16, Mips::SltiuRxImmX16, MI, BB);
238  case Mips::SltuCCRxRy16:
239  return emitFEXT_CCRX16_ins
240  (Mips::SltuRxRy16, MI, BB);
241  }
242 }
243 
244 bool Mips16TargetLowering::
245 isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
246  unsigned NextStackOffset,
247  const MipsFunctionInfo& FI) const {
248  // No tail call optimization for mips16.
249  return false;
250 }
251 
252 void Mips16TargetLowering::setMips16HardFloatLibCalls() {
253  for (unsigned I = 0; I != array_lengthof(HardFloatLibCalls); ++I) {
254  assert((I == 0 || HardFloatLibCalls[I - 1] < HardFloatLibCalls[I]) &&
255  "Array not sorted!");
258  }
259 
260  setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
261  setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
262 }
263 
264 //
265 // The Mips16 hard float is a crazy quilt inherited from gcc. I have a much
266 // cleaner way to do all of this but it will have to wait until the traditional
267 // gcc mechanism is completed.
268 //
269 // For Pic, in order for Mips16 code to call Mips32 code which according the abi
270 // have either arguments or returned values placed in floating point registers,
271 // we use a set of helper functions. (This includes functions which return type
272 // complex which on Mips are returned in a pair of floating point registers).
273 //
274 // This is an encoding that we inherited from gcc.
275 // In Mips traditional O32, N32 ABI, floating point numbers are passed in
276 // floating point argument registers 1,2 only when the first and optionally
277 // the second arguments are float (sf) or double (df).
278 // For Mips16 we are only concerned with the situations where floating point
279 // arguments are being passed in floating point registers by the ABI, because
280 // Mips16 mode code cannot execute floating point instructions to load those
281 // values and hence helper functions are needed.
282 // The possibilities are (), (sf), (sf, sf), (sf, df), (df), (df, sf), (df, df)
283 // the helper function suffixs for these are:
284 // 0, 1, 5, 9, 2, 6, 10
285 // this suffix can then be calculated as follows:
286 // for a given argument Arg:
287 // Arg1x, Arg2x = 1 : Arg is sf
288 // 2 : Arg is df
289 // 0: Arg is neither sf or df
290 // So this stub is the string for number Arg1x + Arg2x*4.
291 // However not all numbers between 0 and 10 are possible, we check anyway and
292 // assert if the impossible exists.
293 //
294 
295 unsigned int Mips16TargetLowering::getMips16HelperFunctionStubNumber
296  (ArgListTy &Args) const {
297  unsigned int resultNum = 0;
298  if (Args.size() >= 1) {
299  Type *t = Args[0].Ty;
300  if (t->isFloatTy()) {
301  resultNum = 1;
302  }
303  else if (t->isDoubleTy()) {
304  resultNum = 2;
305  }
306  }
307  if (resultNum) {
308  if (Args.size() >=2) {
309  Type *t = Args[1].Ty;
310  if (t->isFloatTy()) {
311  resultNum += 4;
312  }
313  else if (t->isDoubleTy()) {
314  resultNum += 8;
315  }
316  }
317  }
318  return resultNum;
319 }
320 
321 //
322 // prefixs are attached to stub numbers depending on the return type .
323 // return type: float sf_
324 // double df_
325 // single complex sc_
326 // double complext dc_
327 // others NO PREFIX
328 //
329 //
330 // The full name of a helper function is__mips16_call_stub +
331 // return type dependent prefix + stub number
332 //
333 //
334 // This is something that probably should be in a different source file and
335 // perhaps done differently but my main purpose is to not waste runtime
336 // on something that we can enumerate in the source. Another possibility is
337 // to have a python script to generate these mapping tables. This will do
338 // for now. There are a whole series of helper function mapping arrays, one
339 // for each return type class as outlined above. There there are 11 possible
340 // entries. Ones with 0 are ones which should never be selected
341 //
342 // All the arrays are similar except for ones which return neither
343 // sf, df, sc, dc, in which only care about ones which have sf or df as a
344 // first parameter.
345 //
346 #define P_ "__mips16_call_stub_"
347 #define MAX_STUB_NUMBER 10
348 #define T1 P "1", P "2", 0, 0, P "5", P "6", 0, 0, P "9", P "10"
349 #define T P "0" , T1
350 #define P P_
351 static char const * vMips16Helper[MAX_STUB_NUMBER+1] =
352  {0, T1 };
353 #undef P
354 #define P P_ "sf_"
355 static char const * sfMips16Helper[MAX_STUB_NUMBER+1] =
356  { T };
357 #undef P
358 #define P P_ "df_"
359 static char const * dfMips16Helper[MAX_STUB_NUMBER+1] =
360  { T };
361 #undef P
362 #define P P_ "sc_"
363 static char const * scMips16Helper[MAX_STUB_NUMBER+1] =
364  { T };
365 #undef P
366 #define P P_ "dc_"
367 static char const * dcMips16Helper[MAX_STUB_NUMBER+1] =
368  { T };
369 #undef P
370 #undef P_
371 
372 
373 const char* Mips16TargetLowering::
374  getMips16HelperFunction
375  (Type* RetTy, ArgListTy &Args, bool &needHelper) const {
376  const unsigned int stubNum = getMips16HelperFunctionStubNumber(Args);
377 #ifndef NDEBUG
378  const unsigned int maxStubNum = 10;
379  assert(stubNum <= maxStubNum);
380  const bool validStubNum[maxStubNum+1] =
381  {true, true, true, false, false, true, true, false, false, true, true};
382  assert(validStubNum[stubNum]);
383 #endif
384  const char *result;
385  if (RetTy->isFloatTy()) {
386  result = sfMips16Helper[stubNum];
387  }
388  else if (RetTy ->isDoubleTy()) {
389  result = dfMips16Helper[stubNum];
390  }
391  else if (RetTy->isStructTy()) {
392  // check if it's complex
393  if (RetTy->getNumContainedTypes() == 2) {
394  if ((RetTy->getContainedType(0)->isFloatTy()) &&
395  (RetTy->getContainedType(1)->isFloatTy())) {
396  result = scMips16Helper[stubNum];
397  }
398  else if ((RetTy->getContainedType(0)->isDoubleTy()) &&
399  (RetTy->getContainedType(1)->isDoubleTy())) {
400  result = dcMips16Helper[stubNum];
401  }
402  else {
403  llvm_unreachable("Uncovered condition");
404  }
405  }
406  else {
407  llvm_unreachable("Uncovered condition");
408  }
409  }
410  else {
411  if (stubNum == 0) {
412  needHelper = false;
413  return "";
414  }
415  result = vMips16Helper[stubNum];
416  }
417  needHelper = true;
418  return result;
419 }
420 
421 void Mips16TargetLowering::
422 getOpndList(SmallVectorImpl<SDValue> &Ops,
423  std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
424  bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
425  CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
426  SelectionDAG &DAG = CLI.DAG;
428  MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
429  const char* Mips16HelperFunction = 0;
430  bool NeedMips16Helper = false;
431 
434  //
435  // currently we don't have symbols tagged with the mips16 or mips32
436  // qualifier so we will assume that we don't know what kind it is.
437  // and generate the helper
438  //
439  bool LookupHelper = true;
440  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(CLI.Callee)) {
441  Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL, S->getSymbol() };
442 
443  if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
444  Find))
445  LookupHelper = false;
446  else {
447  Mips16IntrinsicHelperType IntrinsicFind = {S->getSymbol(), ""};
448  // one more look at list of intrinsics
449  if (std::binary_search(Mips16IntrinsicHelper,
451  IntrinsicFind)) {
452  const Mips16IntrinsicHelperType *h =(std::find(Mips16IntrinsicHelper,
454  IntrinsicFind));
455  Mips16HelperFunction = h->Helper;
456  NeedMips16Helper = true;
457  LookupHelper = false;
458  }
459 
460  }
461  } else if (GlobalAddressSDNode *G =
462  dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
463  Mips16Libcall Find = { RTLIB::UNKNOWN_LIBCALL,
464  G->getGlobal()->getName().data() };
465 
466  if (std::binary_search(HardFloatLibCalls, array_endof(HardFloatLibCalls),
467  Find))
468  LookupHelper = false;
469  }
470  if (LookupHelper) Mips16HelperFunction =
471  getMips16HelperFunction(CLI.RetTy, CLI.Args, NeedMips16Helper);
472 
473  }
474 
475  SDValue JumpTarget = Callee;
476 
477  // T9 should contain the address of the callee function if
478  // -reloction-model=pic or it is an indirect call.
479  if (IsPICCall || !GlobalOrExternal) {
480  unsigned V0Reg = Mips::V0;
481  if (NeedMips16Helper) {
482  RegsToPass.push_front(std::make_pair(V0Reg, Callee));
483  JumpTarget = DAG.getExternalSymbol(Mips16HelperFunction, getPointerTy());
484  ExternalSymbolSDNode *S = cast<ExternalSymbolSDNode>(JumpTarget);
485  JumpTarget = getAddrGlobal(S, JumpTarget.getValueType(), DAG,
486  MipsII::MO_GOT, Chain,
487  FuncInfo->callPtrInfo(S->getSymbol()));
488  } else
489  RegsToPass.push_front(std::make_pair((unsigned)Mips::T9, Callee));
490  }
491 
492  Ops.push_back(JumpTarget);
493 
494  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
495  InternalLinkage, CLI, Callee, Chain);
496 }
497 
498 MachineBasicBlock *Mips16TargetLowering::
499 emitSel16(unsigned Opc, MachineInstr *MI, MachineBasicBlock *BB) const {
501  return BB;
503  DebugLoc DL = MI->getDebugLoc();
504  // To "insert" a SELECT_CC instruction, we actually have to insert the
505  // diamond control-flow pattern. The incoming instruction knows the
506  // destination vreg to set, the condition code register to branch on, the
507  // true/false values to select between, and a branch opcode to use.
508  const BasicBlock *LLVM_BB = BB->getBasicBlock();
510  ++It;
511 
512  // thisMBB:
513  // ...
514  // TrueVal = ...
515  // setcc r1, r2, r3
516  // bNE r1, r0, copy1MBB
517  // fallthrough --> copy0MBB
518  MachineBasicBlock *thisMBB = BB;
519  MachineFunction *F = BB->getParent();
520  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
521  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
522  F->insert(It, copy0MBB);
523  F->insert(It, sinkMBB);
524 
525  // Transfer the remainder of BB and its successor edges to sinkMBB.
526  sinkMBB->splice(sinkMBB->begin(), BB,
528  BB->end());
529  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
530 
531  // Next, add the true and fallthrough blocks as its successors.
532  BB->addSuccessor(copy0MBB);
533  BB->addSuccessor(sinkMBB);
534 
535  BuildMI(BB, DL, TII->get(Opc)).addReg(MI->getOperand(3).getReg())
536  .addMBB(sinkMBB);
537 
538  // copy0MBB:
539  // %FalseValue = ...
540  // # fallthrough to sinkMBB
541  BB = copy0MBB;
542 
543  // Update machine-CFG edges
544  BB->addSuccessor(sinkMBB);
545 
546  // sinkMBB:
547  // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
548  // ...
549  BB = sinkMBB;
550 
551  BuildMI(*BB, BB->begin(), DL,
552  TII->get(Mips::PHI), MI->getOperand(0).getReg())
553  .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
554  .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
555 
556  MI->eraseFromParent(); // The pseudo instruction is gone now.
557  return BB;
558 }
559 
560 MachineBasicBlock *Mips16TargetLowering::emitSelT16
561  (unsigned Opc1, unsigned Opc2,
562  MachineInstr *MI, MachineBasicBlock *BB) const {
564  return BB;
566  DebugLoc DL = MI->getDebugLoc();
567  // To "insert" a SELECT_CC instruction, we actually have to insert the
568  // diamond control-flow pattern. The incoming instruction knows the
569  // destination vreg to set, the condition code register to branch on, the
570  // true/false values to select between, and a branch opcode to use.
571  const BasicBlock *LLVM_BB = BB->getBasicBlock();
573  ++It;
574 
575  // thisMBB:
576  // ...
577  // TrueVal = ...
578  // setcc r1, r2, r3
579  // bNE r1, r0, copy1MBB
580  // fallthrough --> copy0MBB
581  MachineBasicBlock *thisMBB = BB;
582  MachineFunction *F = BB->getParent();
583  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
584  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
585  F->insert(It, copy0MBB);
586  F->insert(It, sinkMBB);
587 
588  // Transfer the remainder of BB and its successor edges to sinkMBB.
589  sinkMBB->splice(sinkMBB->begin(), BB,
591  BB->end());
592  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
593 
594  // Next, add the true and fallthrough blocks as its successors.
595  BB->addSuccessor(copy0MBB);
596  BB->addSuccessor(sinkMBB);
597 
598  BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
599  .addReg(MI->getOperand(4).getReg());
600  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
601 
602  // copy0MBB:
603  // %FalseValue = ...
604  // # fallthrough to sinkMBB
605  BB = copy0MBB;
606 
607  // Update machine-CFG edges
608  BB->addSuccessor(sinkMBB);
609 
610  // sinkMBB:
611  // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
612  // ...
613  BB = sinkMBB;
614 
615  BuildMI(*BB, BB->begin(), DL,
616  TII->get(Mips::PHI), MI->getOperand(0).getReg())
617  .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
618  .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
619 
620  MI->eraseFromParent(); // The pseudo instruction is gone now.
621  return BB;
622 
623 }
624 
625 MachineBasicBlock *Mips16TargetLowering::emitSeliT16
626  (unsigned Opc1, unsigned Opc2,
627  MachineInstr *MI, MachineBasicBlock *BB) const {
629  return BB;
631  DebugLoc DL = MI->getDebugLoc();
632  // To "insert" a SELECT_CC instruction, we actually have to insert the
633  // diamond control-flow pattern. The incoming instruction knows the
634  // destination vreg to set, the condition code register to branch on, the
635  // true/false values to select between, and a branch opcode to use.
636  const BasicBlock *LLVM_BB = BB->getBasicBlock();
638  ++It;
639 
640  // thisMBB:
641  // ...
642  // TrueVal = ...
643  // setcc r1, r2, r3
644  // bNE r1, r0, copy1MBB
645  // fallthrough --> copy0MBB
646  MachineBasicBlock *thisMBB = BB;
647  MachineFunction *F = BB->getParent();
648  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
649  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
650  F->insert(It, copy0MBB);
651  F->insert(It, sinkMBB);
652 
653  // Transfer the remainder of BB and its successor edges to sinkMBB.
654  sinkMBB->splice(sinkMBB->begin(), BB,
656  BB->end());
657  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
658 
659  // Next, add the true and fallthrough blocks as its successors.
660  BB->addSuccessor(copy0MBB);
661  BB->addSuccessor(sinkMBB);
662 
663  BuildMI(BB, DL, TII->get(Opc2)).addReg(MI->getOperand(3).getReg())
664  .addImm(MI->getOperand(4).getImm());
665  BuildMI(BB, DL, TII->get(Opc1)).addMBB(sinkMBB);
666 
667  // copy0MBB:
668  // %FalseValue = ...
669  // # fallthrough to sinkMBB
670  BB = copy0MBB;
671 
672  // Update machine-CFG edges
673  BB->addSuccessor(sinkMBB);
674 
675  // sinkMBB:
676  // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
677  // ...
678  BB = sinkMBB;
679 
680  BuildMI(*BB, BB->begin(), DL,
681  TII->get(Mips::PHI), MI->getOperand(0).getReg())
682  .addReg(MI->getOperand(1).getReg()).addMBB(thisMBB)
683  .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB);
684 
685  MI->eraseFromParent(); // The pseudo instruction is gone now.
686  return BB;
687 
688 }
689 
691  *Mips16TargetLowering::emitFEXT_T8I816_ins(unsigned BtOpc, unsigned CmpOpc,
692  MachineInstr *MI,
693  MachineBasicBlock *BB) const {
695  return BB;
697  unsigned regX = MI->getOperand(0).getReg();
698  unsigned regY = MI->getOperand(1).getReg();
699  MachineBasicBlock *target = MI->getOperand(2).getMBB();
700  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
701  .addReg(regY);
702  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
703  MI->eraseFromParent(); // The pseudo instruction is gone now.
704  return BB;
705 }
706 
707 MachineBasicBlock *Mips16TargetLowering::emitFEXT_T8I8I16_ins(
708  unsigned BtOpc, unsigned CmpiOpc, unsigned CmpiXOpc, bool ImmSigned,
709  MachineInstr *MI, MachineBasicBlock *BB) const {
711  return BB;
713  unsigned regX = MI->getOperand(0).getReg();
714  int64_t imm = MI->getOperand(1).getImm();
715  MachineBasicBlock *target = MI->getOperand(2).getMBB();
716  unsigned CmpOpc;
717  if (isUInt<8>(imm))
718  CmpOpc = CmpiOpc;
719  else if ((!ImmSigned && isUInt<16>(imm)) ||
720  (ImmSigned && isInt<16>(imm)))
721  CmpOpc = CmpiXOpc;
722  else
723  llvm_unreachable("immediate field not usable");
724  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(CmpOpc)).addReg(regX)
725  .addImm(imm);
726  BuildMI(*BB, MI, MI->getDebugLoc(), TII->get(BtOpc)).addMBB(target);
727  MI->eraseFromParent(); // The pseudo instruction is gone now.
728  return BB;
729 }
730 
731 static unsigned Mips16WhichOp8uOr16simm
732  (unsigned shortOp, unsigned longOp, int64_t Imm) {
733  if (isUInt<8>(Imm))
734  return shortOp;
735  else if (isInt<16>(Imm))
736  return longOp;
737  else
738  llvm_unreachable("immediate field not usable");
739 }
740 
741 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRX16_ins(
742  unsigned SltOpc,
743  MachineInstr *MI, MachineBasicBlock *BB) const {
745  return BB;
747  unsigned CC = MI->getOperand(0).getReg();
748  unsigned regX = MI->getOperand(1).getReg();
749  unsigned regY = MI->getOperand(2).getReg();
750  BuildMI(*BB, MI, MI->getDebugLoc(),
751  TII->get(SltOpc)).addReg(regX).addReg(regY);
752  BuildMI(*BB, MI, MI->getDebugLoc(),
753  TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
754  MI->eraseFromParent(); // The pseudo instruction is gone now.
755  return BB;
756 }
757 
758 MachineBasicBlock *Mips16TargetLowering::emitFEXT_CCRXI16_ins(
759  unsigned SltiOpc, unsigned SltiXOpc,
760  MachineInstr *MI, MachineBasicBlock *BB )const {
762  return BB;
764  unsigned CC = MI->getOperand(0).getReg();
765  unsigned regX = MI->getOperand(1).getReg();
766  int64_t Imm = MI->getOperand(2).getImm();
767  unsigned SltOpc = Mips16WhichOp8uOr16simm(SltiOpc, SltiXOpc, Imm);
768  BuildMI(*BB, MI, MI->getDebugLoc(),
769  TII->get(SltOpc)).addReg(regX).addImm(Imm);
770  BuildMI(*BB, MI, MI->getDebugLoc(),
771  TII->get(Mips::MoveR3216), CC).addReg(Mips::T8);
772  MI->eraseFromParent(); // The pseudo instruction is gone now.
773  return BB;
774 
775 }
bool isUInt< 8 >(uint64_t x)
Definition: MathExtras.h:294
int strcmp(const char *s1, const char *s2);
const MachineFunction * getParent() const
T * array_endof(T(&x)[N])
Definition: STLExtras.h:244
SDValue getAddrGlobal(NodeTy *N, EVT Ty, SelectionDAG &DAG, unsigned Flag, SDValue Chain, const MachinePointerInfo &PtrInfo) const
const char * getSymbol() const
virtual void getOpndList(SmallVectorImpl< SDValue > &Ops, std::deque< std::pair< unsigned, SDValue > > &RegsToPass, bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage, CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const
static char const * vMips16Helper[MAX_STUB_NUMBER+1]
MachineBasicBlock * getMBB() const
static const SubtargetFeatureKV * Find(StringRef S, const SubtargetFeatureKV *A, size_t L)
Find KV in array using binary search.
const TargetMachine & getTargetMachine() const
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const
static char const * scMips16Helper[MAX_STUB_NUMBER+1]
void operator<(const Optional< T > &X, const Optional< U > &Y)
Poison comparison between two Optional objects. Clients needs to explicitly compare the underlying va...
bool isDoubleTy() const
isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:149
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB)
F(f)
static unsigned Mips16WhichOp8uOr16simm(unsigned shortOp, unsigned longOp, int64_t Imm)
SDValue getExternalSymbol(const char *Sym, EVT VT)
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const
const HexagonInstrInfo * TII
#define llvm_unreachable(msg)
EVT getValueType(unsigned ResNo) const
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:280
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
virtual MVT getPointerTy(uint32_t=0) const
static char const * dfMips16Helper[MAX_STUB_NUMBER+1]
bool inMips16HardFloat() const
const MachineInstrBuilder & addImm(int64_t Val) const
#define G(x, y, z)
Definition: MD5.cpp:52
static char const * dcMips16Helper[MAX_STUB_NUMBER+1]
size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:250
int getOpcode() const
Definition: MachineInstr.h:261
int64_t getImm() const
const BasicBlock * getBasicBlock() const
static const Mips16Libcall HardFloatLibCalls[]
bundle_iterator< MachineInstr, instr_iterator > iterator
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *bb=0)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Type * getContainedType(unsigned i) const
Definition: Type.h:339
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
bool isFloatTy() const
isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:146
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
const MipsSubtarget * Subtarget
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
unsigned getNumContainedTypes() const
Definition: Type.h:346
const MCInstrDesc & get(unsigned Opcode) const
Definition: MCInstrInfo.h:48
static const Mips16IntrinsicHelperType Mips16IntrinsicHelper[]
virtual const TargetInstrInfo * getInstrInfo() const
Byte Swap and Counting operators.
Definition: ISDOpcodes.h:309
static cl::opt< bool > DontExpandCondPseudos16("mips16-dont-expand-cond-pseudo", cl::init(false), cl::desc("Dont expand conditional move related ""pseudos for Mips 16"), cl::Hidden)
void clearRegisterClasses()
Remove all register classes.
bool isStructTy() const
Definition: Type.h:212
static char const * sfMips16Helper[MAX_STUB_NUMBER+1]
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
#define I(x, y, z)
Definition: MD5.cpp:54
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
bool isInt< 16 >(int64_t x)
Definition: MathExtras.h:272
MachinePointerInfo callPtrInfo(const StringRef &Name)
Create a MachinePointerInfo that has a MipsCallEntr object representing a GOT entry for an external f...
unsigned getReg() const
getReg - Returns the register number.
void insert(iterator MBBI, MachineBasicBlock *MBB)
bool isUInt< 16 >(uint64_t x)
Definition: MathExtras.h:298
BasicBlockListType::iterator iterator
const MipsTargetLowering * createMips16TargetLowering(MipsTargetMachine &TM)
Create MipsTargetLowering objects.
#define MAX_STUB_NUMBER
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1684
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
void addSuccessor(MachineBasicBlock *succ, uint32_t weight=0)
#define T1
DebugLoc getDebugLoc() const
Definition: MachineInstr.h:244
virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const
Determine if the target supports unaligned memory accesses.
Mips16TargetLowering(MipsTargetMachine &TM)