LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
DependenceAnalysis.h
Go to the documentation of this file.
1 //===-- llvm/Analysis/DependenceAnalysis.h -------------------- -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an implementation of the approach described in
12 //
13 // Practical Dependence Testing
14 // Goff, Kennedy, Tseng
15 // PLDI 1991
16 //
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
20 //
21 // This pass exists to support the DependenceGraph pass. There are two separate
22 // passes because there's a useful separation of concerns. A dependence exists
23 // if two conditions are met:
24 //
25 // 1) Two instructions reference the same memory location, and
26 // 2) There is a flow of control leading from one instruction to the other.
27 //
28 // DependenceAnalysis attacks the first condition; DependenceGraph will attack
29 // the second (it's not yet ready).
30 //
31 // Please note that this is work in progress and the interface is subject to
32 // change.
33 //
34 // Plausible changes:
35 // Return a set of more precise dependences instead of just one dependence
36 // summarizing all.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #ifndef LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
41 #define LLVM_ANALYSIS_DEPENDENCEANALYSIS_H
42 
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/Pass.h"
46 
47 namespace llvm {
48  class AliasAnalysis;
49  class Loop;
50  class LoopInfo;
51  class ScalarEvolution;
52  class SCEV;
53  class SCEVConstant;
54  class raw_ostream;
55 
56  /// Dependence - This class represents a dependence between two memory
57  /// memory references in a function. It contains minimal information and
58  /// is used in the very common situation where the compiler is unable to
59  /// determine anything beyond the existence of a dependence; that is, it
60  /// represents a confused dependence (see also FullDependence). In most
61  /// cases (for output, flow, and anti dependences), the dependence implies
62  /// an ordering, where the source must precede the destination; in contrast,
63  /// input dependences are unordered.
64  ///
65  /// When a dependence graph is built, each Dependence will be a member of
66  /// the set of predecessor edges for its destination instruction and a set
67  /// if successor edges for its source instruction. These sets are represented
68  /// as singly-linked lists, with the "next" fields stored in the dependence
69  /// itelf.
70  class Dependence {
71  public:
73  Instruction *Destination) :
74  Src(Source),
75  Dst(Destination),
76  NextPredecessor(NULL),
77  NextSuccessor(NULL) {}
78  virtual ~Dependence() {}
79 
80  /// Dependence::DVEntry - Each level in the distance/direction vector
81  /// has a direction (or perhaps a union of several directions), and
82  /// perhaps a distance.
83  struct DVEntry {
84  enum { NONE = 0,
85  LT = 1,
86  EQ = 2,
87  LE = 3,
88  GT = 4,
89  NE = 5,
90  GE = 6,
91  ALL = 7 };
92  unsigned char Direction : 3; // Init to ALL, then refine.
93  bool Scalar : 1; // Init to true.
94  bool PeelFirst : 1; // Peeling the first iteration will break dependence.
95  bool PeelLast : 1; // Peeling the last iteration will break the dependence.
96  bool Splitable : 1; // Splitting the loop will break dependence.
97  const SCEV *Distance; // NULL implies no distance available.
99  PeelLast(false), Splitable(false), Distance(NULL) { }
100  };
101 
102  /// getSrc - Returns the source instruction for this dependence.
103  ///
104  Instruction *getSrc() const { return Src; }
105 
106  /// getDst - Returns the destination instruction for this dependence.
107  ///
108  Instruction *getDst() const { return Dst; }
109 
110  /// isInput - Returns true if this is an input dependence.
111  ///
112  bool isInput() const;
113 
114  /// isOutput - Returns true if this is an output dependence.
115  ///
116  bool isOutput() const;
117 
118  /// isFlow - Returns true if this is a flow (aka true) dependence.
119  ///
120  bool isFlow() const;
121 
122  /// isAnti - Returns true if this is an anti dependence.
123  ///
124  bool isAnti() const;
125 
126  /// isOrdered - Returns true if dependence is Output, Flow, or Anti
127  ///
128  bool isOrdered() const { return isOutput() || isFlow() || isAnti(); }
129 
130  /// isUnordered - Returns true if dependence is Input
131  ///
132  bool isUnordered() const { return isInput(); }
133 
134  /// isLoopIndependent - Returns true if this is a loop-independent
135  /// dependence.
136  virtual bool isLoopIndependent() const { return true; }
137 
138  /// isConfused - Returns true if this dependence is confused
139  /// (the compiler understands nothing and makes worst-case
140  /// assumptions).
141  virtual bool isConfused() const { return true; }
142 
143  /// isConsistent - Returns true if this dependence is consistent
144  /// (occurs every time the source and destination are executed).
145  virtual bool isConsistent() const { return false; }
146 
147  /// getLevels - Returns the number of common loops surrounding the
148  /// source and destination of the dependence.
149  virtual unsigned getLevels() const { return 0; }
150 
151  /// getDirection - Returns the direction associated with a particular
152  /// level.
153  virtual unsigned getDirection(unsigned Level) const { return DVEntry::ALL; }
154 
155  /// getDistance - Returns the distance (or NULL) associated with a
156  /// particular level.
157  virtual const SCEV *getDistance(unsigned Level) const { return NULL; }
158 
159  /// isPeelFirst - Returns true if peeling the first iteration from
160  /// this loop will break this dependence.
161  virtual bool isPeelFirst(unsigned Level) const { return false; }
162 
163  /// isPeelLast - Returns true if peeling the last iteration from
164  /// this loop will break this dependence.
165  virtual bool isPeelLast(unsigned Level) const { return false; }
166 
167  /// isSplitable - Returns true if splitting this loop will break
168  /// the dependence.
169  virtual bool isSplitable(unsigned Level) const { return false; }
170 
171  /// isScalar - Returns true if a particular level is scalar; that is,
172  /// if no subscript in the source or destination mention the induction
173  /// variable associated with the loop at this level.
174  virtual bool isScalar(unsigned Level) const;
175 
176  /// getNextPredecessor - Returns the value of the NextPredecessor
177  /// field.
179  return NextPredecessor;
180  }
181 
182  /// getNextSuccessor - Returns the value of the NextSuccessor
183  /// field.
184  const Dependence *getNextSuccessor() const {
185  return NextSuccessor;
186  }
187 
188  /// setNextPredecessor - Sets the value of the NextPredecessor
189  /// field.
190  void setNextPredecessor(const Dependence *pred) {
191  NextPredecessor = pred;
192  }
193 
194  /// setNextSuccessor - Sets the value of the NextSuccessor
195  /// field.
196  void setNextSuccessor(const Dependence *succ) {
197  NextSuccessor = succ;
198  }
199 
200  /// dump - For debugging purposes, dumps a dependence to OS.
201  ///
202  void dump(raw_ostream &OS) const;
203  private:
204  Instruction *Src, *Dst;
205  const Dependence *NextPredecessor, *NextSuccessor;
206  friend class DependenceAnalysis;
207  };
208 
209 
210  /// FullDependence - This class represents a dependence between two memory
211  /// references in a function. It contains detailed information about the
212  /// dependence (direction vectors, etc.) and is used when the compiler is
213  /// able to accurately analyze the interaction of the references; that is,
214  /// it is not a confused dependence (see Dependence). In most cases
215  /// (for output, flow, and anti dependences), the dependence implies an
216  /// ordering, where the source must precede the destination; in contrast,
217  /// input dependences are unordered.
218  class FullDependence : public Dependence {
219  public:
221  Instruction *Dst,
222  bool LoopIndependent,
223  unsigned Levels);
225  delete[] DV;
226  }
227 
228  /// isLoopIndependent - Returns true if this is a loop-independent
229  /// dependence.
230  bool isLoopIndependent() const { return LoopIndependent; }
231 
232  /// isConfused - Returns true if this dependence is confused
233  /// (the compiler understands nothing and makes worst-case
234  /// assumptions).
235  bool isConfused() const { return false; }
236 
237  /// isConsistent - Returns true if this dependence is consistent
238  /// (occurs every time the source and destination are executed).
239  bool isConsistent() const { return Consistent; }
240 
241  /// getLevels - Returns the number of common loops surrounding the
242  /// source and destination of the dependence.
243  unsigned getLevels() const { return Levels; }
244 
245  /// getDirection - Returns the direction associated with a particular
246  /// level.
247  unsigned getDirection(unsigned Level) const;
248 
249  /// getDistance - Returns the distance (or NULL) associated with a
250  /// particular level.
251  const SCEV *getDistance(unsigned Level) const;
252 
253  /// isPeelFirst - Returns true if peeling the first iteration from
254  /// this loop will break this dependence.
255  bool isPeelFirst(unsigned Level) const;
256 
257  /// isPeelLast - Returns true if peeling the last iteration from
258  /// this loop will break this dependence.
259  bool isPeelLast(unsigned Level) const;
260 
261  /// isSplitable - Returns true if splitting the loop will break
262  /// the dependence.
263  bool isSplitable(unsigned Level) const;
264 
265  /// isScalar - Returns true if a particular level is scalar; that is,
266  /// if no subscript in the source or destination mention the induction
267  /// variable associated with the loop at this level.
268  bool isScalar(unsigned Level) const;
269  private:
270  unsigned short Levels;
271  bool LoopIndependent;
272  bool Consistent; // Init to true, then refine.
273  DVEntry *DV;
274  friend class DependenceAnalysis;
275  };
276 
277 
278  /// DependenceAnalysis - This class is the main dependence-analysis driver.
279  ///
281  void operator=(const DependenceAnalysis &) LLVM_DELETED_FUNCTION;
283  public:
284  /// depends - Tests for a dependence between the Src and Dst instructions.
285  /// Returns NULL if no dependence; otherwise, returns a Dependence (or a
286  /// FullDependence) with as much information as can be gleaned.
287  /// The flag PossiblyLoopIndependent should be set by the caller
288  /// if it appears that control flow can reach from Src to Dst
289  /// without traversing a loop back edge.
291  Instruction *Dst,
292  bool PossiblyLoopIndependent);
293 
294  /// getSplitIteration - Give a dependence that's splittable at some
295  /// particular level, return the iteration that should be used to split
296  /// the loop.
297  ///
298  /// Generally, the dependence analyzer will be used to build
299  /// a dependence graph for a function (basically a map from instructions
300  /// to dependences). Looking for cycles in the graph shows us loops
301  /// that cannot be trivially vectorized/parallelized.
302  ///
303  /// We can try to improve the situation by examining all the dependences
304  /// that make up the cycle, looking for ones we can break.
305  /// Sometimes, peeling the first or last iteration of a loop will break
306  /// dependences, and there are flags for those possibilities.
307  /// Sometimes, splitting a loop at some other iteration will do the trick,
308  /// and we've got a flag for that case. Rather than waste the space to
309  /// record the exact iteration (since we rarely know), we provide
310  /// a method that calculates the iteration. It's a drag that it must work
311  /// from scratch, but wonderful in that it's possible.
312  ///
313  /// Here's an example:
314  ///
315  /// for (i = 0; i < 10; i++)
316  /// A[i] = ...
317  /// ... = A[11 - i]
318  ///
319  /// There's a loop-carried flow dependence from the store to the load,
320  /// found by the weak-crossing SIV test. The dependence will have a flag,
321  /// indicating that the dependence can be broken by splitting the loop.
322  /// Calling getSplitIteration will return 5.
323  /// Splitting the loop breaks the dependence, like so:
324  ///
325  /// for (i = 0; i <= 5; i++)
326  /// A[i] = ...
327  /// ... = A[11 - i]
328  /// for (i = 6; i < 10; i++)
329  /// A[i] = ...
330  /// ... = A[11 - i]
331  ///
332  /// breaks the dependence and allows us to vectorize/parallelize
333  /// both loops.
334  const SCEV *getSplitIteration(const Dependence *Dep, unsigned Level);
335 
336  private:
337  AliasAnalysis *AA;
338  ScalarEvolution *SE;
339  LoopInfo *LI;
340  Function *F;
341 
342  /// Subscript - This private struct represents a pair of subscripts from
343  /// a pair of potentially multi-dimensional array references. We use a
344  /// vector of them to guide subscript partitioning.
345  struct Subscript {
346  const SCEV *Src;
347  const SCEV *Dst;
348  enum ClassificationKind { ZIV, SIV, RDIV, MIV, NonLinear } Classification;
350  SmallBitVector GroupLoops;
351  SmallBitVector Group;
352  };
353 
354  struct CoefficientInfo {
355  const SCEV *Coeff;
356  const SCEV *PosPart;
357  const SCEV *NegPart;
358  const SCEV *Iterations;
359  };
360 
361  struct BoundInfo {
362  const SCEV *Iterations;
363  const SCEV *Upper[8];
364  const SCEV *Lower[8];
365  unsigned char Direction;
366  unsigned char DirSet;
367  };
368 
369  /// Constraint - This private class represents a constraint, as defined
370  /// in the paper
371  ///
372  /// Practical Dependence Testing
373  /// Goff, Kennedy, Tseng
374  /// PLDI 1991
375  ///
376  /// There are 5 kinds of constraint, in a hierarchy.
377  /// 1) Any - indicates no constraint, any dependence is possible.
378  /// 2) Line - A line ax + by = c, where a, b, and c are parameters,
379  /// representing the dependence equation.
380  /// 3) Distance - The value d of the dependence distance;
381  /// 4) Point - A point <x, y> representing the dependence from
382  /// iteration x to iteration y.
383  /// 5) Empty - No dependence is possible.
384  class Constraint {
385  private:
386  enum ConstraintKind { Empty, Point, Distance, Line, Any } Kind;
387  ScalarEvolution *SE;
388  const SCEV *A;
389  const SCEV *B;
390  const SCEV *C;
391  const Loop *AssociatedLoop;
392  public:
393  /// isEmpty - Return true if the constraint is of kind Empty.
394  bool isEmpty() const { return Kind == Empty; }
395 
396  /// isPoint - Return true if the constraint is of kind Point.
397  bool isPoint() const { return Kind == Point; }
398 
399  /// isDistance - Return true if the constraint is of kind Distance.
400  bool isDistance() const { return Kind == Distance; }
401 
402  /// isLine - Return true if the constraint is of kind Line.
403  /// Since Distance's can also be represented as Lines, we also return
404  /// true if the constraint is of kind Distance.
405  bool isLine() const { return Kind == Line || Kind == Distance; }
406 
407  /// isAny - Return true if the constraint is of kind Any;
408  bool isAny() const { return Kind == Any; }
409 
410  /// getX - If constraint is a point <X, Y>, returns X.
411  /// Otherwise assert.
412  const SCEV *getX() const;
413 
414  /// getY - If constraint is a point <X, Y>, returns Y.
415  /// Otherwise assert.
416  const SCEV *getY() const;
417 
418  /// getA - If constraint is a line AX + BY = C, returns A.
419  /// Otherwise assert.
420  const SCEV *getA() const;
421 
422  /// getB - If constraint is a line AX + BY = C, returns B.
423  /// Otherwise assert.
424  const SCEV *getB() const;
425 
426  /// getC - If constraint is a line AX + BY = C, returns C.
427  /// Otherwise assert.
428  const SCEV *getC() const;
429 
430  /// getD - If constraint is a distance, returns D.
431  /// Otherwise assert.
432  const SCEV *getD() const;
433 
434  /// getAssociatedLoop - Returns the loop associated with this constraint.
435  const Loop *getAssociatedLoop() const;
436 
437  /// setPoint - Change a constraint to Point.
438  void setPoint(const SCEV *X, const SCEV *Y, const Loop *CurrentLoop);
439 
440  /// setLine - Change a constraint to Line.
441  void setLine(const SCEV *A, const SCEV *B,
442  const SCEV *C, const Loop *CurrentLoop);
443 
444  /// setDistance - Change a constraint to Distance.
445  void setDistance(const SCEV *D, const Loop *CurrentLoop);
446 
447  /// setEmpty - Change a constraint to Empty.
448  void setEmpty();
449 
450  /// setAny - Change a constraint to Any.
451  void setAny(ScalarEvolution *SE);
452 
453  /// dump - For debugging purposes. Dumps the constraint
454  /// out to OS.
455  void dump(raw_ostream &OS) const;
456  };
457 
458 
459  /// establishNestingLevels - Examines the loop nesting of the Src and Dst
460  /// instructions and establishes their shared loops. Sets the variables
461  /// CommonLevels, SrcLevels, and MaxLevels.
462  /// The source and destination instructions needn't be contained in the same
463  /// loop. The routine establishNestingLevels finds the level of most deeply
464  /// nested loop that contains them both, CommonLevels. An instruction that's
465  /// not contained in a loop is at level = 0. MaxLevels is equal to the level
466  /// of the source plus the level of the destination, minus CommonLevels.
467  /// This lets us allocate vectors MaxLevels in length, with room for every
468  /// distinct loop referenced in both the source and destination subscripts.
469  /// The variable SrcLevels is the nesting depth of the source instruction.
470  /// It's used to help calculate distinct loops referenced by the destination.
471  /// Here's the map from loops to levels:
472  /// 0 - unused
473  /// 1 - outermost common loop
474  /// ... - other common loops
475  /// CommonLevels - innermost common loop
476  /// ... - loops containing Src but not Dst
477  /// SrcLevels - innermost loop containing Src but not Dst
478  /// ... - loops containing Dst but not Src
479  /// MaxLevels - innermost loop containing Dst but not Src
480  /// Consider the follow code fragment:
481  /// for (a = ...) {
482  /// for (b = ...) {
483  /// for (c = ...) {
484  /// for (d = ...) {
485  /// A[] = ...;
486  /// }
487  /// }
488  /// for (e = ...) {
489  /// for (f = ...) {
490  /// for (g = ...) {
491  /// ... = A[];
492  /// }
493  /// }
494  /// }
495  /// }
496  /// }
497  /// If we're looking at the possibility of a dependence between the store
498  /// to A (the Src) and the load from A (the Dst), we'll note that they
499  /// have 2 loops in common, so CommonLevels will equal 2 and the direction
500  /// vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
501  /// A map from loop names to level indices would look like
502  /// a - 1
503  /// b - 2 = CommonLevels
504  /// c - 3
505  /// d - 4 = SrcLevels
506  /// e - 5
507  /// f - 6
508  /// g - 7 = MaxLevels
509  void establishNestingLevels(const Instruction *Src,
510  const Instruction *Dst);
511 
512  unsigned CommonLevels, SrcLevels, MaxLevels;
513 
514  /// mapSrcLoop - Given one of the loops containing the source, return
515  /// its level index in our numbering scheme.
516  unsigned mapSrcLoop(const Loop *SrcLoop) const;
517 
518  /// mapDstLoop - Given one of the loops containing the destination,
519  /// return its level index in our numbering scheme.
520  unsigned mapDstLoop(const Loop *DstLoop) const;
521 
522  /// isLoopInvariant - Returns true if Expression is loop invariant
523  /// in LoopNest.
524  bool isLoopInvariant(const SCEV *Expression, const Loop *LoopNest) const;
525 
526  /// removeMatchingExtensions - Examines a subscript pair.
527  /// If the source and destination are identically sign (or zero)
528  /// extended, it strips off the extension in an effort to
529  /// simplify the actual analysis.
530  void removeMatchingExtensions(Subscript *Pair);
531 
532  /// collectCommonLoops - Finds the set of loops from the LoopNest that
533  /// have a level <= CommonLevels and are referred to by the SCEV Expression.
534  void collectCommonLoops(const SCEV *Expression,
535  const Loop *LoopNest,
536  SmallBitVector &Loops) const;
537 
538  /// checkSrcSubscript - Examines the SCEV Src, returning true iff it's
539  /// linear. Collect the set of loops mentioned by Src.
540  bool checkSrcSubscript(const SCEV *Src,
541  const Loop *LoopNest,
542  SmallBitVector &Loops);
543 
544  /// checkDstSubscript - Examines the SCEV Dst, returning true iff it's
545  /// linear. Collect the set of loops mentioned by Dst.
546  bool checkDstSubscript(const SCEV *Dst,
547  const Loop *LoopNest,
548  SmallBitVector &Loops);
549 
550  /// isKnownPredicate - Compare X and Y using the predicate Pred.
551  /// Basically a wrapper for SCEV::isKnownPredicate,
552  /// but tries harder, especially in the presence of sign and zero
553  /// extensions and symbolics.
554  bool isKnownPredicate(ICmpInst::Predicate Pred,
555  const SCEV *X,
556  const SCEV *Y) const;
557 
558  /// collectUpperBound - All subscripts are the same type (on my machine,
559  /// an i64). The loop bound may be a smaller type. collectUpperBound
560  /// find the bound, if available, and zero extends it to the Type T.
561  /// (I zero extend since the bound should always be >= 0.)
562  /// If no upper bound is available, return NULL.
563  const SCEV *collectUpperBound(const Loop *l, Type *T) const;
564 
565  /// collectConstantUpperBound - Calls collectUpperBound(), then
566  /// attempts to cast it to SCEVConstant. If the cast fails,
567  /// returns NULL.
568  const SCEVConstant *collectConstantUpperBound(const Loop *l, Type *T) const;
569 
570  /// classifyPair - Examines the subscript pair (the Src and Dst SCEVs)
571  /// and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
572  /// Collects the associated loops in a set.
573  Subscript::ClassificationKind classifyPair(const SCEV *Src,
574  const Loop *SrcLoopNest,
575  const SCEV *Dst,
576  const Loop *DstLoopNest,
577  SmallBitVector &Loops);
578 
579  /// testZIV - Tests the ZIV subscript pair (Src and Dst) for dependence.
580  /// Returns true if any possible dependence is disproved.
581  /// If there might be a dependence, returns false.
582  /// If the dependence isn't proven to exist,
583  /// marks the Result as inconsistent.
584  bool testZIV(const SCEV *Src,
585  const SCEV *Dst,
586  FullDependence &Result) const;
587 
588  /// testSIV - Tests the SIV subscript pair (Src and Dst) for dependence.
589  /// Things of the form [c1 + a1*i] and [c2 + a2*j], where
590  /// i and j are induction variables, c1 and c2 are loop invariant,
591  /// and a1 and a2 are constant.
592  /// Returns true if any possible dependence is disproved.
593  /// If there might be a dependence, returns false.
594  /// Sets appropriate direction vector entry and, when possible,
595  /// the distance vector entry.
596  /// If the dependence isn't proven to exist,
597  /// marks the Result as inconsistent.
598  bool testSIV(const SCEV *Src,
599  const SCEV *Dst,
600  unsigned &Level,
601  FullDependence &Result,
602  Constraint &NewConstraint,
603  const SCEV *&SplitIter) const;
604 
605  /// testRDIV - Tests the RDIV subscript pair (Src and Dst) for dependence.
606  /// Things of the form [c1 + a1*i] and [c2 + a2*j]
607  /// where i and j are induction variables, c1 and c2 are loop invariant,
608  /// and a1 and a2 are constant.
609  /// With minor algebra, this test can also be used for things like
610  /// [c1 + a1*i + a2*j][c2].
611  /// Returns true if any possible dependence is disproved.
612  /// If there might be a dependence, returns false.
613  /// Marks the Result as inconsistent.
614  bool testRDIV(const SCEV *Src,
615  const SCEV *Dst,
616  FullDependence &Result) const;
617 
618  /// testMIV - Tests the MIV subscript pair (Src and Dst) for dependence.
619  /// Returns true if dependence disproved.
620  /// Can sometimes refine direction vectors.
621  bool testMIV(const SCEV *Src,
622  const SCEV *Dst,
623  const SmallBitVector &Loops,
624  FullDependence &Result) const;
625 
626  /// strongSIVtest - Tests the strong SIV subscript pair (Src and Dst)
627  /// for dependence.
628  /// Things of the form [c1 + a*i] and [c2 + a*i],
629  /// where i is an induction variable, c1 and c2 are loop invariant,
630  /// and a is a constant
631  /// Returns true if any possible dependence is disproved.
632  /// If there might be a dependence, returns false.
633  /// Sets appropriate direction and distance.
634  bool strongSIVtest(const SCEV *Coeff,
635  const SCEV *SrcConst,
636  const SCEV *DstConst,
637  const Loop *CurrentLoop,
638  unsigned Level,
639  FullDependence &Result,
640  Constraint &NewConstraint) const;
641 
642  /// weakCrossingSIVtest - Tests the weak-crossing SIV subscript pair
643  /// (Src and Dst) for dependence.
644  /// Things of the form [c1 + a*i] and [c2 - a*i],
645  /// where i is an induction variable, c1 and c2 are loop invariant,
646  /// and a is a constant.
647  /// Returns true if any possible dependence is disproved.
648  /// If there might be a dependence, returns false.
649  /// Sets appropriate direction entry.
650  /// Set consistent to false.
651  /// Marks the dependence as splitable.
652  bool weakCrossingSIVtest(const SCEV *SrcCoeff,
653  const SCEV *SrcConst,
654  const SCEV *DstConst,
655  const Loop *CurrentLoop,
656  unsigned Level,
657  FullDependence &Result,
658  Constraint &NewConstraint,
659  const SCEV *&SplitIter) const;
660 
661  /// ExactSIVtest - Tests the SIV subscript pair
662  /// (Src and Dst) for dependence.
663  /// Things of the form [c1 + a1*i] and [c2 + a2*i],
664  /// where i is an induction variable, c1 and c2 are loop invariant,
665  /// and a1 and a2 are constant.
666  /// Returns true if any possible dependence is disproved.
667  /// If there might be a dependence, returns false.
668  /// Sets appropriate direction entry.
669  /// Set consistent to false.
670  bool exactSIVtest(const SCEV *SrcCoeff,
671  const SCEV *DstCoeff,
672  const SCEV *SrcConst,
673  const SCEV *DstConst,
674  const Loop *CurrentLoop,
675  unsigned Level,
676  FullDependence &Result,
677  Constraint &NewConstraint) const;
678 
679  /// weakZeroSrcSIVtest - Tests the weak-zero SIV subscript pair
680  /// (Src and Dst) for dependence.
681  /// Things of the form [c1] and [c2 + a*i],
682  /// where i is an induction variable, c1 and c2 are loop invariant,
683  /// and a is a constant. See also weakZeroDstSIVtest.
684  /// Returns true if any possible dependence is disproved.
685  /// If there might be a dependence, returns false.
686  /// Sets appropriate direction entry.
687  /// Set consistent to false.
688  /// If loop peeling will break the dependence, mark appropriately.
689  bool weakZeroSrcSIVtest(const SCEV *DstCoeff,
690  const SCEV *SrcConst,
691  const SCEV *DstConst,
692  const Loop *CurrentLoop,
693  unsigned Level,
694  FullDependence &Result,
695  Constraint &NewConstraint) const;
696 
697  /// weakZeroDstSIVtest - Tests the weak-zero SIV subscript pair
698  /// (Src and Dst) for dependence.
699  /// Things of the form [c1 + a*i] and [c2],
700  /// where i is an induction variable, c1 and c2 are loop invariant,
701  /// and a is a constant. See also weakZeroSrcSIVtest.
702  /// Returns true if any possible dependence is disproved.
703  /// If there might be a dependence, returns false.
704  /// Sets appropriate direction entry.
705  /// Set consistent to false.
706  /// If loop peeling will break the dependence, mark appropriately.
707  bool weakZeroDstSIVtest(const SCEV *SrcCoeff,
708  const SCEV *SrcConst,
709  const SCEV *DstConst,
710  const Loop *CurrentLoop,
711  unsigned Level,
712  FullDependence &Result,
713  Constraint &NewConstraint) const;
714 
715  /// exactRDIVtest - Tests the RDIV subscript pair for dependence.
716  /// Things of the form [c1 + a*i] and [c2 + b*j],
717  /// where i and j are induction variable, c1 and c2 are loop invariant,
718  /// and a and b are constants.
719  /// Returns true if any possible dependence is disproved.
720  /// Marks the result as inconsistent.
721  /// Works in some cases that symbolicRDIVtest doesn't,
722  /// and vice versa.
723  bool exactRDIVtest(const SCEV *SrcCoeff,
724  const SCEV *DstCoeff,
725  const SCEV *SrcConst,
726  const SCEV *DstConst,
727  const Loop *SrcLoop,
728  const Loop *DstLoop,
729  FullDependence &Result) const;
730 
731  /// symbolicRDIVtest - Tests the RDIV subscript pair for dependence.
732  /// Things of the form [c1 + a*i] and [c2 + b*j],
733  /// where i and j are induction variable, c1 and c2 are loop invariant,
734  /// and a and b are constants.
735  /// Returns true if any possible dependence is disproved.
736  /// Marks the result as inconsistent.
737  /// Works in some cases that exactRDIVtest doesn't,
738  /// and vice versa. Can also be used as a backup for
739  /// ordinary SIV tests.
740  bool symbolicRDIVtest(const SCEV *SrcCoeff,
741  const SCEV *DstCoeff,
742  const SCEV *SrcConst,
743  const SCEV *DstConst,
744  const Loop *SrcLoop,
745  const Loop *DstLoop) const;
746 
747  /// gcdMIVtest - Tests an MIV subscript pair for dependence.
748  /// Returns true if any possible dependence is disproved.
749  /// Marks the result as inconsistent.
750  /// Can sometimes disprove the equal direction for 1 or more loops.
751  // Can handle some symbolics that even the SIV tests don't get,
752  /// so we use it as a backup for everything.
753  bool gcdMIVtest(const SCEV *Src,
754  const SCEV *Dst,
755  FullDependence &Result) const;
756 
757  /// banerjeeMIVtest - Tests an MIV subscript pair for dependence.
758  /// Returns true if any possible dependence is disproved.
759  /// Marks the result as inconsistent.
760  /// Computes directions.
761  bool banerjeeMIVtest(const SCEV *Src,
762  const SCEV *Dst,
763  const SmallBitVector &Loops,
764  FullDependence &Result) const;
765 
766  /// collectCoefficientInfo - Walks through the subscript,
767  /// collecting each coefficient, the associated loop bounds,
768  /// and recording its positive and negative parts for later use.
769  CoefficientInfo *collectCoeffInfo(const SCEV *Subscript,
770  bool SrcFlag,
771  const SCEV *&Constant) const;
772 
773  /// getPositivePart - X^+ = max(X, 0).
774  ///
775  const SCEV *getPositivePart(const SCEV *X) const;
776 
777  /// getNegativePart - X^- = min(X, 0).
778  ///
779  const SCEV *getNegativePart(const SCEV *X) const;
780 
781  /// getLowerBound - Looks through all the bounds info and
782  /// computes the lower bound given the current direction settings
783  /// at each level.
784  const SCEV *getLowerBound(BoundInfo *Bound) const;
785 
786  /// getUpperBound - Looks through all the bounds info and
787  /// computes the upper bound given the current direction settings
788  /// at each level.
789  const SCEV *getUpperBound(BoundInfo *Bound) const;
790 
791  /// exploreDirections - Hierarchically expands the direction vector
792  /// search space, combining the directions of discovered dependences
793  /// in the DirSet field of Bound. Returns the number of distinct
794  /// dependences discovered. If the dependence is disproved,
795  /// it will return 0.
796  unsigned exploreDirections(unsigned Level,
797  CoefficientInfo *A,
798  CoefficientInfo *B,
799  BoundInfo *Bound,
800  const SmallBitVector &Loops,
801  unsigned &DepthExpanded,
802  const SCEV *Delta) const;
803 
804  /// testBounds - Returns true iff the current bounds are plausible.
805  ///
806  bool testBounds(unsigned char DirKind,
807  unsigned Level,
808  BoundInfo *Bound,
809  const SCEV *Delta) const;
810 
811  /// findBoundsALL - Computes the upper and lower bounds for level K
812  /// using the * direction. Records them in Bound.
813  void findBoundsALL(CoefficientInfo *A,
814  CoefficientInfo *B,
815  BoundInfo *Bound,
816  unsigned K) const;
817 
818  /// findBoundsLT - Computes the upper and lower bounds for level K
819  /// using the < direction. Records them in Bound.
820  void findBoundsLT(CoefficientInfo *A,
821  CoefficientInfo *B,
822  BoundInfo *Bound,
823  unsigned K) const;
824 
825  /// findBoundsGT - Computes the upper and lower bounds for level K
826  /// using the > direction. Records them in Bound.
827  void findBoundsGT(CoefficientInfo *A,
828  CoefficientInfo *B,
829  BoundInfo *Bound,
830  unsigned K) const;
831 
832  /// findBoundsEQ - Computes the upper and lower bounds for level K
833  /// using the = direction. Records them in Bound.
834  void findBoundsEQ(CoefficientInfo *A,
835  CoefficientInfo *B,
836  BoundInfo *Bound,
837  unsigned K) const;
838 
839  /// intersectConstraints - Updates X with the intersection
840  /// of the Constraints X and Y. Returns true if X has changed.
841  bool intersectConstraints(Constraint *X,
842  const Constraint *Y);
843 
844  /// propagate - Review the constraints, looking for opportunities
845  /// to simplify a subscript pair (Src and Dst).
846  /// Return true if some simplification occurs.
847  /// If the simplification isn't exact (that is, if it is conservative
848  /// in terms of dependence), set consistent to false.
849  bool propagate(const SCEV *&Src,
850  const SCEV *&Dst,
851  SmallBitVector &Loops,
852  SmallVectorImpl<Constraint> &Constraints,
853  bool &Consistent);
854 
855  /// propagateDistance - Attempt to propagate a distance
856  /// constraint into a subscript pair (Src and Dst).
857  /// Return true if some simplification occurs.
858  /// If the simplification isn't exact (that is, if it is conservative
859  /// in terms of dependence), set consistent to false.
860  bool propagateDistance(const SCEV *&Src,
861  const SCEV *&Dst,
862  Constraint &CurConstraint,
863  bool &Consistent);
864 
865  /// propagatePoint - Attempt to propagate a point
866  /// constraint into a subscript pair (Src and Dst).
867  /// Return true if some simplification occurs.
868  bool propagatePoint(const SCEV *&Src,
869  const SCEV *&Dst,
870  Constraint &CurConstraint);
871 
872  /// propagateLine - Attempt to propagate a line
873  /// constraint into a subscript pair (Src and Dst).
874  /// Return true if some simplification occurs.
875  /// If the simplification isn't exact (that is, if it is conservative
876  /// in terms of dependence), set consistent to false.
877  bool propagateLine(const SCEV *&Src,
878  const SCEV *&Dst,
879  Constraint &CurConstraint,
880  bool &Consistent);
881 
882  /// findCoefficient - Given a linear SCEV,
883  /// return the coefficient corresponding to specified loop.
884  /// If there isn't one, return the SCEV constant 0.
885  /// For example, given a*i + b*j + c*k, returning the coefficient
886  /// corresponding to the j loop would yield b.
887  const SCEV *findCoefficient(const SCEV *Expr,
888  const Loop *TargetLoop) const;
889 
890  /// zeroCoefficient - Given a linear SCEV,
891  /// return the SCEV given by zeroing out the coefficient
892  /// corresponding to the specified loop.
893  /// For example, given a*i + b*j + c*k, zeroing the coefficient
894  /// corresponding to the j loop would yield a*i + c*k.
895  const SCEV *zeroCoefficient(const SCEV *Expr,
896  const Loop *TargetLoop) const;
897 
898  /// addToCoefficient - Given a linear SCEV Expr,
899  /// return the SCEV given by adding some Value to the
900  /// coefficient corresponding to the specified TargetLoop.
901  /// For example, given a*i + b*j + c*k, adding 1 to the coefficient
902  /// corresponding to the j loop would yield a*i + (b+1)*j + c*k.
903  const SCEV *addToCoefficient(const SCEV *Expr,
904  const Loop *TargetLoop,
905  const SCEV *Value) const;
906 
907  /// updateDirection - Update direction vector entry
908  /// based on the current constraint.
909  void updateDirection(Dependence::DVEntry &Level,
910  const Constraint &CurConstraint) const;
911 
912  bool tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV,
913  SmallVectorImpl<Subscript> &Pair) const;
914 
915  public:
916  static char ID; // Class identification, replacement for typeinfo
919  }
920 
921  bool runOnFunction(Function &F);
922  void releaseMemory();
923  void getAnalysisUsage(AnalysisUsage &) const;
924  void print(raw_ostream &, const Module * = 0) const;
925  }; // class DependenceAnalysis
926 
927  /// createDependenceAnalysisPass - This creates an instance of the
928  /// DependenceAnalysis pass.
929  FunctionPass *createDependenceAnalysisPass();
930 
931 } // namespace llvm
932 
933 #endif
bool isPeelFirst(unsigned Level) const
static PassRegistry * getPassRegistry()
virtual bool isConfused() const
bool isOrdered() const
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
virtual bool isPeelFirst(unsigned Level) const
FunctionPass * createDependenceAnalysisPass()
bool isScalar(unsigned Level) const
const SCEV * getDistance(unsigned Level) const
Hexagon Hardware Loops
virtual bool isSplitable(unsigned Level) const
unsigned getLevels() const
#define false
Definition: ConvertUTF.c:64
void setNextPredecessor(const Dependence *pred)
void getAnalysisUsage(AnalysisUsage &) const
void print(raw_ostream &, const Module *=0) const
#define true
Definition: ConvertUTF.c:65
const Dependence * getNextSuccessor() const
Dependence * depends(Instruction *Src, Instruction *Dst, bool PossiblyLoopIndependent)
LLVM Constant Representation.
Definition: Constant.h:41
virtual bool isScalar(unsigned Level) const
Instr is a loop (backwards branch).
Definition: GCMetadata.h:51
unsigned getDirection(unsigned Level) const
const SCEV * getSplitIteration(const Dependence *Dep, unsigned Level)
bool isLoopIndependent() const
virtual const SCEV * getDistance(unsigned Level) const
Instruction * getSrc() const
virtual unsigned getDirection(unsigned Level) const
virtual bool isConsistent() const
bool isPeelLast(unsigned Level) const
void initializeDependenceAnalysisPass(PassRegistry &)
const Dependence * getNextPredecessor() const
virtual unsigned getLevels() const
virtual bool isPeelLast(unsigned Level) const
Dependence(Instruction *Source, Instruction *Destination)
#define LLVM_DELETED_FUNCTION
Definition: Compiler.h:137
FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent, unsigned Levels)
virtual bool isLoopIndependent() const
Instruction * getDst() const
void dump(raw_ostream &OS) const
bool isUnordered() const
LLVM Value Representation.
Definition: Value.h:66
void dump() const
Definition: Pass.cpp:113
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml","ocaml 3.10-compatible collector")
void setNextSuccessor(const Dependence *succ)
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
bool isSplitable(unsigned Level) const