LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SparseSet.h
Go to the documentation of this file.
1 //===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the SparseSet class derived from the version described in
11 // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
12 // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993.
13 //
14 // A sparse set holds a small number of objects identified by integer keys from
15 // a moderately sized universe. The sparse set uses more memory than other
16 // containers in order to provide faster operations.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ADT_SPARSESET_H
21 #define LLVM_ADT_SPARSESET_H
22 
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/DataTypes.h"
26 #include <limits>
27 
28 namespace llvm {
29 
30 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
31 /// be uniquely converted to a small integer less than the set's universe. This
32 /// class allows the set to hold values that differ from the set's key type as
33 /// long as an index can still be derived from the value. SparseSet never
34 /// directly compares ValueT, only their indices, so it can map keys to
35 /// arbitrary values. SparseSetValTraits computes the index from the value
36 /// object. To compute the index from a key, SparseSet uses a separate
37 /// KeyFunctorT template argument.
38 ///
39 /// A simple type declaration, SparseSet<Type>, handles these cases:
40 /// - unsigned key, identity index, identity value
41 /// - unsigned key, identity index, fat value providing getSparseSetIndex()
42 ///
43 /// The type declaration SparseSet<Type, UnaryFunction> handles:
44 /// - unsigned key, remapped index, identity value (virtual registers)
45 /// - pointer key, pointer-derived index, identity value (node+ID)
46 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
47 ///
48 /// Only other, unexpected cases require specializing SparseSetValTraits.
49 ///
50 /// For best results, ValueT should not require a destructor.
51 ///
52 template<typename ValueT>
54  static unsigned getValIndex(const ValueT &Val) {
55  return Val.getSparseSetIndex();
56  }
57 };
58 
59 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
60 /// generic implementation handles ValueT classes which either provide
61 /// getSparseSetIndex() or specialize SparseSetValTraits<>.
62 ///
63 template<typename KeyT, typename ValueT, typename KeyFunctorT>
65  unsigned operator()(const ValueT &Val) const {
67  }
68 };
69 
70 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
71 /// identity key/value sets.
72 template<typename KeyT, typename KeyFunctorT>
73 struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
74  unsigned operator()(const KeyT &Key) const {
75  return KeyFunctorT()(Key);
76  }
77 };
78 
79 /// SparseSet - Fast set implmentation for objects that can be identified by
80 /// small unsigned keys.
81 ///
82 /// SparseSet allocates memory proportional to the size of the key universe, so
83 /// it is not recommended for building composite data structures. It is useful
84 /// for algorithms that require a single set with fast operations.
85 ///
86 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
87 /// clear() and iteration as fast as a vector. The find(), insert(), and
88 /// erase() operations are all constant time, and typically faster than a hash
89 /// table. The iteration order doesn't depend on numerical key values, it only
90 /// depends on the order of insert() and erase() operations. When no elements
91 /// have been erased, the iteration order is the insertion order.
92 ///
93 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
94 /// offers constant-time clear() and size() operations as well as fast
95 /// iteration independent on the size of the universe.
96 ///
97 /// SparseSet contains a dense vector holding all the objects and a sparse
98 /// array holding indexes into the dense vector. Most of the memory is used by
99 /// the sparse array which is the size of the key universe. The SparseT
100 /// template parameter provides a space/speed tradeoff for sets holding many
101 /// elements.
102 ///
103 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
104 /// array uses 4 x Universe bytes.
105 ///
106 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
107 /// lines, but the sparse array is 4x smaller. N is the number of elements in
108 /// the set.
109 ///
110 /// For sets that may grow to thousands of elements, SparseT should be set to
111 /// uint16_t or uint32_t.
112 ///
113 /// @tparam ValueT The type of objects in the set.
114 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
115 /// @tparam SparseT An unsigned integer type. See above.
116 ///
117 template<typename ValueT,
118  typename KeyFunctorT = llvm::identity<unsigned>,
119  typename SparseT = uint8_t>
120 class SparseSet {
121  typedef typename KeyFunctorT::argument_type KeyT;
123  DenseT Dense;
124  SparseT *Sparse;
125  unsigned Universe;
126  KeyFunctorT KeyIndexOf;
128 
129  // Disable copy construction and assignment.
130  // This data structure is not meant to be used that way.
132  SparseSet &operator=(const SparseSet&) LLVM_DELETED_FUNCTION;
133 
134 public:
135  typedef ValueT value_type;
136  typedef ValueT &reference;
137  typedef const ValueT &const_reference;
138  typedef ValueT *pointer;
139  typedef const ValueT *const_pointer;
140 
141  SparseSet() : Sparse(0), Universe(0) {}
142  ~SparseSet() { free(Sparse); }
143 
144  /// setUniverse - Set the universe size which determines the largest key the
145  /// set can hold. The universe must be sized before any elements can be
146  /// added.
147  ///
148  /// @param U Universe size. All object keys must be less than U.
149  ///
150  void setUniverse(unsigned U) {
151  // It's not hard to resize the universe on a non-empty set, but it doesn't
152  // seem like a likely use case, so we can add that code when we need it.
153  assert(empty() && "Can only resize universe on an empty map");
154  // Hysteresis prevents needless reallocations.
155  if (U >= Universe/4 && U <= Universe)
156  return;
157  free(Sparse);
158  // The Sparse array doesn't actually need to be initialized, so malloc
159  // would be enough here, but that will cause tools like valgrind to
160  // complain about branching on uninitialized data.
161  Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
162  Universe = U;
163  }
164 
165  // Import trivial vector stuff from DenseT.
166  typedef typename DenseT::iterator iterator;
168 
169  const_iterator begin() const { return Dense.begin(); }
170  const_iterator end() const { return Dense.end(); }
171  iterator begin() { return Dense.begin(); }
172  iterator end() { return Dense.end(); }
173 
174  /// empty - Returns true if the set is empty.
175  ///
176  /// This is not the same as BitVector::empty().
177  ///
178  bool empty() const { return Dense.empty(); }
179 
180  /// size - Returns the number of elements in the set.
181  ///
182  /// This is not the same as BitVector::size() which returns the size of the
183  /// universe.
184  ///
185  unsigned size() const { return Dense.size(); }
186 
187  /// clear - Clears the set. This is a very fast constant time operation.
188  ///
189  void clear() {
190  // Sparse does not need to be cleared, see find().
191  Dense.clear();
192  }
193 
194  /// findIndex - Find an element by its index.
195  ///
196  /// @param Idx A valid index to find.
197  /// @returns An iterator to the element identified by key, or end().
198  ///
199  iterator findIndex(unsigned Idx) {
200  assert(Idx < Universe && "Key out of range");
201  assert(std::numeric_limits<SparseT>::is_integer &&
202  !std::numeric_limits<SparseT>::is_signed &&
203  "SparseT must be an unsigned integer type");
204  const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
205  for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
206  const unsigned FoundIdx = ValIndexOf(Dense[i]);
207  assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
208  if (Idx == FoundIdx)
209  return begin() + i;
210  // Stride is 0 when SparseT >= unsigned. We don't need to loop.
211  if (!Stride)
212  break;
213  }
214  return end();
215  }
216 
217  /// find - Find an element by its key.
218  ///
219  /// @param Key A valid key to find.
220  /// @returns An iterator to the element identified by key, or end().
221  ///
222  iterator find(const KeyT &Key) {
223  return findIndex(KeyIndexOf(Key));
224  }
225 
226  const_iterator find(const KeyT &Key) const {
227  return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
228  }
229 
230  /// count - Returns true if this set contains an element identified by Key.
231  ///
232  bool count(const KeyT &Key) const {
233  return find(Key) != end();
234  }
235 
236  /// insert - Attempts to insert a new element.
237  ///
238  /// If Val is successfully inserted, return (I, true), where I is an iterator
239  /// pointing to the newly inserted element.
240  ///
241  /// If the set already contains an element with the same key as Val, return
242  /// (I, false), where I is an iterator pointing to the existing element.
243  ///
244  /// Insertion invalidates all iterators.
245  ///
246  std::pair<iterator, bool> insert(const ValueT &Val) {
247  unsigned Idx = ValIndexOf(Val);
248  iterator I = findIndex(Idx);
249  if (I != end())
250  return std::make_pair(I, false);
251  Sparse[Idx] = size();
252  Dense.push_back(Val);
253  return std::make_pair(end() - 1, true);
254  }
255 
256  /// array subscript - If an element already exists with this key, return it.
257  /// Otherwise, automatically construct a new value from Key, insert it,
258  /// and return the newly inserted element.
259  ValueT &operator[](const KeyT &Key) {
260  return *insert(ValueT(Key)).first;
261  }
262 
263  /// erase - Erases an existing element identified by a valid iterator.
264  ///
265  /// This invalidates all iterators, but erase() returns an iterator pointing
266  /// to the next element. This makes it possible to erase selected elements
267  /// while iterating over the set:
268  ///
269  /// for (SparseSet::iterator I = Set.begin(); I != Set.end();)
270  /// if (test(*I))
271  /// I = Set.erase(I);
272  /// else
273  /// ++I;
274  ///
275  /// Note that end() changes when elements are erased, unlike std::list.
276  ///
278  assert(unsigned(I - begin()) < size() && "Invalid iterator");
279  if (I != end() - 1) {
280  *I = Dense.back();
281  unsigned BackIdx = ValIndexOf(Dense.back());
282  assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
283  Sparse[BackIdx] = I - begin();
284  }
285  // This depends on SmallVector::pop_back() not invalidating iterators.
286  // std::vector::pop_back() doesn't give that guarantee.
287  Dense.pop_back();
288  return I;
289  }
290 
291  /// erase - Erases an element identified by Key, if it exists.
292  ///
293  /// @param Key The key identifying the element to erase.
294  /// @returns True when an element was erased, false if no element was found.
295  ///
296  bool erase(const KeyT &Key) {
297  iterator I = find(Key);
298  if (I == end())
299  return false;
300  erase(I);
301  return true;
302  }
303 
304 };
305 
306 } // end namespace llvm
307 
308 #endif
ValueT & operator[](const KeyT &Key)
Definition: SparseSet.h:259
void push_back(const T &Elt)
Definition: SmallVector.h:236
unsigned operator()(const ValueT &Val) const
Definition: SparseSet.h:65
DenseT::const_iterator const_iterator
Definition: SparseSet.h:167
iterator end()
Definition: SparseSet.h:172
std::pair< iterator, bool > insert(const ValueT &Val)
Definition: SparseSet.h:246
unsigned size() const
Definition: SparseSet.h:185
bool erase(const KeyT &Key)
Definition: SparseSet.h:296
const ValueT & const_reference
Definition: SparseSet.h:137
bool empty() const
Definition: SparseSet.h:178
const_iterator end() const
Definition: SparseSet.h:170
const_iterator find(const KeyT &Key) const
Definition: SparseSet.h:226
ValueT value_type
Definition: SparseSet.h:135
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
iterator findIndex(unsigned Idx)
Definition: SparseSet.h:199
DenseT::iterator iterator
Definition: SparseSet.h:166
iterator erase(iterator I)
Definition: SparseSet.h:277
void free(void *ptr);
ValueT * pointer
Definition: SparseSet.h:138
void setUniverse(unsigned U)
Definition: SparseSet.h:150
const_iterator begin() const
Definition: SparseSet.h:169
iterator begin()
Definition: SparseSet.h:171
bool count(const KeyT &Key) const
Definition: SparseSet.h:232
#define LLVM_DELETED_FUNCTION
Definition: Compiler.h:137
const ValueT * const_pointer
Definition: SparseSet.h:139
iterator find(const KeyT &Key)
Definition: SparseSet.h:222
#define I(x, y, z)
Definition: MD5.cpp:54
unsigned operator()(const KeyT &Key) const
Definition: SparseSet.h:74
ValueT & reference
Definition: SparseSet.h:136
void *calloc(size_t count, size_t size);
static unsigned getValIndex(const ValueT &Val)
Definition: SparseSet.h:54