LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
DependenceAnalysis.cpp
Go to the documentation of this file.
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an (incomplete) implementation of the approach
12 // described in
13 //
14 // Practical Dependence Testing
15 // Goff, Kennedy, Tseng
16 // PLDI 1991
17 //
18 // There's a single entry point that analyzes the dependence between a pair
19 // of memory references in a function, returning either NULL, for no dependence,
20 // or a more-or-less detailed description of the dependence between them.
21 //
22 // Currently, the implementation cannot propagate constraints between
23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 // Both of these are conservative weaknesses;
25 // that is, not a source of correctness problems.
26 //
27 // The implementation depends on the GEP instruction to differentiate
28 // subscripts. Since Clang linearizes some array subscripts, the dependence
29 // analysis is using SCEV->delinearize to recover the representation of multiple
30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
31 // delinearization is controlled by the flag -da-delinearize.
32 //
33 // We should pay some careful attention to the possibility of integer overflow
34 // in the implementation of the various tests. This could happen with Add,
35 // Subtract, or Multiply, with both APInt's and SCEV's.
36 //
37 // Some non-linear subscript pairs can be handled by the GCD test
38 // (and perhaps other tests).
39 // Should explore how often these things occur.
40 //
41 // Finally, it seems like certain test cases expose weaknesses in the SCEV
42 // simplification, especially in the handling of sign and zero extensions.
43 // It could be useful to spend time exploring these.
44 //
45 // Please note that this is work in progress and the interface is subject to
46 // change.
47 //
48 //===----------------------------------------------------------------------===//
49 // //
50 // In memory of Ken Kennedy, 1945 - 2007 //
51 // //
52 //===----------------------------------------------------------------------===//
53 
54 #define DEBUG_TYPE "da"
55 
57 #include "llvm/ADT/Statistic.h"
59 #include "llvm/Analysis/LoopInfo.h"
63 #include "llvm/IR/Operator.h"
65 #include "llvm/Support/Debug.h"
69 
70 using namespace llvm;
71 
72 //===----------------------------------------------------------------------===//
73 // statistics
74 
75 STATISTIC(TotalArrayPairs, "Array pairs tested");
76 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
77 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
78 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
79 STATISTIC(ZIVapplications, "ZIV applications");
80 STATISTIC(ZIVindependence, "ZIV independence");
81 STATISTIC(StrongSIVapplications, "Strong SIV applications");
82 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
83 STATISTIC(StrongSIVindependence, "Strong SIV independence");
84 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
85 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
86 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
87 STATISTIC(ExactSIVapplications, "Exact SIV applications");
88 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
89 STATISTIC(ExactSIVindependence, "Exact SIV independence");
90 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
91 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
92 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
93 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
94 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
95 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
96 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
97 STATISTIC(DeltaApplications, "Delta applications");
98 STATISTIC(DeltaSuccesses, "Delta successes");
99 STATISTIC(DeltaIndependence, "Delta independence");
100 STATISTIC(DeltaPropagations, "Delta propagations");
101 STATISTIC(GCDapplications, "GCD applications");
102 STATISTIC(GCDsuccesses, "GCD successes");
103 STATISTIC(GCDindependence, "GCD independence");
104 STATISTIC(BanerjeeApplications, "Banerjee applications");
105 STATISTIC(BanerjeeIndependence, "Banerjee independence");
106 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
107 
108 static cl::opt<bool>
109 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
110  cl::desc("Try to delinearize array references."));
111 
112 //===----------------------------------------------------------------------===//
113 // basics
114 
116  "Dependence Analysis", true, true)
121  "Dependence Analysis", true, true)
122 
123 char DependenceAnalysis::ID = 0;
124 
125 
127  return new DependenceAnalysis();
128 }
129 
130 
132  this->F = &F;
133  AA = &getAnalysis<AliasAnalysis>();
134  SE = &getAnalysis<ScalarEvolution>();
135  LI = &getAnalysis<LoopInfo>();
136  return false;
137 }
138 
139 
141 }
142 
143 
145  AU.setPreservesAll();
149 }
150 
151 
152 // Used to test the dependence analyzer.
153 // Looks through the function, noting loads and stores.
154 // Calls depends() on every possible pair and prints out the result.
155 // Ignores all other instructions.
156 static
159  for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
160  SrcI != SrcE; ++SrcI) {
161  if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
162  for (inst_iterator DstI = SrcI, DstE = inst_end(F);
163  DstI != DstE; ++DstI) {
164  if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
165  OS << "da analyze - ";
166  if (Dependence *D = DA->depends(&*SrcI, &*DstI, true)) {
167  D->dump(OS);
168  for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
169  if (D->isSplitable(Level)) {
170  OS << "da analyze - split level = " << Level;
171  OS << ", iteration = " << *DA->getSplitIteration(D, Level);
172  OS << "!\n";
173  }
174  }
175  delete D;
176  }
177  else
178  OS << "none!\n";
179  }
180  }
181  }
182  }
183 }
184 
185 
187  dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
188 }
189 
190 //===----------------------------------------------------------------------===//
191 // Dependence methods
192 
193 // Returns true if this is an input dependence.
194 bool Dependence::isInput() const {
195  return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
196 }
197 
198 
199 // Returns true if this is an output dependence.
200 bool Dependence::isOutput() const {
201  return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
202 }
203 
204 
205 // Returns true if this is an flow (aka true) dependence.
206 bool Dependence::isFlow() const {
207  return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
208 }
209 
210 
211 // Returns true if this is an anti dependence.
212 bool Dependence::isAnti() const {
213  return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
214 }
215 
216 
217 // Returns true if a particular level is scalar; that is,
218 // if no subscript in the source or destination mention the induction
219 // variable associated with the loop at this level.
220 // Leave this out of line, so it will serve as a virtual method anchor
221 bool Dependence::isScalar(unsigned level) const {
222  return false;
223 }
224 
225 
226 //===----------------------------------------------------------------------===//
227 // FullDependence methods
228 
230  Instruction *Destination,
231  bool PossiblyLoopIndependent,
232  unsigned CommonLevels) :
233  Dependence(Source, Destination),
234  Levels(CommonLevels),
235  LoopIndependent(PossiblyLoopIndependent) {
236  Consistent = true;
237  DV = CommonLevels ? new DVEntry[CommonLevels] : NULL;
238 }
239 
240 // The rest are simple getters that hide the implementation.
241 
242 // getDirection - Returns the direction associated with a particular level.
243 unsigned FullDependence::getDirection(unsigned Level) const {
244  assert(0 < Level && Level <= Levels && "Level out of range");
245  return DV[Level - 1].Direction;
246 }
247 
248 
249 // Returns the distance (or NULL) associated with a particular level.
250 const SCEV *FullDependence::getDistance(unsigned Level) const {
251  assert(0 < Level && Level <= Levels && "Level out of range");
252  return DV[Level - 1].Distance;
253 }
254 
255 
256 // Returns true if a particular level is scalar; that is,
257 // if no subscript in the source or destination mention the induction
258 // variable associated with the loop at this level.
259 bool FullDependence::isScalar(unsigned Level) const {
260  assert(0 < Level && Level <= Levels && "Level out of range");
261  return DV[Level - 1].Scalar;
262 }
263 
264 
265 // Returns true if peeling the first iteration from this loop
266 // will break this dependence.
267 bool FullDependence::isPeelFirst(unsigned Level) const {
268  assert(0 < Level && Level <= Levels && "Level out of range");
269  return DV[Level - 1].PeelFirst;
270 }
271 
272 
273 // Returns true if peeling the last iteration from this loop
274 // will break this dependence.
275 bool FullDependence::isPeelLast(unsigned Level) const {
276  assert(0 < Level && Level <= Levels && "Level out of range");
277  return DV[Level - 1].PeelLast;
278 }
279 
280 
281 // Returns true if splitting this loop will break the dependence.
282 bool FullDependence::isSplitable(unsigned Level) const {
283  assert(0 < Level && Level <= Levels && "Level out of range");
284  return DV[Level - 1].Splitable;
285 }
286 
287 
288 //===----------------------------------------------------------------------===//
289 // DependenceAnalysis::Constraint methods
290 
291 // If constraint is a point <X, Y>, returns X.
292 // Otherwise assert.
293 const SCEV *DependenceAnalysis::Constraint::getX() const {
294  assert(Kind == Point && "Kind should be Point");
295  return A;
296 }
297 
298 
299 // If constraint is a point <X, Y>, returns Y.
300 // Otherwise assert.
301 const SCEV *DependenceAnalysis::Constraint::getY() const {
302  assert(Kind == Point && "Kind should be Point");
303  return B;
304 }
305 
306 
307 // If constraint is a line AX + BY = C, returns A.
308 // Otherwise assert.
309 const SCEV *DependenceAnalysis::Constraint::getA() const {
310  assert((Kind == Line || Kind == Distance) &&
311  "Kind should be Line (or Distance)");
312  return A;
313 }
314 
315 
316 // If constraint is a line AX + BY = C, returns B.
317 // Otherwise assert.
318 const SCEV *DependenceAnalysis::Constraint::getB() const {
319  assert((Kind == Line || Kind == Distance) &&
320  "Kind should be Line (or Distance)");
321  return B;
322 }
323 
324 
325 // If constraint is a line AX + BY = C, returns C.
326 // Otherwise assert.
327 const SCEV *DependenceAnalysis::Constraint::getC() const {
328  assert((Kind == Line || Kind == Distance) &&
329  "Kind should be Line (or Distance)");
330  return C;
331 }
332 
333 
334 // If constraint is a distance, returns D.
335 // Otherwise assert.
336 const SCEV *DependenceAnalysis::Constraint::getD() const {
337  assert(Kind == Distance && "Kind should be Distance");
338  return SE->getNegativeSCEV(C);
339 }
340 
341 
342 // Returns the loop associated with this constraint.
343 const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
344  assert((Kind == Distance || Kind == Line || Kind == Point) &&
345  "Kind should be Distance, Line, or Point");
346  return AssociatedLoop;
347 }
348 
349 
350 void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
351  const SCEV *Y,
352  const Loop *CurLoop) {
353  Kind = Point;
354  A = X;
355  B = Y;
356  AssociatedLoop = CurLoop;
357 }
358 
359 
360 void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
361  const SCEV *BB,
362  const SCEV *CC,
363  const Loop *CurLoop) {
364  Kind = Line;
365  A = AA;
366  B = BB;
367  C = CC;
368  AssociatedLoop = CurLoop;
369 }
370 
371 
372 void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
373  const Loop *CurLoop) {
374  Kind = Distance;
375  A = SE->getConstant(D->getType(), 1);
376  B = SE->getNegativeSCEV(A);
377  C = SE->getNegativeSCEV(D);
378  AssociatedLoop = CurLoop;
379 }
380 
381 
382 void DependenceAnalysis::Constraint::setEmpty() {
383  Kind = Empty;
384 }
385 
386 
387 void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
388  SE = NewSE;
389  Kind = Any;
390 }
391 
392 
393 // For debugging purposes. Dumps the constraint out to OS.
395  if (isEmpty())
396  OS << " Empty\n";
397  else if (isAny())
398  OS << " Any\n";
399  else if (isPoint())
400  OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
401  else if (isDistance())
402  OS << " Distance is " << *getD() <<
403  " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
404  else if (isLine())
405  OS << " Line is " << *getA() << "*X + " <<
406  *getB() << "*Y = " << *getC() << "\n";
407  else
408  llvm_unreachable("unknown constraint type in Constraint::dump");
409 }
410 
411 
412 // Updates X with the intersection
413 // of the Constraints X and Y. Returns true if X has changed.
414 // Corresponds to Figure 4 from the paper
415 //
416 // Practical Dependence Testing
417 // Goff, Kennedy, Tseng
418 // PLDI 1991
419 bool DependenceAnalysis::intersectConstraints(Constraint *X,
420  const Constraint *Y) {
421  ++DeltaApplications;
422  DEBUG(dbgs() << "\tintersect constraints\n");
423  DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
424  DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
425  assert(!Y->isPoint() && "Y must not be a Point");
426  if (X->isAny()) {
427  if (Y->isAny())
428  return false;
429  *X = *Y;
430  return true;
431  }
432  if (X->isEmpty())
433  return false;
434  if (Y->isEmpty()) {
435  X->setEmpty();
436  return true;
437  }
438 
439  if (X->isDistance() && Y->isDistance()) {
440  DEBUG(dbgs() << "\t intersect 2 distances\n");
441  if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
442  return false;
443  if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
444  X->setEmpty();
445  ++DeltaSuccesses;
446  return true;
447  }
448  // Hmmm, interesting situation.
449  // I guess if either is constant, keep it and ignore the other.
450  if (isa<SCEVConstant>(Y->getD())) {
451  *X = *Y;
452  return true;
453  }
454  return false;
455  }
456 
457  // At this point, the pseudo-code in Figure 4 of the paper
458  // checks if (X->isPoint() && Y->isPoint()).
459  // This case can't occur in our implementation,
460  // since a Point can only arise as the result of intersecting
461  // two Line constraints, and the right-hand value, Y, is never
462  // the result of an intersection.
463  assert(!(X->isPoint() && Y->isPoint()) &&
464  "We shouldn't ever see X->isPoint() && Y->isPoint()");
465 
466  if (X->isLine() && Y->isLine()) {
467  DEBUG(dbgs() << "\t intersect 2 lines\n");
468  const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
469  const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
470  if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
471  // slopes are equal, so lines are parallel
472  DEBUG(dbgs() << "\t\tsame slope\n");
473  Prod1 = SE->getMulExpr(X->getC(), Y->getB());
474  Prod2 = SE->getMulExpr(X->getB(), Y->getC());
475  if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
476  return false;
477  if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
478  X->setEmpty();
479  ++DeltaSuccesses;
480  return true;
481  }
482  return false;
483  }
484  if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
485  // slopes differ, so lines intersect
486  DEBUG(dbgs() << "\t\tdifferent slopes\n");
487  const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
488  const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
489  const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
490  const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
491  const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
492  const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
493  const SCEVConstant *C1A2_C2A1 =
494  dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
495  const SCEVConstant *C1B2_C2B1 =
496  dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
497  const SCEVConstant *A1B2_A2B1 =
498  dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
499  const SCEVConstant *A2B1_A1B2 =
500  dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
501  if (!C1B2_C2B1 || !C1A2_C2A1 ||
502  !A1B2_A2B1 || !A2B1_A1B2)
503  return false;
504  APInt Xtop = C1B2_C2B1->getValue()->getValue();
505  APInt Xbot = A1B2_A2B1->getValue()->getValue();
506  APInt Ytop = C1A2_C2A1->getValue()->getValue();
507  APInt Ybot = A2B1_A1B2->getValue()->getValue();
508  DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
509  DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
510  DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
511  DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
512  APInt Xq = Xtop; // these need to be initialized, even
513  APInt Xr = Xtop; // though they're just going to be overwritten
514  APInt::sdivrem(Xtop, Xbot, Xq, Xr);
515  APInt Yq = Ytop;
516  APInt Yr = Ytop;
517  APInt::sdivrem(Ytop, Ybot, Yq, Yr);
518  if (Xr != 0 || Yr != 0) {
519  X->setEmpty();
520  ++DeltaSuccesses;
521  return true;
522  }
523  DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
524  if (Xq.slt(0) || Yq.slt(0)) {
525  X->setEmpty();
526  ++DeltaSuccesses;
527  return true;
528  }
529  if (const SCEVConstant *CUB =
530  collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
531  APInt UpperBound = CUB->getValue()->getValue();
532  DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
533  if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
534  X->setEmpty();
535  ++DeltaSuccesses;
536  return true;
537  }
538  }
539  X->setPoint(SE->getConstant(Xq),
540  SE->getConstant(Yq),
541  X->getAssociatedLoop());
542  ++DeltaSuccesses;
543  return true;
544  }
545  return false;
546  }
547 
548  // if (X->isLine() && Y->isPoint()) This case can't occur.
549  assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
550 
551  if (X->isPoint() && Y->isLine()) {
552  DEBUG(dbgs() << "\t intersect Point and Line\n");
553  const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
554  const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
555  const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
556  if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
557  return false;
558  if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
559  X->setEmpty();
560  ++DeltaSuccesses;
561  return true;
562  }
563  return false;
564  }
565 
566  llvm_unreachable("shouldn't reach the end of Constraint intersection");
567  return false;
568 }
569 
570 
571 //===----------------------------------------------------------------------===//
572 // DependenceAnalysis methods
573 
574 // For debugging purposes. Dumps a dependence to OS.
575 void Dependence::dump(raw_ostream &OS) const {
576  bool Splitable = false;
577  if (isConfused())
578  OS << "confused";
579  else {
580  if (isConsistent())
581  OS << "consistent ";
582  if (isFlow())
583  OS << "flow";
584  else if (isOutput())
585  OS << "output";
586  else if (isAnti())
587  OS << "anti";
588  else if (isInput())
589  OS << "input";
590  unsigned Levels = getLevels();
591  OS << " [";
592  for (unsigned II = 1; II <= Levels; ++II) {
593  if (isSplitable(II))
594  Splitable = true;
595  if (isPeelFirst(II))
596  OS << 'p';
597  const SCEV *Distance = getDistance(II);
598  if (Distance)
599  OS << *Distance;
600  else if (isScalar(II))
601  OS << "S";
602  else {
603  unsigned Direction = getDirection(II);
604  if (Direction == DVEntry::ALL)
605  OS << "*";
606  else {
607  if (Direction & DVEntry::LT)
608  OS << "<";
609  if (Direction & DVEntry::EQ)
610  OS << "=";
611  if (Direction & DVEntry::GT)
612  OS << ">";
613  }
614  }
615  if (isPeelLast(II))
616  OS << 'p';
617  if (II < Levels)
618  OS << " ";
619  }
620  if (isLoopIndependent())
621  OS << "|<";
622  OS << "]";
623  if (Splitable)
624  OS << " splitable";
625  }
626  OS << "!\n";
627 }
628 
629 
630 
631 static
633  const Value *A,
634  const Value *B) {
635  const Value *AObj = GetUnderlyingObject(A);
636  const Value *BObj = GetUnderlyingObject(B);
637  return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
638  BObj, AA->getTypeStoreSize(BObj->getType()));
639 }
640 
641 
642 // Returns true if the load or store can be analyzed. Atomic and volatile
643 // operations have properties which this analysis does not understand.
644 static
646  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
647  return LI->isUnordered();
648  else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
649  return SI->isUnordered();
650  return false;
651 }
652 
653 
654 static
656  if (LoadInst *LI = dyn_cast<LoadInst>(I))
657  return LI->getPointerOperand();
658  if (StoreInst *SI = dyn_cast<StoreInst>(I))
659  return SI->getPointerOperand();
660  llvm_unreachable("Value is not load or store instruction");
661  return 0;
662 }
663 
664 
665 // Examines the loop nesting of the Src and Dst
666 // instructions and establishes their shared loops. Sets the variables
667 // CommonLevels, SrcLevels, and MaxLevels.
668 // The source and destination instructions needn't be contained in the same
669 // loop. The routine establishNestingLevels finds the level of most deeply
670 // nested loop that contains them both, CommonLevels. An instruction that's
671 // not contained in a loop is at level = 0. MaxLevels is equal to the level
672 // of the source plus the level of the destination, minus CommonLevels.
673 // This lets us allocate vectors MaxLevels in length, with room for every
674 // distinct loop referenced in both the source and destination subscripts.
675 // The variable SrcLevels is the nesting depth of the source instruction.
676 // It's used to help calculate distinct loops referenced by the destination.
677 // Here's the map from loops to levels:
678 // 0 - unused
679 // 1 - outermost common loop
680 // ... - other common loops
681 // CommonLevels - innermost common loop
682 // ... - loops containing Src but not Dst
683 // SrcLevels - innermost loop containing Src but not Dst
684 // ... - loops containing Dst but not Src
685 // MaxLevels - innermost loops containing Dst but not Src
686 // Consider the follow code fragment:
687 // for (a = ...) {
688 // for (b = ...) {
689 // for (c = ...) {
690 // for (d = ...) {
691 // A[] = ...;
692 // }
693 // }
694 // for (e = ...) {
695 // for (f = ...) {
696 // for (g = ...) {
697 // ... = A[];
698 // }
699 // }
700 // }
701 // }
702 // }
703 // If we're looking at the possibility of a dependence between the store
704 // to A (the Src) and the load from A (the Dst), we'll note that they
705 // have 2 loops in common, so CommonLevels will equal 2 and the direction
706 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
707 // A map from loop names to loop numbers would look like
708 // a - 1
709 // b - 2 = CommonLevels
710 // c - 3
711 // d - 4 = SrcLevels
712 // e - 5
713 // f - 6
714 // g - 7 = MaxLevels
715 void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
716  const Instruction *Dst) {
717  const BasicBlock *SrcBlock = Src->getParent();
718  const BasicBlock *DstBlock = Dst->getParent();
719  unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
720  unsigned DstLevel = LI->getLoopDepth(DstBlock);
721  const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
722  const Loop *DstLoop = LI->getLoopFor(DstBlock);
723  SrcLevels = SrcLevel;
724  MaxLevels = SrcLevel + DstLevel;
725  while (SrcLevel > DstLevel) {
726  SrcLoop = SrcLoop->getParentLoop();
727  SrcLevel--;
728  }
729  while (DstLevel > SrcLevel) {
730  DstLoop = DstLoop->getParentLoop();
731  DstLevel--;
732  }
733  while (SrcLoop != DstLoop) {
734  SrcLoop = SrcLoop->getParentLoop();
735  DstLoop = DstLoop->getParentLoop();
736  SrcLevel--;
737  }
738  CommonLevels = SrcLevel;
739  MaxLevels -= CommonLevels;
740 }
741 
742 
743 // Given one of the loops containing the source, return
744 // its level index in our numbering scheme.
745 unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
746  return SrcLoop->getLoopDepth();
747 }
748 
749 
750 // Given one of the loops containing the destination,
751 // return its level index in our numbering scheme.
752 unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
753  unsigned D = DstLoop->getLoopDepth();
754  if (D > CommonLevels)
755  return D - CommonLevels + SrcLevels;
756  else
757  return D;
758 }
759 
760 
761 // Returns true if Expression is loop invariant in LoopNest.
762 bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
763  const Loop *LoopNest) const {
764  if (!LoopNest)
765  return true;
766  return SE->isLoopInvariant(Expression, LoopNest) &&
767  isLoopInvariant(Expression, LoopNest->getParentLoop());
768 }
769 
770 
771 
772 // Finds the set of loops from the LoopNest that
773 // have a level <= CommonLevels and are referred to by the SCEV Expression.
774 void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
775  const Loop *LoopNest,
776  SmallBitVector &Loops) const {
777  while (LoopNest) {
778  unsigned Level = LoopNest->getLoopDepth();
779  if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
780  Loops.set(Level);
781  LoopNest = LoopNest->getParentLoop();
782  }
783 }
784 
785 
786 // removeMatchingExtensions - Examines a subscript pair.
787 // If the source and destination are identically sign (or zero)
788 // extended, it strips off the extension in an effect to simplify
789 // the actual analysis.
790 void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
791  const SCEV *Src = Pair->Src;
792  const SCEV *Dst = Pair->Dst;
793  if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
794  (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
795  const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
796  const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
797  if (SrcCast->getType() == DstCast->getType()) {
798  Pair->Src = SrcCast->getOperand();
799  Pair->Dst = DstCast->getOperand();
800  }
801  }
802 }
803 
804 
805 // Examine the scev and return true iff it's linear.
806 // Collect any loops mentioned in the set of "Loops".
807 bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
808  const Loop *LoopNest,
809  SmallBitVector &Loops) {
810  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
811  if (!AddRec)
812  return isLoopInvariant(Src, LoopNest);
813  const SCEV *Start = AddRec->getStart();
814  const SCEV *Step = AddRec->getStepRecurrence(*SE);
815  if (!isLoopInvariant(Step, LoopNest))
816  return false;
817  Loops.set(mapSrcLoop(AddRec->getLoop()));
818  return checkSrcSubscript(Start, LoopNest, Loops);
819 }
820 
821 
822 
823 // Examine the scev and return true iff it's linear.
824 // Collect any loops mentioned in the set of "Loops".
825 bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
826  const Loop *LoopNest,
827  SmallBitVector &Loops) {
828  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
829  if (!AddRec)
830  return isLoopInvariant(Dst, LoopNest);
831  const SCEV *Start = AddRec->getStart();
832  const SCEV *Step = AddRec->getStepRecurrence(*SE);
833  if (!isLoopInvariant(Step, LoopNest))
834  return false;
835  Loops.set(mapDstLoop(AddRec->getLoop()));
836  return checkDstSubscript(Start, LoopNest, Loops);
837 }
838 
839 
840 // Examines the subscript pair (the Src and Dst SCEVs)
841 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
842 // Collects the associated loops in a set.
843 DependenceAnalysis::Subscript::ClassificationKind
844 DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
845  const SCEV *Dst, const Loop *DstLoopNest,
846  SmallBitVector &Loops) {
847  SmallBitVector SrcLoops(MaxLevels + 1);
848  SmallBitVector DstLoops(MaxLevels + 1);
849  if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
850  return Subscript::NonLinear;
851  if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
852  return Subscript::NonLinear;
853  Loops = SrcLoops;
854  Loops |= DstLoops;
855  unsigned N = Loops.count();
856  if (N == 0)
857  return Subscript::ZIV;
858  if (N == 1)
859  return Subscript::SIV;
860  if (N == 2 && (SrcLoops.count() == 0 ||
861  DstLoops.count() == 0 ||
862  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
863  return Subscript::RDIV;
864  return Subscript::MIV;
865 }
866 
867 
868 // A wrapper around SCEV::isKnownPredicate.
869 // Looks for cases where we're interested in comparing for equality.
870 // If both X and Y have been identically sign or zero extended,
871 // it strips off the (confusing) extensions before invoking
872 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
873 // will be similarly updated.
874 //
875 // If SCEV::isKnownPredicate can't prove the predicate,
876 // we try simple subtraction, which seems to help in some cases
877 // involving symbolics.
878 bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
879  const SCEV *X,
880  const SCEV *Y) const {
881  if (Pred == CmpInst::ICMP_EQ ||
882  Pred == CmpInst::ICMP_NE) {
883  if ((isa<SCEVSignExtendExpr>(X) &&
884  isa<SCEVSignExtendExpr>(Y)) ||
885  (isa<SCEVZeroExtendExpr>(X) &&
886  isa<SCEVZeroExtendExpr>(Y))) {
887  const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
888  const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
889  const SCEV *Xop = CX->getOperand();
890  const SCEV *Yop = CY->getOperand();
891  if (Xop->getType() == Yop->getType()) {
892  X = Xop;
893  Y = Yop;
894  }
895  }
896  }
897  if (SE->isKnownPredicate(Pred, X, Y))
898  return true;
899  // If SE->isKnownPredicate can't prove the condition,
900  // we try the brute-force approach of subtracting
901  // and testing the difference.
902  // By testing with SE->isKnownPredicate first, we avoid
903  // the possibility of overflow when the arguments are constants.
904  const SCEV *Delta = SE->getMinusSCEV(X, Y);
905  switch (Pred) {
906  case CmpInst::ICMP_EQ:
907  return Delta->isZero();
908  case CmpInst::ICMP_NE:
909  return SE->isKnownNonZero(Delta);
910  case CmpInst::ICMP_SGE:
911  return SE->isKnownNonNegative(Delta);
912  case CmpInst::ICMP_SLE:
913  return SE->isKnownNonPositive(Delta);
914  case CmpInst::ICMP_SGT:
915  return SE->isKnownPositive(Delta);
916  case CmpInst::ICMP_SLT:
917  return SE->isKnownNegative(Delta);
918  default:
919  llvm_unreachable("unexpected predicate in isKnownPredicate");
920  }
921 }
922 
923 
924 // All subscripts are all the same type.
925 // Loop bound may be smaller (e.g., a char).
926 // Should zero extend loop bound, since it's always >= 0.
927 // This routine collects upper bound and extends if needed.
928 // Return null if no bound available.
929 const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
930  Type *T) const {
932  const SCEV *UB = SE->getBackedgeTakenCount(L);
933  return SE->getNoopOrZeroExtend(UB, T);
934  }
935  return NULL;
936 }
937 
938 
939 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
940 // If the cast fails, returns NULL.
941 const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
942  Type *T
943  ) const {
944  if (const SCEV *UB = collectUpperBound(L, T))
945  return dyn_cast<SCEVConstant>(UB);
946  return NULL;
947 }
948 
949 
950 // testZIV -
951 // When we have a pair of subscripts of the form [c1] and [c2],
952 // where c1 and c2 are both loop invariant, we attack it using
953 // the ZIV test. Basically, we test by comparing the two values,
954 // but there are actually three possible results:
955 // 1) the values are equal, so there's a dependence
956 // 2) the values are different, so there's no dependence
957 // 3) the values might be equal, so we have to assume a dependence.
958 //
959 // Return true if dependence disproved.
960 bool DependenceAnalysis::testZIV(const SCEV *Src,
961  const SCEV *Dst,
962  FullDependence &Result) const {
963  DEBUG(dbgs() << " src = " << *Src << "\n");
964  DEBUG(dbgs() << " dst = " << *Dst << "\n");
965  ++ZIVapplications;
966  if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
967  DEBUG(dbgs() << " provably dependent\n");
968  return false; // provably dependent
969  }
970  if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
971  DEBUG(dbgs() << " provably independent\n");
972  ++ZIVindependence;
973  return true; // provably independent
974  }
975  DEBUG(dbgs() << " possibly dependent\n");
976  Result.Consistent = false;
977  return false; // possibly dependent
978 }
979 
980 
981 // strongSIVtest -
982 // From the paper, Practical Dependence Testing, Section 4.2.1
983 //
984 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
985 // where i is an induction variable, c1 and c2 are loop invariant,
986 // and a is a constant, we can solve it exactly using the Strong SIV test.
987 //
988 // Can prove independence. Failing that, can compute distance (and direction).
989 // In the presence of symbolic terms, we can sometimes make progress.
990 //
991 // If there's a dependence,
992 //
993 // c1 + a*i = c2 + a*i'
994 //
995 // The dependence distance is
996 //
997 // d = i' - i = (c1 - c2)/a
998 //
999 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1000 // loop's upper bound. If a dependence exists, the dependence direction is
1001 // defined as
1002 //
1003 // { < if d > 0
1004 // direction = { = if d = 0
1005 // { > if d < 0
1006 //
1007 // Return true if dependence disproved.
1008 bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
1009  const SCEV *SrcConst,
1010  const SCEV *DstConst,
1011  const Loop *CurLoop,
1012  unsigned Level,
1013  FullDependence &Result,
1014  Constraint &NewConstraint) const {
1015  DEBUG(dbgs() << "\tStrong SIV test\n");
1016  DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1017  DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1018  DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1019  DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1020  DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1021  DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1022  ++StrongSIVapplications;
1023  assert(0 < Level && Level <= CommonLevels && "level out of range");
1024  Level--;
1025 
1026  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1027  DEBUG(dbgs() << "\t Delta = " << *Delta);
1028  DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1029 
1030  // check that |Delta| < iteration count
1031  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1032  DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1033  DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1034  const SCEV *AbsDelta =
1035  SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1036  const SCEV *AbsCoeff =
1037  SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1038  const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1039  if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1040  // Distance greater than trip count - no dependence
1041  ++StrongSIVindependence;
1042  ++StrongSIVsuccesses;
1043  return true;
1044  }
1045  }
1046 
1047  // Can we compute distance?
1048  if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1049  APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
1050  APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
1051  APInt Distance = ConstDelta; // these need to be initialized
1052  APInt Remainder = ConstDelta;
1053  APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1054  DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1055  DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1056  // Make sure Coeff divides Delta exactly
1057  if (Remainder != 0) {
1058  // Coeff doesn't divide Distance, no dependence
1059  ++StrongSIVindependence;
1060  ++StrongSIVsuccesses;
1061  return true;
1062  }
1063  Result.DV[Level].Distance = SE->getConstant(Distance);
1064  NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1065  if (Distance.sgt(0))
1066  Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1067  else if (Distance.slt(0))
1068  Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1069  else
1070  Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1071  ++StrongSIVsuccesses;
1072  }
1073  else if (Delta->isZero()) {
1074  // since 0/X == 0
1075  Result.DV[Level].Distance = Delta;
1076  NewConstraint.setDistance(Delta, CurLoop);
1077  Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1078  ++StrongSIVsuccesses;
1079  }
1080  else {
1081  if (Coeff->isOne()) {
1082  DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1083  Result.DV[Level].Distance = Delta; // since X/1 == X
1084  NewConstraint.setDistance(Delta, CurLoop);
1085  }
1086  else {
1087  Result.Consistent = false;
1088  NewConstraint.setLine(Coeff,
1089  SE->getNegativeSCEV(Coeff),
1090  SE->getNegativeSCEV(Delta), CurLoop);
1091  }
1092 
1093  // maybe we can get a useful direction
1094  bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1095  bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1096  bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1097  bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1098  bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1099  // The double negatives above are confusing.
1100  // It helps to read !SE->isKnownNonZero(Delta)
1101  // as "Delta might be Zero"
1102  unsigned NewDirection = Dependence::DVEntry::NONE;
1103  if ((DeltaMaybePositive && CoeffMaybePositive) ||
1104  (DeltaMaybeNegative && CoeffMaybeNegative))
1105  NewDirection = Dependence::DVEntry::LT;
1106  if (DeltaMaybeZero)
1107  NewDirection |= Dependence::DVEntry::EQ;
1108  if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1109  (DeltaMaybePositive && CoeffMaybeNegative))
1110  NewDirection |= Dependence::DVEntry::GT;
1111  if (NewDirection < Result.DV[Level].Direction)
1112  ++StrongSIVsuccesses;
1113  Result.DV[Level].Direction &= NewDirection;
1114  }
1115  return false;
1116 }
1117 
1118 
1119 // weakCrossingSIVtest -
1120 // From the paper, Practical Dependence Testing, Section 4.2.2
1121 //
1122 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1123 // where i is an induction variable, c1 and c2 are loop invariant,
1124 // and a is a constant, we can solve it exactly using the
1125 // Weak-Crossing SIV test.
1126 //
1127 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1128 // the two lines, where i = i', yielding
1129 //
1130 // c1 + a*i = c2 - a*i
1131 // 2a*i = c2 - c1
1132 // i = (c2 - c1)/2a
1133 //
1134 // If i < 0, there is no dependence.
1135 // If i > upperbound, there is no dependence.
1136 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1137 // If i = upperbound, there's a dependence with distance = 0.
1138 // If i is integral, there's a dependence (all directions).
1139 // If the non-integer part = 1/2, there's a dependence (<> directions).
1140 // Otherwise, there's no dependence.
1141 //
1142 // Can prove independence. Failing that,
1143 // can sometimes refine the directions.
1144 // Can determine iteration for splitting.
1145 //
1146 // Return true if dependence disproved.
1147 bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
1148  const SCEV *SrcConst,
1149  const SCEV *DstConst,
1150  const Loop *CurLoop,
1151  unsigned Level,
1152  FullDependence &Result,
1153  Constraint &NewConstraint,
1154  const SCEV *&SplitIter) const {
1155  DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1156  DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1157  DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1158  DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1159  ++WeakCrossingSIVapplications;
1160  assert(0 < Level && Level <= CommonLevels && "Level out of range");
1161  Level--;
1162  Result.Consistent = false;
1163  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1164  DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1165  NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1166  if (Delta->isZero()) {
1169  ++WeakCrossingSIVsuccesses;
1170  if (!Result.DV[Level].Direction) {
1171  ++WeakCrossingSIVindependence;
1172  return true;
1173  }
1174  Result.DV[Level].Distance = Delta; // = 0
1175  return false;
1176  }
1177  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1178  if (!ConstCoeff)
1179  return false;
1180 
1181  Result.DV[Level].Splitable = true;
1182  if (SE->isKnownNegative(ConstCoeff)) {
1183  ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1184  assert(ConstCoeff &&
1185  "dynamic cast of negative of ConstCoeff should yield constant");
1186  Delta = SE->getNegativeSCEV(Delta);
1187  }
1188  assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1189 
1190  // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
1191  SplitIter =
1192  SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
1193  Delta),
1194  SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
1195  ConstCoeff));
1196  DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1197 
1198  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1199  if (!ConstDelta)
1200  return false;
1201 
1202  // We're certain that ConstCoeff > 0; therefore,
1203  // if Delta < 0, then no dependence.
1204  DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1205  DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1206  if (SE->isKnownNegative(Delta)) {
1207  // No dependence, Delta < 0
1208  ++WeakCrossingSIVindependence;
1209  ++WeakCrossingSIVsuccesses;
1210  return true;
1211  }
1212 
1213  // We're certain that Delta > 0 and ConstCoeff > 0.
1214  // Check Delta/(2*ConstCoeff) against upper loop bound
1215  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1216  DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1217  const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1218  const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1219  ConstantTwo);
1220  DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1221  if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1222  // Delta too big, no dependence
1223  ++WeakCrossingSIVindependence;
1224  ++WeakCrossingSIVsuccesses;
1225  return true;
1226  }
1227  if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1228  // i = i' = UB
1231  ++WeakCrossingSIVsuccesses;
1232  if (!Result.DV[Level].Direction) {
1233  ++WeakCrossingSIVindependence;
1234  return true;
1235  }
1236  Result.DV[Level].Splitable = false;
1237  Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
1238  return false;
1239  }
1240  }
1241 
1242  // check that Coeff divides Delta
1243  APInt APDelta = ConstDelta->getValue()->getValue();
1244  APInt APCoeff = ConstCoeff->getValue()->getValue();
1245  APInt Distance = APDelta; // these need to be initialzed
1246  APInt Remainder = APDelta;
1247  APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1248  DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1249  if (Remainder != 0) {
1250  // Coeff doesn't divide Delta, no dependence
1251  ++WeakCrossingSIVindependence;
1252  ++WeakCrossingSIVsuccesses;
1253  return true;
1254  }
1255  DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1256 
1257  // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1258  APInt Two = APInt(Distance.getBitWidth(), 2, true);
1259  Remainder = Distance.srem(Two);
1260  DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1261  if (Remainder != 0) {
1262  // Equal direction isn't possible
1264  ++WeakCrossingSIVsuccesses;
1265  }
1266  return false;
1267 }
1268 
1269 
1270 // Kirch's algorithm, from
1271 //
1272 // Optimizing Supercompilers for Supercomputers
1273 // Michael Wolfe
1274 // MIT Press, 1989
1275 //
1276 // Program 2.1, page 29.
1277 // Computes the GCD of AM and BM.
1278 // Also finds a solution to the equation ax - by = gdc(a, b).
1279 // Returns true iff the gcd divides Delta.
1280 static
1281 bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1282  APInt &G, APInt &X, APInt &Y) {
1283  APInt A0(Bits, 1, true), A1(Bits, 0, true);
1284  APInt B0(Bits, 0, true), B1(Bits, 1, true);
1285  APInt G0 = AM.abs();
1286  APInt G1 = BM.abs();
1287  APInt Q = G0; // these need to be initialized
1288  APInt R = G0;
1289  APInt::sdivrem(G0, G1, Q, R);
1290  while (R != 0) {
1291  APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1292  APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1293  G0 = G1; G1 = R;
1294  APInt::sdivrem(G0, G1, Q, R);
1295  }
1296  G = G1;
1297  DEBUG(dbgs() << "\t GCD = " << G << "\n");
1298  X = AM.slt(0) ? -A1 : A1;
1299  Y = BM.slt(0) ? B1 : -B1;
1300 
1301  // make sure gcd divides Delta
1302  R = Delta.srem(G);
1303  if (R != 0)
1304  return true; // gcd doesn't divide Delta, no dependence
1305  Q = Delta.sdiv(G);
1306  X *= Q;
1307  Y *= Q;
1308  return false;
1309 }
1310 
1311 
1312 static
1314  APInt Q = A; // these need to be initialized
1315  APInt R = A;
1316  APInt::sdivrem(A, B, Q, R);
1317  if (R == 0)
1318  return Q;
1319  if ((A.sgt(0) && B.sgt(0)) ||
1320  (A.slt(0) && B.slt(0)))
1321  return Q;
1322  else
1323  return Q - 1;
1324 }
1325 
1326 
1327 static
1329  APInt Q = A; // these need to be initialized
1330  APInt R = A;
1331  APInt::sdivrem(A, B, Q, R);
1332  if (R == 0)
1333  return Q;
1334  if ((A.sgt(0) && B.sgt(0)) ||
1335  (A.slt(0) && B.slt(0)))
1336  return Q + 1;
1337  else
1338  return Q;
1339 }
1340 
1341 
1342 static
1344  return A.sgt(B) ? A : B;
1345 }
1346 
1347 
1348 static
1350  return A.slt(B) ? A : B;
1351 }
1352 
1353 
1354 // exactSIVtest -
1355 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1356 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1357 // and a2 are constant, we can solve it exactly using an algorithm developed
1358 // by Banerjee and Wolfe. See Section 2.5.3 in
1359 //
1360 // Optimizing Supercompilers for Supercomputers
1361 // Michael Wolfe
1362 // MIT Press, 1989
1363 //
1364 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1365 // so use them if possible. They're also a bit better with symbolics and,
1366 // in the case of the strong SIV test, can compute Distances.
1367 //
1368 // Return true if dependence disproved.
1369 bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
1370  const SCEV *DstCoeff,
1371  const SCEV *SrcConst,
1372  const SCEV *DstConst,
1373  const Loop *CurLoop,
1374  unsigned Level,
1375  FullDependence &Result,
1376  Constraint &NewConstraint) const {
1377  DEBUG(dbgs() << "\tExact SIV test\n");
1378  DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1379  DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1380  DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1381  DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1382  ++ExactSIVapplications;
1383  assert(0 < Level && Level <= CommonLevels && "Level out of range");
1384  Level--;
1385  Result.Consistent = false;
1386  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1387  DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1388  NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1389  Delta, CurLoop);
1390  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1391  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1392  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1393  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1394  return false;
1395 
1396  // find gcd
1397  APInt G, X, Y;
1398  APInt AM = ConstSrcCoeff->getValue()->getValue();
1399  APInt BM = ConstDstCoeff->getValue()->getValue();
1400  unsigned Bits = AM.getBitWidth();
1401  if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1402  // gcd doesn't divide Delta, no dependence
1403  ++ExactSIVindependence;
1404  ++ExactSIVsuccesses;
1405  return true;
1406  }
1407 
1408  DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1409 
1410  // since SCEV construction normalizes, LM = 0
1411  APInt UM(Bits, 1, true);
1412  bool UMvalid = false;
1413  // UM is perhaps unavailable, let's check
1414  if (const SCEVConstant *CUB =
1415  collectConstantUpperBound(CurLoop, Delta->getType())) {
1416  UM = CUB->getValue()->getValue();
1417  DEBUG(dbgs() << "\t UM = " << UM << "\n");
1418  UMvalid = true;
1419  }
1420 
1421  APInt TU(APInt::getSignedMaxValue(Bits));
1422  APInt TL(APInt::getSignedMinValue(Bits));
1423 
1424  // test(BM/G, LM-X) and test(-BM/G, X-UM)
1425  APInt TMUL = BM.sdiv(G);
1426  if (TMUL.sgt(0)) {
1427  TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1428  DEBUG(dbgs() << "\t TL = " << TL << "\n");
1429  if (UMvalid) {
1430  TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1431  DEBUG(dbgs() << "\t TU = " << TU << "\n");
1432  }
1433  }
1434  else {
1435  TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1436  DEBUG(dbgs() << "\t TU = " << TU << "\n");
1437  if (UMvalid) {
1438  TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1439  DEBUG(dbgs() << "\t TL = " << TL << "\n");
1440  }
1441  }
1442 
1443  // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1444  TMUL = AM.sdiv(G);
1445  if (TMUL.sgt(0)) {
1446  TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1447  DEBUG(dbgs() << "\t TL = " << TL << "\n");
1448  if (UMvalid) {
1449  TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1450  DEBUG(dbgs() << "\t TU = " << TU << "\n");
1451  }
1452  }
1453  else {
1454  TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1455  DEBUG(dbgs() << "\t TU = " << TU << "\n");
1456  if (UMvalid) {
1457  TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1458  DEBUG(dbgs() << "\t TL = " << TL << "\n");
1459  }
1460  }
1461  if (TL.sgt(TU)) {
1462  ++ExactSIVindependence;
1463  ++ExactSIVsuccesses;
1464  return true;
1465  }
1466 
1467  // explore directions
1468  unsigned NewDirection = Dependence::DVEntry::NONE;
1469 
1470  // less than
1471  APInt SaveTU(TU); // save these
1472  APInt SaveTL(TL);
1473  DEBUG(dbgs() << "\t exploring LT direction\n");
1474  TMUL = AM - BM;
1475  if (TMUL.sgt(0)) {
1476  TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1477  DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1478  }
1479  else {
1480  TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1481  DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1482  }
1483  if (TL.sle(TU)) {
1484  NewDirection |= Dependence::DVEntry::LT;
1485  ++ExactSIVsuccesses;
1486  }
1487 
1488  // equal
1489  TU = SaveTU; // restore
1490  TL = SaveTL;
1491  DEBUG(dbgs() << "\t exploring EQ direction\n");
1492  if (TMUL.sgt(0)) {
1493  TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1494  DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1495  }
1496  else {
1497  TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1498  DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1499  }
1500  TMUL = BM - AM;
1501  if (TMUL.sgt(0)) {
1502  TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1503  DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1504  }
1505  else {
1506  TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1507  DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1508  }
1509  if (TL.sle(TU)) {
1510  NewDirection |= Dependence::DVEntry::EQ;
1511  ++ExactSIVsuccesses;
1512  }
1513 
1514  // greater than
1515  TU = SaveTU; // restore
1516  TL = SaveTL;
1517  DEBUG(dbgs() << "\t exploring GT direction\n");
1518  if (TMUL.sgt(0)) {
1519  TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1520  DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1521  }
1522  else {
1523  TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1524  DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1525  }
1526  if (TL.sle(TU)) {
1527  NewDirection |= Dependence::DVEntry::GT;
1528  ++ExactSIVsuccesses;
1529  }
1530 
1531  // finished
1532  Result.DV[Level].Direction &= NewDirection;
1533  if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1534  ++ExactSIVindependence;
1535  return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1536 }
1537 
1538 
1539 
1540 // Return true if the divisor evenly divides the dividend.
1541 static
1542 bool isRemainderZero(const SCEVConstant *Dividend,
1543  const SCEVConstant *Divisor) {
1544  APInt ConstDividend = Dividend->getValue()->getValue();
1545  APInt ConstDivisor = Divisor->getValue()->getValue();
1546  return ConstDividend.srem(ConstDivisor) == 0;
1547 }
1548 
1549 
1550 // weakZeroSrcSIVtest -
1551 // From the paper, Practical Dependence Testing, Section 4.2.2
1552 //
1553 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1554 // where i is an induction variable, c1 and c2 are loop invariant,
1555 // and a is a constant, we can solve it exactly using the
1556 // Weak-Zero SIV test.
1557 //
1558 // Given
1559 //
1560 // c1 = c2 + a*i
1561 //
1562 // we get
1563 //
1564 // (c1 - c2)/a = i
1565 //
1566 // If i is not an integer, there's no dependence.
1567 // If i < 0 or > UB, there's no dependence.
1568 // If i = 0, the direction is <= and peeling the
1569 // 1st iteration will break the dependence.
1570 // If i = UB, the direction is >= and peeling the
1571 // last iteration will break the dependence.
1572 // Otherwise, the direction is *.
1573 //
1574 // Can prove independence. Failing that, we can sometimes refine
1575 // the directions. Can sometimes show that first or last
1576 // iteration carries all the dependences (so worth peeling).
1577 //
1578 // (see also weakZeroDstSIVtest)
1579 //
1580 // Return true if dependence disproved.
1581 bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1582  const SCEV *SrcConst,
1583  const SCEV *DstConst,
1584  const Loop *CurLoop,
1585  unsigned Level,
1586  FullDependence &Result,
1587  Constraint &NewConstraint) const {
1588  // For the WeakSIV test, it's possible the loop isn't common to
1589  // the Src and Dst loops. If it isn't, then there's no need to
1590  // record a direction.
1591  DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1592  DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1593  DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1594  DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1595  ++WeakZeroSIVapplications;
1596  assert(0 < Level && Level <= MaxLevels && "Level out of range");
1597  Level--;
1598  Result.Consistent = false;
1599  const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1600  NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
1601  DstCoeff, Delta, CurLoop);
1602  DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1603  if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1604  if (Level < CommonLevels) {
1605  Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1606  Result.DV[Level].PeelFirst = true;
1607  ++WeakZeroSIVsuccesses;
1608  }
1609  return false; // dependences caused by first iteration
1610  }
1611  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1612  if (!ConstCoeff)
1613  return false;
1614  const SCEV *AbsCoeff =
1615  SE->isKnownNegative(ConstCoeff) ?
1616  SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1617  const SCEV *NewDelta =
1618  SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1619 
1620  // check that Delta/SrcCoeff < iteration count
1621  // really check NewDelta < count*AbsCoeff
1622  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1623  DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1624  const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1625  if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1626  ++WeakZeroSIVindependence;
1627  ++WeakZeroSIVsuccesses;
1628  return true;
1629  }
1630  if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1631  // dependences caused by last iteration
1632  if (Level < CommonLevels) {
1633  Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1634  Result.DV[Level].PeelLast = true;
1635  ++WeakZeroSIVsuccesses;
1636  }
1637  return false;
1638  }
1639  }
1640 
1641  // check that Delta/SrcCoeff >= 0
1642  // really check that NewDelta >= 0
1643  if (SE->isKnownNegative(NewDelta)) {
1644  // No dependence, newDelta < 0
1645  ++WeakZeroSIVindependence;
1646  ++WeakZeroSIVsuccesses;
1647  return true;
1648  }
1649 
1650  // if SrcCoeff doesn't divide Delta, then no dependence
1651  if (isa<SCEVConstant>(Delta) &&
1652  !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1653  ++WeakZeroSIVindependence;
1654  ++WeakZeroSIVsuccesses;
1655  return true;
1656  }
1657  return false;
1658 }
1659 
1660 
1661 // weakZeroDstSIVtest -
1662 // From the paper, Practical Dependence Testing, Section 4.2.2
1663 //
1664 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1665 // where i is an induction variable, c1 and c2 are loop invariant,
1666 // and a is a constant, we can solve it exactly using the
1667 // Weak-Zero SIV test.
1668 //
1669 // Given
1670 //
1671 // c1 + a*i = c2
1672 //
1673 // we get
1674 //
1675 // i = (c2 - c1)/a
1676 //
1677 // If i is not an integer, there's no dependence.
1678 // If i < 0 or > UB, there's no dependence.
1679 // If i = 0, the direction is <= and peeling the
1680 // 1st iteration will break the dependence.
1681 // If i = UB, the direction is >= and peeling the
1682 // last iteration will break the dependence.
1683 // Otherwise, the direction is *.
1684 //
1685 // Can prove independence. Failing that, we can sometimes refine
1686 // the directions. Can sometimes show that first or last
1687 // iteration carries all the dependences (so worth peeling).
1688 //
1689 // (see also weakZeroSrcSIVtest)
1690 //
1691 // Return true if dependence disproved.
1692 bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1693  const SCEV *SrcConst,
1694  const SCEV *DstConst,
1695  const Loop *CurLoop,
1696  unsigned Level,
1697  FullDependence &Result,
1698  Constraint &NewConstraint) const {
1699  // For the WeakSIV test, it's possible the loop isn't common to the
1700  // Src and Dst loops. If it isn't, then there's no need to record a direction.
1701  DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1702  DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1703  DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1704  DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1705  ++WeakZeroSIVapplications;
1706  assert(0 < Level && Level <= SrcLevels && "Level out of range");
1707  Level--;
1708  Result.Consistent = false;
1709  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1710  NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
1711  Delta, CurLoop);
1712  DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1713  if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1714  if (Level < CommonLevels) {
1715  Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1716  Result.DV[Level].PeelFirst = true;
1717  ++WeakZeroSIVsuccesses;
1718  }
1719  return false; // dependences caused by first iteration
1720  }
1721  const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1722  if (!ConstCoeff)
1723  return false;
1724  const SCEV *AbsCoeff =
1725  SE->isKnownNegative(ConstCoeff) ?
1726  SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1727  const SCEV *NewDelta =
1728  SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1729 
1730  // check that Delta/SrcCoeff < iteration count
1731  // really check NewDelta < count*AbsCoeff
1732  if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1733  DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1734  const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1735  if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1736  ++WeakZeroSIVindependence;
1737  ++WeakZeroSIVsuccesses;
1738  return true;
1739  }
1740  if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1741  // dependences caused by last iteration
1742  if (Level < CommonLevels) {
1743  Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1744  Result.DV[Level].PeelLast = true;
1745  ++WeakZeroSIVsuccesses;
1746  }
1747  return false;
1748  }
1749  }
1750 
1751  // check that Delta/SrcCoeff >= 0
1752  // really check that NewDelta >= 0
1753  if (SE->isKnownNegative(NewDelta)) {
1754  // No dependence, newDelta < 0
1755  ++WeakZeroSIVindependence;
1756  ++WeakZeroSIVsuccesses;
1757  return true;
1758  }
1759 
1760  // if SrcCoeff doesn't divide Delta, then no dependence
1761  if (isa<SCEVConstant>(Delta) &&
1762  !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1763  ++WeakZeroSIVindependence;
1764  ++WeakZeroSIVsuccesses;
1765  return true;
1766  }
1767  return false;
1768 }
1769 
1770 
1771 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1772 // Things of the form [c1 + a*i] and [c2 + b*j],
1773 // where i and j are induction variable, c1 and c2 are loop invariant,
1774 // and a and b are constants.
1775 // Returns true if any possible dependence is disproved.
1776 // Marks the result as inconsistent.
1777 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1778 bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
1779  const SCEV *DstCoeff,
1780  const SCEV *SrcConst,
1781  const SCEV *DstConst,
1782  const Loop *SrcLoop,
1783  const Loop *DstLoop,
1784  FullDependence &Result) const {
1785  DEBUG(dbgs() << "\tExact RDIV test\n");
1786  DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1787  DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1788  DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1789  DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1790  ++ExactRDIVapplications;
1791  Result.Consistent = false;
1792  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1793  DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1794  const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1795  const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1796  const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1797  if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1798  return false;
1799 
1800  // find gcd
1801  APInt G, X, Y;
1802  APInt AM = ConstSrcCoeff->getValue()->getValue();
1803  APInt BM = ConstDstCoeff->getValue()->getValue();
1804  unsigned Bits = AM.getBitWidth();
1805  if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1806  // gcd doesn't divide Delta, no dependence
1807  ++ExactRDIVindependence;
1808  return true;
1809  }
1810 
1811  DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1812 
1813  // since SCEV construction seems to normalize, LM = 0
1814  APInt SrcUM(Bits, 1, true);
1815  bool SrcUMvalid = false;
1816  // SrcUM is perhaps unavailable, let's check
1817  if (const SCEVConstant *UpperBound =
1818  collectConstantUpperBound(SrcLoop, Delta->getType())) {
1819  SrcUM = UpperBound->getValue()->getValue();
1820  DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1821  SrcUMvalid = true;
1822  }
1823 
1824  APInt DstUM(Bits, 1, true);
1825  bool DstUMvalid = false;
1826  // UM is perhaps unavailable, let's check
1827  if (const SCEVConstant *UpperBound =
1828  collectConstantUpperBound(DstLoop, Delta->getType())) {
1829  DstUM = UpperBound->getValue()->getValue();
1830  DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1831  DstUMvalid = true;
1832  }
1833 
1834  APInt TU(APInt::getSignedMaxValue(Bits));
1835  APInt TL(APInt::getSignedMinValue(Bits));
1836 
1837  // test(BM/G, LM-X) and test(-BM/G, X-UM)
1838  APInt TMUL = BM.sdiv(G);
1839  if (TMUL.sgt(0)) {
1840  TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1841  DEBUG(dbgs() << "\t TL = " << TL << "\n");
1842  if (SrcUMvalid) {
1843  TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1844  DEBUG(dbgs() << "\t TU = " << TU << "\n");
1845  }
1846  }
1847  else {
1848  TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1849  DEBUG(dbgs() << "\t TU = " << TU << "\n");
1850  if (SrcUMvalid) {
1851  TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1852  DEBUG(dbgs() << "\t TL = " << TL << "\n");
1853  }
1854  }
1855 
1856  // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1857  TMUL = AM.sdiv(G);
1858  if (TMUL.sgt(0)) {
1859  TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1860  DEBUG(dbgs() << "\t TL = " << TL << "\n");
1861  if (DstUMvalid) {
1862  TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1863  DEBUG(dbgs() << "\t TU = " << TU << "\n");
1864  }
1865  }
1866  else {
1867  TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1868  DEBUG(dbgs() << "\t TU = " << TU << "\n");
1869  if (DstUMvalid) {
1870  TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1871  DEBUG(dbgs() << "\t TL = " << TL << "\n");
1872  }
1873  }
1874  if (TL.sgt(TU))
1875  ++ExactRDIVindependence;
1876  return TL.sgt(TU);
1877 }
1878 
1879 
1880 // symbolicRDIVtest -
1881 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1882 // introduce a special case of Banerjee's Inequalities (also called the
1883 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1884 // particularly cases with symbolics. Since it's only able to disprove
1885 // dependence (not compute distances or directions), we'll use it as a
1886 // fall back for the other tests.
1887 //
1888 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1889 // where i and j are induction variables and c1 and c2 are loop invariants,
1890 // we can use the symbolic tests to disprove some dependences, serving as a
1891 // backup for the RDIV test. Note that i and j can be the same variable,
1892 // letting this test serve as a backup for the various SIV tests.
1893 //
1894 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1895 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1896 // loop bounds for the i and j loops, respectively. So, ...
1897 //
1898 // c1 + a1*i = c2 + a2*j
1899 // a1*i - a2*j = c2 - c1
1900 //
1901 // To test for a dependence, we compute c2 - c1 and make sure it's in the
1902 // range of the maximum and minimum possible values of a1*i - a2*j.
1903 // Considering the signs of a1 and a2, we have 4 possible cases:
1904 //
1905 // 1) If a1 >= 0 and a2 >= 0, then
1906 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1907 // -a2*N2 <= c2 - c1 <= a1*N1
1908 //
1909 // 2) If a1 >= 0 and a2 <= 0, then
1910 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1911 // 0 <= c2 - c1 <= a1*N1 - a2*N2
1912 //
1913 // 3) If a1 <= 0 and a2 >= 0, then
1914 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1915 // a1*N1 - a2*N2 <= c2 - c1 <= 0
1916 //
1917 // 4) If a1 <= 0 and a2 <= 0, then
1918 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
1919 // a1*N1 <= c2 - c1 <= -a2*N2
1920 //
1921 // return true if dependence disproved
1922 bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
1923  const SCEV *A2,
1924  const SCEV *C1,
1925  const SCEV *C2,
1926  const Loop *Loop1,
1927  const Loop *Loop2) const {
1928  ++SymbolicRDIVapplications;
1929  DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1930  DEBUG(dbgs() << "\t A1 = " << *A1);
1931  DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1932  DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
1933  DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
1934  DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
1935  const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1936  const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1937  DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
1938  DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
1939  const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1940  const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1941  DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
1942  DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
1943  if (SE->isKnownNonNegative(A1)) {
1944  if (SE->isKnownNonNegative(A2)) {
1945  // A1 >= 0 && A2 >= 0
1946  if (N1) {
1947  // make sure that c2 - c1 <= a1*N1
1948  const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1949  DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
1950  if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1951  ++SymbolicRDIVindependence;
1952  return true;
1953  }
1954  }
1955  if (N2) {
1956  // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1957  const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1958  DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
1959  if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1960  ++SymbolicRDIVindependence;
1961  return true;
1962  }
1963  }
1964  }
1965  else if (SE->isKnownNonPositive(A2)) {
1966  // a1 >= 0 && a2 <= 0
1967  if (N1 && N2) {
1968  // make sure that c2 - c1 <= a1*N1 - a2*N2
1969  const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1970  const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1971  const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1972  DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1973  if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
1974  ++SymbolicRDIVindependence;
1975  return true;
1976  }
1977  }
1978  // make sure that 0 <= c2 - c1
1979  if (SE->isKnownNegative(C2_C1)) {
1980  ++SymbolicRDIVindependence;
1981  return true;
1982  }
1983  }
1984  }
1985  else if (SE->isKnownNonPositive(A1)) {
1986  if (SE->isKnownNonNegative(A2)) {
1987  // a1 <= 0 && a2 >= 0
1988  if (N1 && N2) {
1989  // make sure that a1*N1 - a2*N2 <= c2 - c1
1990  const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1991  const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1992  const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1993  DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1994  if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
1995  ++SymbolicRDIVindependence;
1996  return true;
1997  }
1998  }
1999  // make sure that c2 - c1 <= 0
2000  if (SE->isKnownPositive(C2_C1)) {
2001  ++SymbolicRDIVindependence;
2002  return true;
2003  }
2004  }
2005  else if (SE->isKnownNonPositive(A2)) {
2006  // a1 <= 0 && a2 <= 0
2007  if (N1) {
2008  // make sure that a1*N1 <= c2 - c1
2009  const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2010  DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2011  if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2012  ++SymbolicRDIVindependence;
2013  return true;
2014  }
2015  }
2016  if (N2) {
2017  // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2018  const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2019  DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2020  if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2021  ++SymbolicRDIVindependence;
2022  return true;
2023  }
2024  }
2025  }
2026  }
2027  return false;
2028 }
2029 
2030 
2031 // testSIV -
2032 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2033 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2034 // a2 are constant, we attack it with an SIV test. While they can all be
2035 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2036 // they apply; they're cheaper and sometimes more precise.
2037 //
2038 // Return true if dependence disproved.
2039 bool DependenceAnalysis::testSIV(const SCEV *Src,
2040  const SCEV *Dst,
2041  unsigned &Level,
2042  FullDependence &Result,
2043  Constraint &NewConstraint,
2044  const SCEV *&SplitIter) const {
2045  DEBUG(dbgs() << " src = " << *Src << "\n");
2046  DEBUG(dbgs() << " dst = " << *Dst << "\n");
2047  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2048  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2049  if (SrcAddRec && DstAddRec) {
2050  const SCEV *SrcConst = SrcAddRec->getStart();
2051  const SCEV *DstConst = DstAddRec->getStart();
2052  const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2053  const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2054  const Loop *CurLoop = SrcAddRec->getLoop();
2055  assert(CurLoop == DstAddRec->getLoop() &&
2056  "both loops in SIV should be same");
2057  Level = mapSrcLoop(CurLoop);
2058  bool disproven;
2059  if (SrcCoeff == DstCoeff)
2060  disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2061  Level, Result, NewConstraint);
2062  else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2063  disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2064  Level, Result, NewConstraint, SplitIter);
2065  else
2066  disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2067  Level, Result, NewConstraint);
2068  return disproven ||
2069  gcdMIVtest(Src, Dst, Result) ||
2070  symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2071  }
2072  if (SrcAddRec) {
2073  const SCEV *SrcConst = SrcAddRec->getStart();
2074  const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2075  const SCEV *DstConst = Dst;
2076  const Loop *CurLoop = SrcAddRec->getLoop();
2077  Level = mapSrcLoop(CurLoop);
2078  return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2079  Level, Result, NewConstraint) ||
2080  gcdMIVtest(Src, Dst, Result);
2081  }
2082  if (DstAddRec) {
2083  const SCEV *DstConst = DstAddRec->getStart();
2084  const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2085  const SCEV *SrcConst = Src;
2086  const Loop *CurLoop = DstAddRec->getLoop();
2087  Level = mapDstLoop(CurLoop);
2088  return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2089  CurLoop, Level, Result, NewConstraint) ||
2090  gcdMIVtest(Src, Dst, Result);
2091  }
2092  llvm_unreachable("SIV test expected at least one AddRec");
2093  return false;
2094 }
2095 
2096 
2097 // testRDIV -
2098 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2099 // where i and j are induction variables, c1 and c2 are loop invariant,
2100 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2101 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2102 // It doesn't make sense to talk about distance or direction in this case,
2103 // so there's no point in making special versions of the Strong SIV test or
2104 // the Weak-crossing SIV test.
2105 //
2106 // With minor algebra, this test can also be used for things like
2107 // [c1 + a1*i + a2*j][c2].
2108 //
2109 // Return true if dependence disproved.
2110 bool DependenceAnalysis::testRDIV(const SCEV *Src,
2111  const SCEV *Dst,
2112  FullDependence &Result) const {
2113  // we have 3 possible situations here:
2114  // 1) [a*i + b] and [c*j + d]
2115  // 2) [a*i + c*j + b] and [d]
2116  // 3) [b] and [a*i + c*j + d]
2117  // We need to find what we've got and get organized
2118 
2119  const SCEV *SrcConst, *DstConst;
2120  const SCEV *SrcCoeff, *DstCoeff;
2121  const Loop *SrcLoop, *DstLoop;
2122 
2123  DEBUG(dbgs() << " src = " << *Src << "\n");
2124  DEBUG(dbgs() << " dst = " << *Dst << "\n");
2125  const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2126  const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2127  if (SrcAddRec && DstAddRec) {
2128  SrcConst = SrcAddRec->getStart();
2129  SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2130  SrcLoop = SrcAddRec->getLoop();
2131  DstConst = DstAddRec->getStart();
2132  DstCoeff = DstAddRec->getStepRecurrence(*SE);
2133  DstLoop = DstAddRec->getLoop();
2134  }
2135  else if (SrcAddRec) {
2136  if (const SCEVAddRecExpr *tmpAddRec =
2137  dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2138  SrcConst = tmpAddRec->getStart();
2139  SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2140  SrcLoop = tmpAddRec->getLoop();
2141  DstConst = Dst;
2142  DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2143  DstLoop = SrcAddRec->getLoop();
2144  }
2145  else
2146  llvm_unreachable("RDIV reached by surprising SCEVs");
2147  }
2148  else if (DstAddRec) {
2149  if (const SCEVAddRecExpr *tmpAddRec =
2150  dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2151  DstConst = tmpAddRec->getStart();
2152  DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2153  DstLoop = tmpAddRec->getLoop();
2154  SrcConst = Src;
2155  SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2156  SrcLoop = DstAddRec->getLoop();
2157  }
2158  else
2159  llvm_unreachable("RDIV reached by surprising SCEVs");
2160  }
2161  else
2162  llvm_unreachable("RDIV expected at least one AddRec");
2163  return exactRDIVtest(SrcCoeff, DstCoeff,
2164  SrcConst, DstConst,
2165  SrcLoop, DstLoop,
2166  Result) ||
2167  gcdMIVtest(Src, Dst, Result) ||
2168  symbolicRDIVtest(SrcCoeff, DstCoeff,
2169  SrcConst, DstConst,
2170  SrcLoop, DstLoop);
2171 }
2172 
2173 
2174 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2175 // Return true if dependence disproved.
2176 // Can sometimes refine direction vectors.
2177 bool DependenceAnalysis::testMIV(const SCEV *Src,
2178  const SCEV *Dst,
2179  const SmallBitVector &Loops,
2180  FullDependence &Result) const {
2181  DEBUG(dbgs() << " src = " << *Src << "\n");
2182  DEBUG(dbgs() << " dst = " << *Dst << "\n");
2183  Result.Consistent = false;
2184  return gcdMIVtest(Src, Dst, Result) ||
2185  banerjeeMIVtest(Src, Dst, Loops, Result);
2186 }
2187 
2188 
2189 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2190 // in this case 10. If there is no constant part, returns NULL.
2191 static
2192 const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
2193  for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
2194  if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
2195  return Constant;
2196  }
2197  return NULL;
2198 }
2199 
2200 
2201 //===----------------------------------------------------------------------===//
2202 // gcdMIVtest -
2203 // Tests an MIV subscript pair for dependence.
2204 // Returns true if any possible dependence is disproved.
2205 // Marks the result as inconsistent.
2206 // Can sometimes disprove the equal direction for 1 or more loops,
2207 // as discussed in Michael Wolfe's book,
2208 // High Performance Compilers for Parallel Computing, page 235.
2209 //
2210 // We spend some effort (code!) to handle cases like
2211 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2212 // but M and N are just loop-invariant variables.
2213 // This should help us handle linearized subscripts;
2214 // also makes this test a useful backup to the various SIV tests.
2215 //
2216 // It occurs to me that the presence of loop-invariant variables
2217 // changes the nature of the test from "greatest common divisor"
2218 // to "a common divisor".
2219 bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
2220  const SCEV *Dst,
2221  FullDependence &Result) const {
2222  DEBUG(dbgs() << "starting gcd\n");
2223  ++GCDapplications;
2224  unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2225  APInt RunningGCD = APInt::getNullValue(BitWidth);
2226 
2227  // Examine Src coefficients.
2228  // Compute running GCD and record source constant.
2229  // Because we're looking for the constant at the end of the chain,
2230  // we can't quit the loop just because the GCD == 1.
2231  const SCEV *Coefficients = Src;
2232  while (const SCEVAddRecExpr *AddRec =
2233  dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2234  const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2235  const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2236  if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2237  // If the coefficient is the product of a constant and other stuff,
2238  // we can use the constant in the GCD computation.
2239  Constant = getConstantPart(Product);
2240  if (!Constant)
2241  return false;
2242  APInt ConstCoeff = Constant->getValue()->getValue();
2243  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2244  Coefficients = AddRec->getStart();
2245  }
2246  const SCEV *SrcConst = Coefficients;
2247 
2248  // Examine Dst coefficients.
2249  // Compute running GCD and record destination constant.
2250  // Because we're looking for the constant at the end of the chain,
2251  // we can't quit the loop just because the GCD == 1.
2252  Coefficients = Dst;
2253  while (const SCEVAddRecExpr *AddRec =
2254  dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2255  const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2256  const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2257  if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2258  // If the coefficient is the product of a constant and other stuff,
2259  // we can use the constant in the GCD computation.
2260  Constant = getConstantPart(Product);
2261  if (!Constant)
2262  return false;
2263  APInt ConstCoeff = Constant->getValue()->getValue();
2264  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2265  Coefficients = AddRec->getStart();
2266  }
2267  const SCEV *DstConst = Coefficients;
2268 
2269  APInt ExtraGCD = APInt::getNullValue(BitWidth);
2270  const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2271  DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2272  const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2273  if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2274  // If Delta is a sum of products, we may be able to make further progress.
2275  for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2276  const SCEV *Operand = Sum->getOperand(Op);
2277  if (isa<SCEVConstant>(Operand)) {
2278  assert(!Constant && "Surprised to find multiple constants");
2279  Constant = cast<SCEVConstant>(Operand);
2280  }
2281  else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2282  // Search for constant operand to participate in GCD;
2283  // If none found; return false.
2284  const SCEVConstant *ConstOp = getConstantPart(Product);
2285  if (!ConstOp)
2286  return false;
2287  APInt ConstOpValue = ConstOp->getValue()->getValue();
2288  ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2289  ConstOpValue.abs());
2290  }
2291  else
2292  return false;
2293  }
2294  }
2295  if (!Constant)
2296  return false;
2297  APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
2298  DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2299  if (ConstDelta == 0)
2300  return false;
2301  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2302  DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2303  APInt Remainder = ConstDelta.srem(RunningGCD);
2304  if (Remainder != 0) {
2305  ++GCDindependence;
2306  return true;
2307  }
2308 
2309  // Try to disprove equal directions.
2310  // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2311  // the code above can't disprove the dependence because the GCD = 1.
2312  // So we consider what happen if i = i' and what happens if j = j'.
2313  // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2314  // which is infeasible, so we can disallow the = direction for the i level.
2315  // Setting j = j' doesn't help matters, so we end up with a direction vector
2316  // of [<>, *]
2317  //
2318  // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2319  // we need to remember that the constant part is 5 and the RunningGCD should
2320  // be initialized to ExtraGCD = 30.
2321  DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2322 
2323  bool Improved = false;
2324  Coefficients = Src;
2325  while (const SCEVAddRecExpr *AddRec =
2326  dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2327  Coefficients = AddRec->getStart();
2328  const Loop *CurLoop = AddRec->getLoop();
2329  RunningGCD = ExtraGCD;
2330  const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2331  const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2332  const SCEV *Inner = Src;
2333  while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2334  AddRec = cast<SCEVAddRecExpr>(Inner);
2335  const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2336  if (CurLoop == AddRec->getLoop())
2337  ; // SrcCoeff == Coeff
2338  else {
2339  if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2340  // If the coefficient is the product of a constant and other stuff,
2341  // we can use the constant in the GCD computation.
2342  Constant = getConstantPart(Product);
2343  else
2344  Constant = cast<SCEVConstant>(Coeff);
2345  APInt ConstCoeff = Constant->getValue()->getValue();
2346  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2347  }
2348  Inner = AddRec->getStart();
2349  }
2350  Inner = Dst;
2351  while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2352  AddRec = cast<SCEVAddRecExpr>(Inner);
2353  const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2354  if (CurLoop == AddRec->getLoop())
2355  DstCoeff = Coeff;
2356  else {
2357  if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2358  // If the coefficient is the product of a constant and other stuff,
2359  // we can use the constant in the GCD computation.
2360  Constant = getConstantPart(Product);
2361  else
2362  Constant = cast<SCEVConstant>(Coeff);
2363  APInt ConstCoeff = Constant->getValue()->getValue();
2364  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2365  }
2366  Inner = AddRec->getStart();
2367  }
2368  Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2369  if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
2370  // If the coefficient is the product of a constant and other stuff,
2371  // we can use the constant in the GCD computation.
2372  Constant = getConstantPart(Product);
2373  else if (isa<SCEVConstant>(Delta))
2374  Constant = cast<SCEVConstant>(Delta);
2375  else {
2376  // The difference of the two coefficients might not be a product
2377  // or constant, in which case we give up on this direction.
2378  continue;
2379  }
2380  APInt ConstCoeff = Constant->getValue()->getValue();
2381  RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2382  DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2383  if (RunningGCD != 0) {
2384  Remainder = ConstDelta.srem(RunningGCD);
2385  DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2386  if (Remainder != 0) {
2387  unsigned Level = mapSrcLoop(CurLoop);
2388  Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2389  Improved = true;
2390  }
2391  }
2392  }
2393  if (Improved)
2394  ++GCDsuccesses;
2395  DEBUG(dbgs() << "all done\n");
2396  return false;
2397 }
2398 
2399 
2400 //===----------------------------------------------------------------------===//
2401 // banerjeeMIVtest -
2402 // Use Banerjee's Inequalities to test an MIV subscript pair.
2403 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2404 // Generally follows the discussion in Section 2.5.2 of
2405 //
2406 // Optimizing Supercompilers for Supercomputers
2407 // Michael Wolfe
2408 //
2409 // The inequalities given on page 25 are simplified in that loops are
2410 // normalized so that the lower bound is always 0 and the stride is always 1.
2411 // For example, Wolfe gives
2412 //
2413 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2414 //
2415 // where A_k is the coefficient of the kth index in the source subscript,
2416 // B_k is the coefficient of the kth index in the destination subscript,
2417 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2418 // index, and N_k is the stride of the kth index. Since all loops are normalized
2419 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2420 // equation to
2421 //
2422 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2423 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2424 //
2425 // Similar simplifications are possible for the other equations.
2426 //
2427 // When we can't determine the number of iterations for a loop,
2428 // we use NULL as an indicator for the worst case, infinity.
2429 // When computing the upper bound, NULL denotes +inf;
2430 // for the lower bound, NULL denotes -inf.
2431 //
2432 // Return true if dependence disproved.
2433 bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
2434  const SCEV *Dst,
2435  const SmallBitVector &Loops,
2436  FullDependence &Result) const {
2437  DEBUG(dbgs() << "starting Banerjee\n");
2438  ++BanerjeeApplications;
2439  DEBUG(dbgs() << " Src = " << *Src << '\n');
2440  const SCEV *A0;
2441  CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2442  DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2443  const SCEV *B0;
2444  CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2445  BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2446  const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2447  DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2448 
2449  // Compute bounds for all the * directions.
2450  DEBUG(dbgs() << "\tBounds[*]\n");
2451  for (unsigned K = 1; K <= MaxLevels; ++K) {
2452  Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2453  Bound[K].Direction = Dependence::DVEntry::ALL;
2454  Bound[K].DirSet = Dependence::DVEntry::NONE;
2455  findBoundsALL(A, B, Bound, K);
2456 #ifndef NDEBUG
2457  DEBUG(dbgs() << "\t " << K << '\t');
2458  if (Bound[K].Lower[Dependence::DVEntry::ALL])
2459  DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2460  else
2461  DEBUG(dbgs() << "-inf\t");
2462  if (Bound[K].Upper[Dependence::DVEntry::ALL])
2463  DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2464  else
2465  DEBUG(dbgs() << "+inf\n");
2466 #endif
2467  }
2468 
2469  // Test the *, *, *, ... case.
2470  bool Disproved = false;
2471  if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2472  // Explore the direction vector hierarchy.
2473  unsigned DepthExpanded = 0;
2474  unsigned NewDeps = exploreDirections(1, A, B, Bound,
2475  Loops, DepthExpanded, Delta);
2476  if (NewDeps > 0) {
2477  bool Improved = false;
2478  for (unsigned K = 1; K <= CommonLevels; ++K) {
2479  if (Loops[K]) {
2480  unsigned Old = Result.DV[K - 1].Direction;
2481  Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2482  Improved |= Old != Result.DV[K - 1].Direction;
2483  if (!Result.DV[K - 1].Direction) {
2484  Improved = false;
2485  Disproved = true;
2486  break;
2487  }
2488  }
2489  }
2490  if (Improved)
2491  ++BanerjeeSuccesses;
2492  }
2493  else {
2494  ++BanerjeeIndependence;
2495  Disproved = true;
2496  }
2497  }
2498  else {
2499  ++BanerjeeIndependence;
2500  Disproved = true;
2501  }
2502  delete [] Bound;
2503  delete [] A;
2504  delete [] B;
2505  return Disproved;
2506 }
2507 
2508 
2509 // Hierarchically expands the direction vector
2510 // search space, combining the directions of discovered dependences
2511 // in the DirSet field of Bound. Returns the number of distinct
2512 // dependences discovered. If the dependence is disproved,
2513 // it will return 0.
2514 unsigned DependenceAnalysis::exploreDirections(unsigned Level,
2515  CoefficientInfo *A,
2516  CoefficientInfo *B,
2517  BoundInfo *Bound,
2518  const SmallBitVector &Loops,
2519  unsigned &DepthExpanded,
2520  const SCEV *Delta) const {
2521  if (Level > CommonLevels) {
2522  // record result
2523  DEBUG(dbgs() << "\t[");
2524  for (unsigned K = 1; K <= CommonLevels; ++K) {
2525  if (Loops[K]) {
2526  Bound[K].DirSet |= Bound[K].Direction;
2527 #ifndef NDEBUG
2528  switch (Bound[K].Direction) {
2530  DEBUG(dbgs() << " <");
2531  break;
2533  DEBUG(dbgs() << " =");
2534  break;
2536  DEBUG(dbgs() << " >");
2537  break;
2538  case Dependence::DVEntry::ALL:
2539  DEBUG(dbgs() << " *");
2540  break;
2541  default:
2542  llvm_unreachable("unexpected Bound[K].Direction");
2543  }
2544 #endif
2545  }
2546  }
2547  DEBUG(dbgs() << " ]\n");
2548  return 1;
2549  }
2550  if (Loops[Level]) {
2551  if (Level > DepthExpanded) {
2552  DepthExpanded = Level;
2553  // compute bounds for <, =, > at current level
2554  findBoundsLT(A, B, Bound, Level);
2555  findBoundsGT(A, B, Bound, Level);
2556  findBoundsEQ(A, B, Bound, Level);
2557 #ifndef NDEBUG
2558  DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2559  DEBUG(dbgs() << "\t <\t");
2560  if (Bound[Level].Lower[Dependence::DVEntry::LT])
2561  DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2562  else
2563  DEBUG(dbgs() << "-inf\t");
2564  if (Bound[Level].Upper[Dependence::DVEntry::LT])
2565  DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2566  else
2567  DEBUG(dbgs() << "+inf\n");
2568  DEBUG(dbgs() << "\t =\t");
2569  if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2570  DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2571  else
2572  DEBUG(dbgs() << "-inf\t");
2573  if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2574  DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2575  else
2576  DEBUG(dbgs() << "+inf\n");
2577  DEBUG(dbgs() << "\t >\t");
2578  if (Bound[Level].Lower[Dependence::DVEntry::GT])
2579  DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2580  else
2581  DEBUG(dbgs() << "-inf\t");
2582  if (Bound[Level].Upper[Dependence::DVEntry::GT])
2583  DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2584  else
2585  DEBUG(dbgs() << "+inf\n");
2586 #endif
2587  }
2588 
2589  unsigned NewDeps = 0;
2590 
2591  // test bounds for <, *, *, ...
2592  if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2593  NewDeps += exploreDirections(Level + 1, A, B, Bound,
2594  Loops, DepthExpanded, Delta);
2595 
2596  // Test bounds for =, *, *, ...
2597  if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2598  NewDeps += exploreDirections(Level + 1, A, B, Bound,
2599  Loops, DepthExpanded, Delta);
2600 
2601  // test bounds for >, *, *, ...
2602  if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2603  NewDeps += exploreDirections(Level + 1, A, B, Bound,
2604  Loops, DepthExpanded, Delta);
2605 
2606  Bound[Level].Direction = Dependence::DVEntry::ALL;
2607  return NewDeps;
2608  }
2609  else
2610  return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2611 }
2612 
2613 
2614 // Returns true iff the current bounds are plausible.
2615 bool DependenceAnalysis::testBounds(unsigned char DirKind,
2616  unsigned Level,
2617  BoundInfo *Bound,
2618  const SCEV *Delta) const {
2619  Bound[Level].Direction = DirKind;
2620  if (const SCEV *LowerBound = getLowerBound(Bound))
2621  if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2622  return false;
2623  if (const SCEV *UpperBound = getUpperBound(Bound))
2624  if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2625  return false;
2626  return true;
2627 }
2628 
2629 
2630 // Computes the upper and lower bounds for level K
2631 // using the * direction. Records them in Bound.
2632 // Wolfe gives the equations
2633 //
2634 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2635 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2636 //
2637 // Since we normalize loops, we can simplify these equations to
2638 //
2639 // LB^*_k = (A^-_k - B^+_k)U_k
2640 // UB^*_k = (A^+_k - B^-_k)U_k
2641 //
2642 // We must be careful to handle the case where the upper bound is unknown.
2643 // Note that the lower bound is always <= 0
2644 // and the upper bound is always >= 0.
2645 void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
2646  CoefficientInfo *B,
2647  BoundInfo *Bound,
2648  unsigned K) const {
2649  Bound[K].Lower[Dependence::DVEntry::ALL] = NULL; // Default value = -infinity.
2650  Bound[K].Upper[Dependence::DVEntry::ALL] = NULL; // Default value = +infinity.
2651  if (Bound[K].Iterations) {
2652  Bound[K].Lower[Dependence::DVEntry::ALL] =
2653  SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2654  Bound[K].Iterations);
2655  Bound[K].Upper[Dependence::DVEntry::ALL] =
2656  SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2657  Bound[K].Iterations);
2658  }
2659  else {
2660  // If the difference is 0, we won't need to know the number of iterations.
2661  if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2662  Bound[K].Lower[Dependence::DVEntry::ALL] =
2663  SE->getConstant(A[K].Coeff->getType(), 0);
2664  if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2665  Bound[K].Upper[Dependence::DVEntry::ALL] =
2666  SE->getConstant(A[K].Coeff->getType(), 0);
2667  }
2668 }
2669 
2670 
2671 // Computes the upper and lower bounds for level K
2672 // using the = direction. Records them in Bound.
2673 // Wolfe gives the equations
2674 //
2675 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2676 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2677 //
2678 // Since we normalize loops, we can simplify these equations to
2679 //
2680 // LB^=_k = (A_k - B_k)^- U_k
2681 // UB^=_k = (A_k - B_k)^+ U_k
2682 //
2683 // We must be careful to handle the case where the upper bound is unknown.
2684 // Note that the lower bound is always <= 0
2685 // and the upper bound is always >= 0.
2686 void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
2687  CoefficientInfo *B,
2688  BoundInfo *Bound,
2689  unsigned K) const {
2690  Bound[K].Lower[Dependence::DVEntry::EQ] = NULL; // Default value = -infinity.
2691  Bound[K].Upper[Dependence::DVEntry::EQ] = NULL; // Default value = +infinity.
2692  if (Bound[K].Iterations) {
2693  const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2694  const SCEV *NegativePart = getNegativePart(Delta);
2695  Bound[K].Lower[Dependence::DVEntry::EQ] =
2696  SE->getMulExpr(NegativePart, Bound[K].Iterations);
2697  const SCEV *PositivePart = getPositivePart(Delta);
2698  Bound[K].Upper[Dependence::DVEntry::EQ] =
2699  SE->getMulExpr(PositivePart, Bound[K].Iterations);
2700  }
2701  else {
2702  // If the positive/negative part of the difference is 0,
2703  // we won't need to know the number of iterations.
2704  const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2705  const SCEV *NegativePart = getNegativePart(Delta);
2706  if (NegativePart->isZero())
2707  Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2708  const SCEV *PositivePart = getPositivePart(Delta);
2709  if (PositivePart->isZero())
2710  Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2711  }
2712 }
2713 
2714 
2715 // Computes the upper and lower bounds for level K
2716 // using the < direction. Records them in Bound.
2717 // Wolfe gives the equations
2718 //
2719 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2720 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2721 //
2722 // Since we normalize loops, we can simplify these equations to
2723 //
2724 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2725 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2726 //
2727 // We must be careful to handle the case where the upper bound is unknown.
2728 void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
2729  CoefficientInfo *B,
2730  BoundInfo *Bound,
2731  unsigned K) const {
2732  Bound[K].Lower[Dependence::DVEntry::LT] = NULL; // Default value = -infinity.
2733  Bound[K].Upper[Dependence::DVEntry::LT] = NULL; // Default value = +infinity.
2734  if (Bound[K].Iterations) {
2735  const SCEV *Iter_1 =
2736  SE->getMinusSCEV(Bound[K].Iterations,
2737  SE->getConstant(Bound[K].Iterations->getType(), 1));
2738  const SCEV *NegPart =
2739  getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2740  Bound[K].Lower[Dependence::DVEntry::LT] =
2741  SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2742  const SCEV *PosPart =
2743  getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2744  Bound[K].Upper[Dependence::DVEntry::LT] =
2745  SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2746  }
2747  else {
2748  // If the positive/negative part of the difference is 0,
2749  // we won't need to know the number of iterations.
2750  const SCEV *NegPart =
2751  getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2752  if (NegPart->isZero())
2753  Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2754  const SCEV *PosPart =
2755  getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2756  if (PosPart->isZero())
2757  Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2758  }
2759 }
2760 
2761 
2762 // Computes the upper and lower bounds for level K
2763 // using the > direction. Records them in Bound.
2764 // Wolfe gives the equations
2765 //
2766 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2767 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2768 //
2769 // Since we normalize loops, we can simplify these equations to
2770 //
2771 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2772 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2773 //
2774 // We must be careful to handle the case where the upper bound is unknown.
2775 void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
2776  CoefficientInfo *B,
2777  BoundInfo *Bound,
2778  unsigned K) const {
2779  Bound[K].Lower[Dependence::DVEntry::GT] = NULL; // Default value = -infinity.
2780  Bound[K].Upper[Dependence::DVEntry::GT] = NULL; // Default value = +infinity.
2781  if (Bound[K].Iterations) {
2782  const SCEV *Iter_1 =
2783  SE->getMinusSCEV(Bound[K].Iterations,
2784  SE->getConstant(Bound[K].Iterations->getType(), 1));
2785  const SCEV *NegPart =
2786  getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2787  Bound[K].Lower[Dependence::DVEntry::GT] =
2788  SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2789  const SCEV *PosPart =
2790  getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2791  Bound[K].Upper[Dependence::DVEntry::GT] =
2792  SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2793  }
2794  else {
2795  // If the positive/negative part of the difference is 0,
2796  // we won't need to know the number of iterations.
2797  const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2798  if (NegPart->isZero())
2799  Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2800  const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2801  if (PosPart->isZero())
2802  Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2803  }
2804 }
2805 
2806 
2807 // X^+ = max(X, 0)
2808 const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
2809  return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
2810 }
2811 
2812 
2813 // X^- = min(X, 0)
2814 const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
2815  return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
2816 }
2817 
2818 
2819 // Walks through the subscript,
2820 // collecting each coefficient, the associated loop bounds,
2821 // and recording its positive and negative parts for later use.
2822 DependenceAnalysis::CoefficientInfo *
2823 DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
2824  bool SrcFlag,
2825  const SCEV *&Constant) const {
2826  const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
2827  CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2828  for (unsigned K = 1; K <= MaxLevels; ++K) {
2829  CI[K].Coeff = Zero;
2830  CI[K].PosPart = Zero;
2831  CI[K].NegPart = Zero;
2832  CI[K].Iterations = NULL;
2833  }
2834  while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2835  const Loop *L = AddRec->getLoop();
2836  unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2837  CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2838  CI[K].PosPart = getPositivePart(CI[K].Coeff);
2839  CI[K].NegPart = getNegativePart(CI[K].Coeff);
2840  CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2841  Subscript = AddRec->getStart();
2842  }
2843  Constant = Subscript;
2844 #ifndef NDEBUG
2845  DEBUG(dbgs() << "\tCoefficient Info\n");
2846  for (unsigned K = 1; K <= MaxLevels; ++K) {
2847  DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2848  DEBUG(dbgs() << "\tPos Part = ");
2849  DEBUG(dbgs() << *CI[K].PosPart);
2850  DEBUG(dbgs() << "\tNeg Part = ");
2851  DEBUG(dbgs() << *CI[K].NegPart);
2852  DEBUG(dbgs() << "\tUpper Bound = ");
2853  if (CI[K].Iterations)
2854  DEBUG(dbgs() << *CI[K].Iterations);
2855  else
2856  DEBUG(dbgs() << "+inf");
2857  DEBUG(dbgs() << '\n');
2858  }
2859  DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2860 #endif
2861  return CI;
2862 }
2863 
2864 
2865 // Looks through all the bounds info and
2866 // computes the lower bound given the current direction settings
2867 // at each level. If the lower bound for any level is -inf,
2868 // the result is -inf.
2869 const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
2870  const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2871  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2872  if (Bound[K].Lower[Bound[K].Direction])
2873  Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2874  else
2875  Sum = NULL;
2876  }
2877  return Sum;
2878 }
2879 
2880 
2881 // Looks through all the bounds info and
2882 // computes the upper bound given the current direction settings
2883 // at each level. If the upper bound at any level is +inf,
2884 // the result is +inf.
2885 const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
2886  const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2887  for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2888  if (Bound[K].Upper[Bound[K].Direction])
2889  Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2890  else
2891  Sum = NULL;
2892  }
2893  return Sum;
2894 }
2895 
2896 
2897 //===----------------------------------------------------------------------===//
2898 // Constraint manipulation for Delta test.
2899 
2900 // Given a linear SCEV,
2901 // return the coefficient (the step)
2902 // corresponding to the specified loop.
2903 // If there isn't one, return 0.
2904 // For example, given a*i + b*j + c*k, zeroing the coefficient
2905 // corresponding to the j loop would yield b.
2906 const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
2907  const Loop *TargetLoop) const {
2908  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2909  if (!AddRec)
2910  return SE->getConstant(Expr->getType(), 0);
2911  if (AddRec->getLoop() == TargetLoop)
2912  return AddRec->getStepRecurrence(*SE);
2913  return findCoefficient(AddRec->getStart(), TargetLoop);
2914 }
2915 
2916 
2917 // Given a linear SCEV,
2918 // return the SCEV given by zeroing out the coefficient
2919 // corresponding to the specified loop.
2920 // For example, given a*i + b*j + c*k, zeroing the coefficient
2921 // corresponding to the j loop would yield a*i + c*k.
2922 const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
2923  const Loop *TargetLoop) const {
2924  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2925  if (!AddRec)
2926  return Expr; // ignore
2927  if (AddRec->getLoop() == TargetLoop)
2928  return AddRec->getStart();
2929  return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2930  AddRec->getStepRecurrence(*SE),
2931  AddRec->getLoop(),
2932  AddRec->getNoWrapFlags());
2933 }
2934 
2935 
2936 // Given a linear SCEV Expr,
2937 // return the SCEV given by adding some Value to the
2938 // coefficient corresponding to the specified TargetLoop.
2939 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
2940 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
2941 const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
2942  const Loop *TargetLoop,
2943  const SCEV *Value) const {
2944  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2945  if (!AddRec) // create a new addRec
2946  return SE->getAddRecExpr(Expr,
2947  Value,
2948  TargetLoop,
2949  SCEV::FlagAnyWrap); // Worst case, with no info.
2950  if (AddRec->getLoop() == TargetLoop) {
2951  const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2952  if (Sum->isZero())
2953  return AddRec->getStart();
2954  return SE->getAddRecExpr(AddRec->getStart(),
2955  Sum,
2956  AddRec->getLoop(),
2957  AddRec->getNoWrapFlags());
2958  }
2959  if (SE->isLoopInvariant(AddRec, TargetLoop))
2960  return SE->getAddRecExpr(AddRec,
2961  Value,
2962  TargetLoop,
2964  return SE->getAddRecExpr(addToCoefficient(AddRec->getStart(),
2965  TargetLoop, Value),
2966  AddRec->getStepRecurrence(*SE),
2967  AddRec->getLoop(),
2968  AddRec->getNoWrapFlags());
2969 }
2970 
2971 
2972 // Review the constraints, looking for opportunities
2973 // to simplify a subscript pair (Src and Dst).
2974 // Return true if some simplification occurs.
2975 // If the simplification isn't exact (that is, if it is conservative
2976 // in terms of dependence), set consistent to false.
2977 // Corresponds to Figure 5 from the paper
2978 //
2979 // Practical Dependence Testing
2980 // Goff, Kennedy, Tseng
2981 // PLDI 1991
2982 bool DependenceAnalysis::propagate(const SCEV *&Src,
2983  const SCEV *&Dst,
2984  SmallBitVector &Loops,
2985  SmallVectorImpl<Constraint> &Constraints,
2986  bool &Consistent) {
2987  bool Result = false;
2988  for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
2989  DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
2990  DEBUG(Constraints[LI].dump(dbgs()));
2991  if (Constraints[LI].isDistance())
2992  Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
2993  else if (Constraints[LI].isLine())
2994  Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
2995  else if (Constraints[LI].isPoint())
2996  Result |= propagatePoint(Src, Dst, Constraints[LI]);
2997  }
2998  return Result;
2999 }
3000 
3001 
3002 // Attempt to propagate a distance
3003 // constraint into a subscript pair (Src and Dst).
3004 // Return true if some simplification occurs.
3005 // If the simplification isn't exact (that is, if it is conservative
3006 // in terms of dependence), set consistent to false.
3007 bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
3008  const SCEV *&Dst,
3009  Constraint &CurConstraint,
3010  bool &Consistent) {
3011  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3012  DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3013  const SCEV *A_K = findCoefficient(Src, CurLoop);
3014  if (A_K->isZero())
3015  return false;
3016  const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3017  Src = SE->getMinusSCEV(Src, DA_K);
3018  Src = zeroCoefficient(Src, CurLoop);
3019  DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3020  DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3021  Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3022  DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3023  if (!findCoefficient(Dst, CurLoop)->isZero())
3024  Consistent = false;
3025  return true;
3026 }
3027 
3028 
3029 // Attempt to propagate a line
3030 // constraint into a subscript pair (Src and Dst).
3031 // Return true if some simplification occurs.
3032 // If the simplification isn't exact (that is, if it is conservative
3033 // in terms of dependence), set consistent to false.
3034 bool DependenceAnalysis::propagateLine(const SCEV *&Src,
3035  const SCEV *&Dst,
3036  Constraint &CurConstraint,
3037  bool &Consistent) {
3038  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3039  const SCEV *A = CurConstraint.getA();
3040  const SCEV *B = CurConstraint.getB();
3041  const SCEV *C = CurConstraint.getC();
3042  DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3043  DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3044  DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3045  if (A->isZero()) {
3046  const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3047  const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3048  if (!Bconst || !Cconst) return false;
3049  APInt Beta = Bconst->getValue()->getValue();
3050  APInt Charlie = Cconst->getValue()->getValue();
3051  APInt CdivB = Charlie.sdiv(Beta);
3052  assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3053  const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3054  // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3055  Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3056  Dst = zeroCoefficient(Dst, CurLoop);
3057  if (!findCoefficient(Src, CurLoop)->isZero())
3058  Consistent = false;
3059  }
3060  else if (B->isZero()) {
3061  const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3062  const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3063  if (!Aconst || !Cconst) return false;
3064  APInt Alpha = Aconst->getValue()->getValue();
3065  APInt Charlie = Cconst->getValue()->getValue();
3066  APInt CdivA = Charlie.sdiv(Alpha);
3067  assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3068  const SCEV *A_K = findCoefficient(Src, CurLoop);
3069  Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3070  Src = zeroCoefficient(Src, CurLoop);
3071  if (!findCoefficient(Dst, CurLoop)->isZero())
3072  Consistent = false;
3073  }
3074  else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3075  const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3076  const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3077  if (!Aconst || !Cconst) return false;
3078  APInt Alpha = Aconst->getValue()->getValue();
3079  APInt Charlie = Cconst->getValue()->getValue();
3080  APInt CdivA = Charlie.sdiv(Alpha);
3081  assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3082  const SCEV *A_K = findCoefficient(Src, CurLoop);
3083  Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3084  Src = zeroCoefficient(Src, CurLoop);
3085  Dst = addToCoefficient(Dst, CurLoop, A_K);
3086  if (!findCoefficient(Dst, CurLoop)->isZero())
3087  Consistent = false;
3088  }
3089  else {
3090  // paper is incorrect here, or perhaps just misleading
3091  const SCEV *A_K = findCoefficient(Src, CurLoop);
3092  Src = SE->getMulExpr(Src, A);
3093  Dst = SE->getMulExpr(Dst, A);
3094  Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3095  Src = zeroCoefficient(Src, CurLoop);
3096  Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3097  if (!findCoefficient(Dst, CurLoop)->isZero())
3098  Consistent = false;
3099  }
3100  DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3101  DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3102  return true;
3103 }
3104 
3105 
3106 // Attempt to propagate a point
3107 // constraint into a subscript pair (Src and Dst).
3108 // Return true if some simplification occurs.
3109 bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
3110  const SCEV *&Dst,
3111  Constraint &CurConstraint) {
3112  const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3113  const SCEV *A_K = findCoefficient(Src, CurLoop);
3114  const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3115  const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3116  const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3117  DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3118  Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3119  Src = zeroCoefficient(Src, CurLoop);
3120  DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3121  DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3122  Dst = zeroCoefficient(Dst, CurLoop);
3123  DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3124  return true;
3125 }
3126 
3127 
3128 // Update direction vector entry based on the current constraint.
3129 void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
3130  const Constraint &CurConstraint
3131  ) const {
3132  DEBUG(dbgs() << "\tUpdate direction, constraint =");
3133  DEBUG(CurConstraint.dump(dbgs()));
3134  if (CurConstraint.isAny())
3135  ; // use defaults
3136  else if (CurConstraint.isDistance()) {
3137  // this one is consistent, the others aren't
3138  Level.Scalar = false;
3139  Level.Distance = CurConstraint.getD();
3140  unsigned NewDirection = Dependence::DVEntry::NONE;
3141  if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3142  NewDirection = Dependence::DVEntry::EQ;
3143  if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3144  NewDirection |= Dependence::DVEntry::LT;
3145  if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3146  NewDirection |= Dependence::DVEntry::GT;
3147  Level.Direction &= NewDirection;
3148  }
3149  else if (CurConstraint.isLine()) {
3150  Level.Scalar = false;
3151  Level.Distance = NULL;
3152  // direction should be accurate
3153  }
3154  else if (CurConstraint.isPoint()) {
3155  Level.Scalar = false;
3156  Level.Distance = NULL;
3157  unsigned NewDirection = Dependence::DVEntry::NONE;
3158  if (!isKnownPredicate(CmpInst::ICMP_NE,
3159  CurConstraint.getY(),
3160  CurConstraint.getX()))
3161  // if X may be = Y
3162  NewDirection |= Dependence::DVEntry::EQ;
3163  if (!isKnownPredicate(CmpInst::ICMP_SLE,
3164  CurConstraint.getY(),
3165  CurConstraint.getX()))
3166  // if Y may be > X
3167  NewDirection |= Dependence::DVEntry::LT;
3168  if (!isKnownPredicate(CmpInst::ICMP_SGE,
3169  CurConstraint.getY(),
3170  CurConstraint.getX()))
3171  // if Y may be < X
3172  NewDirection |= Dependence::DVEntry::GT;
3173  Level.Direction &= NewDirection;
3174  }
3175  else
3176  llvm_unreachable("constraint has unexpected kind");
3177 }
3178 
3179 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3180 /// source and destination array references are recurrences on a nested loop,
3181 /// this function flattens the nested recurrences into seperate recurrences
3182 /// for each loop level.
3183 bool
3184 DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV, const SCEV *DstSCEV,
3185  SmallVectorImpl<Subscript> &Pair) const {
3186  const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3187  const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3188  if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3189  return false;
3190 
3191  SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts, SrcSizes, DstSizes;
3192  SrcAR->delinearize(*SE, SrcSubscripts, SrcSizes);
3193  DstAR->delinearize(*SE, DstSubscripts, DstSizes);
3194 
3195  int size = SrcSubscripts.size();
3196  int dstSize = DstSubscripts.size();
3197  if (size != dstSize || size < 2)
3198  return false;
3199 
3200 #ifndef NDEBUG
3201  DEBUG(errs() << "\nSrcSubscripts: ");
3202  for (int i = 0; i < size; i++)
3203  DEBUG(errs() << *SrcSubscripts[i]);
3204  DEBUG(errs() << "\nDstSubscripts: ");
3205  for (int i = 0; i < size; i++)
3206  DEBUG(errs() << *DstSubscripts[i]);
3207 #endif
3208 
3209  // The delinearization transforms a single-subscript MIV dependence test into
3210  // a multi-subscript SIV dependence test that is easier to compute. So we
3211  // resize Pair to contain as many pairs of subscripts as the delinearization
3212  // has found, and then initialize the pairs following the delinearization.
3213  Pair.resize(size);
3214  for (int i = 0; i < size; ++i) {
3215  Pair[i].Src = SrcSubscripts[i];
3216  Pair[i].Dst = DstSubscripts[i];
3217 
3218  // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3219  // delinearization has found, and add these constraints to the dependence
3220  // check to avoid memory accesses overflow from one dimension into another.
3221  // This is related to the problem of determining the existence of data
3222  // dependences in array accesses using a different number of subscripts: in
3223  // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
3224  }
3225 
3226  return true;
3227 }
3228 
3229 //===----------------------------------------------------------------------===//
3230 
3231 #ifndef NDEBUG
3232 // For debugging purposes, dump a small bit vector to dbgs().
3234  dbgs() << "{";
3235  for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3236  dbgs() << VI;
3237  if (BV.find_next(VI) >= 0)
3238  dbgs() << ' ';
3239  }
3240  dbgs() << "}\n";
3241 }
3242 #endif
3243 
3244 
3245 // depends -
3246 // Returns NULL if there is no dependence.
3247 // Otherwise, return a Dependence with as many details as possible.
3248 // Corresponds to Section 3.1 in the paper
3249 //
3250 // Practical Dependence Testing
3251 // Goff, Kennedy, Tseng
3252 // PLDI 1991
3253 //
3254 // Care is required to keep the routine below, getSplitIteration(),
3255 // up to date with respect to this routine.
3257  Instruction *Dst,
3258  bool PossiblyLoopIndependent) {
3259  if (Src == Dst)
3260  PossiblyLoopIndependent = false;
3261 
3262  if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3263  (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3264  // if both instructions don't reference memory, there's no dependence
3265  return NULL;
3266 
3267  if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3268  // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3269  DEBUG(dbgs() << "can only handle simple loads and stores\n");
3270  return new Dependence(Src, Dst);
3271  }
3272 
3273  Value *SrcPtr = getPointerOperand(Src);
3274  Value *DstPtr = getPointerOperand(Dst);
3275 
3276  switch (underlyingObjectsAlias(AA, DstPtr, SrcPtr)) {
3279  // cannot analyse objects if we don't understand their aliasing.
3280  DEBUG(dbgs() << "can't analyze may or partial alias\n");
3281  return new Dependence(Src, Dst);
3283  // If the objects noalias, they are distinct, accesses are independent.
3284  DEBUG(dbgs() << "no alias\n");
3285  return NULL;
3287  break; // The underlying objects alias; test accesses for dependence.
3288  }
3289 
3290  // establish loop nesting levels
3291  establishNestingLevels(Src, Dst);
3292  DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3293  DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3294 
3295  FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3296  ++TotalArrayPairs;
3297 
3298  // See if there are GEPs we can use.
3299  bool UsefulGEP = false;
3300  GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3301  GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3302  if (SrcGEP && DstGEP &&
3303  SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3304  const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3305  const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3306  DEBUG(dbgs() << " SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
3307  DEBUG(dbgs() << " DstPtrSCEV = " << *DstPtrSCEV << "\n");
3308 
3309  UsefulGEP =
3310  isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3311  isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
3312  }
3313  unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3314  SmallVector<Subscript, 4> Pair(Pairs);
3315  if (UsefulGEP) {
3316  DEBUG(dbgs() << " using GEPs\n");
3317  unsigned P = 0;
3318  for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3319  SrcEnd = SrcGEP->idx_end(),
3320  DstIdx = DstGEP->idx_begin();
3321  SrcIdx != SrcEnd;
3322  ++SrcIdx, ++DstIdx, ++P) {
3323  Pair[P].Src = SE->getSCEV(*SrcIdx);
3324  Pair[P].Dst = SE->getSCEV(*DstIdx);
3325  }
3326  }
3327  else {
3328  DEBUG(dbgs() << " ignoring GEPs\n");
3329  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3330  const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3331  DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3332  DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3333  Pair[0].Src = SrcSCEV;
3334  Pair[0].Dst = DstSCEV;
3335  }
3336 
3337  if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
3338  tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair)) {
3339  DEBUG(dbgs() << " delinerized GEP\n");
3340  Pairs = Pair.size();
3341  }
3342 
3343  for (unsigned P = 0; P < Pairs; ++P) {
3344  Pair[P].Loops.resize(MaxLevels + 1);
3345  Pair[P].GroupLoops.resize(MaxLevels + 1);
3346  Pair[P].Group.resize(Pairs);
3347  removeMatchingExtensions(&Pair[P]);
3348  Pair[P].Classification =
3349  classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3350  Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3351  Pair[P].Loops);
3352  Pair[P].GroupLoops = Pair[P].Loops;
3353  Pair[P].Group.set(P);
3354  DEBUG(dbgs() << " subscript " << P << "\n");
3355  DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3356  DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3357  DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3358  DEBUG(dbgs() << "\tloops = ");
3359  DEBUG(dumpSmallBitVector(Pair[P].Loops));
3360  }
3361 
3362  SmallBitVector Separable(Pairs);
3363  SmallBitVector Coupled(Pairs);
3364 
3365  // Partition subscripts into separable and minimally-coupled groups
3366  // Algorithm in paper is algorithmically better;
3367  // this may be faster in practice. Check someday.
3368  //
3369  // Here's an example of how it works. Consider this code:
3370  //
3371  // for (i = ...) {
3372  // for (j = ...) {
3373  // for (k = ...) {
3374  // for (l = ...) {
3375  // for (m = ...) {
3376  // A[i][j][k][m] = ...;
3377  // ... = A[0][j][l][i + j];
3378  // }
3379  // }
3380  // }
3381  // }
3382  // }
3383  //
3384  // There are 4 subscripts here:
3385  // 0 [i] and [0]
3386  // 1 [j] and [j]
3387  // 2 [k] and [l]
3388  // 3 [m] and [i + j]
3389  //
3390  // We've already classified each subscript pair as ZIV, SIV, etc.,
3391  // and collected all the loops mentioned by pair P in Pair[P].Loops.
3392  // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3393  // and set Pair[P].Group = {P}.
3394  //
3395  // Src Dst Classification Loops GroupLoops Group
3396  // 0 [i] [0] SIV {1} {1} {0}
3397  // 1 [j] [j] SIV {2} {2} {1}
3398  // 2 [k] [l] RDIV {3,4} {3,4} {2}
3399  // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3400  //
3401  // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3402  // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3403  //
3404  // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3405  // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3406  // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3407  // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3408  // to either Separable or Coupled).
3409  //
3410  // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3411  // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3412  // so Pair[3].Group = {0, 1, 3} and Done = false.
3413  //
3414  // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3415  // Since Done remains true, we add 2 to the set of Separable pairs.
3416  //
3417  // Finally, we consider 3. There's nothing to compare it with,
3418  // so Done remains true and we add it to the Coupled set.
3419  // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3420  //
3421  // In the end, we've got 1 separable subscript and 1 coupled group.
3422  for (unsigned SI = 0; SI < Pairs; ++SI) {
3423  if (Pair[SI].Classification == Subscript::NonLinear) {
3424  // ignore these, but collect loops for later
3425  ++NonlinearSubscriptPairs;
3426  collectCommonLoops(Pair[SI].Src,
3427  LI->getLoopFor(Src->getParent()),
3428  Pair[SI].Loops);
3429  collectCommonLoops(Pair[SI].Dst,
3430  LI->getLoopFor(Dst->getParent()),
3431  Pair[SI].Loops);
3432  Result.Consistent = false;
3433  }
3434  else if (Pair[SI].Classification == Subscript::ZIV) {
3435  // always separable
3436  Separable.set(SI);
3437  }
3438  else {
3439  // SIV, RDIV, or MIV, so check for coupled group
3440  bool Done = true;
3441  for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3442  SmallBitVector Intersection = Pair[SI].GroupLoops;
3443  Intersection &= Pair[SJ].GroupLoops;
3444  if (Intersection.any()) {
3445  // accumulate set of all the loops in group
3446  Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3447  // accumulate set of all subscripts in group
3448  Pair[SJ].Group |= Pair[SI].Group;
3449  Done = false;
3450  }
3451  }
3452  if (Done) {
3453  if (Pair[SI].Group.count() == 1) {
3454  Separable.set(SI);
3455  ++SeparableSubscriptPairs;
3456  }
3457  else {
3458  Coupled.set(SI);
3459  ++CoupledSubscriptPairs;
3460  }
3461  }
3462  }
3463  }
3464 
3465  DEBUG(dbgs() << " Separable = ");
3466  DEBUG(dumpSmallBitVector(Separable));
3467  DEBUG(dbgs() << " Coupled = ");
3468  DEBUG(dumpSmallBitVector(Coupled));
3469 
3470  Constraint NewConstraint;
3471  NewConstraint.setAny(SE);
3472 
3473  // test separable subscripts
3474  for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3475  DEBUG(dbgs() << "testing subscript " << SI);
3476  switch (Pair[SI].Classification) {
3477  case Subscript::ZIV:
3478  DEBUG(dbgs() << ", ZIV\n");
3479  if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3480  return NULL;
3481  break;
3482  case Subscript::SIV: {
3483  DEBUG(dbgs() << ", SIV\n");
3484  unsigned Level;
3485  const SCEV *SplitIter = NULL;
3486  if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3487  Result, NewConstraint, SplitIter))
3488  return NULL;
3489  break;
3490  }
3491  case Subscript::RDIV:
3492  DEBUG(dbgs() << ", RDIV\n");
3493  if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3494  return NULL;
3495  break;
3496  case Subscript::MIV:
3497  DEBUG(dbgs() << ", MIV\n");
3498  if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3499  return NULL;
3500  break;
3501  default:
3502  llvm_unreachable("subscript has unexpected classification");
3503  }
3504  }
3505 
3506  if (Coupled.count()) {
3507  // test coupled subscript groups
3508  DEBUG(dbgs() << "starting on coupled subscripts\n");
3509  DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3510  SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3511  for (unsigned II = 0; II <= MaxLevels; ++II)
3512  Constraints[II].setAny(SE);
3513  for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3514  DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3515  SmallBitVector Group(Pair[SI].Group);
3516  SmallBitVector Sivs(Pairs);
3517  SmallBitVector Mivs(Pairs);
3518  SmallBitVector ConstrainedLevels(MaxLevels + 1);
3519  for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3520  DEBUG(dbgs() << SJ << " ");
3521  if (Pair[SJ].Classification == Subscript::SIV)
3522  Sivs.set(SJ);
3523  else
3524  Mivs.set(SJ);
3525  }
3526  DEBUG(dbgs() << "}\n");
3527  while (Sivs.any()) {
3528  bool Changed = false;
3529  for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3530  DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3531  // SJ is an SIV subscript that's part of the current coupled group
3532  unsigned Level;
3533  const SCEV *SplitIter = NULL;
3534  DEBUG(dbgs() << "SIV\n");
3535  if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3536  Result, NewConstraint, SplitIter))
3537  return NULL;
3538  ConstrainedLevels.set(Level);
3539  if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3540  if (Constraints[Level].isEmpty()) {
3541  ++DeltaIndependence;
3542  return NULL;
3543  }
3544  Changed = true;
3545  }
3546  Sivs.reset(SJ);
3547  }
3548  if (Changed) {
3549  // propagate, possibly creating new SIVs and ZIVs
3550  DEBUG(dbgs() << " propagating\n");
3551  DEBUG(dbgs() << "\tMivs = ");
3552  DEBUG(dumpSmallBitVector(Mivs));
3553  for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3554  // SJ is an MIV subscript that's part of the current coupled group
3555  DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3556  if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3557  Constraints, Result.Consistent)) {
3558  DEBUG(dbgs() << "\t Changed\n");
3559  ++DeltaPropagations;
3560  Pair[SJ].Classification =
3561  classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3562  Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3563  Pair[SJ].Loops);
3564  switch (Pair[SJ].Classification) {
3565  case Subscript::ZIV:
3566  DEBUG(dbgs() << "ZIV\n");
3567  if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3568  return NULL;
3569  Mivs.reset(SJ);
3570  break;
3571  case Subscript::SIV:
3572  Sivs.set(SJ);
3573  Mivs.reset(SJ);
3574  break;
3575  case Subscript::RDIV:
3576  case Subscript::MIV:
3577  break;
3578  default:
3579  llvm_unreachable("bad subscript classification");
3580  }
3581  }
3582  }
3583  }
3584  }
3585 
3586  // test & propagate remaining RDIVs
3587  for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3588  if (Pair[SJ].Classification == Subscript::RDIV) {
3589  DEBUG(dbgs() << "RDIV test\n");
3590  if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3591  return NULL;
3592  // I don't yet understand how to propagate RDIV results
3593  Mivs.reset(SJ);
3594  }
3595  }
3596 
3597  // test remaining MIVs
3598  // This code is temporary.
3599  // Better to somehow test all remaining subscripts simultaneously.
3600  for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3601  if (Pair[SJ].Classification == Subscript::MIV) {
3602  DEBUG(dbgs() << "MIV test\n");
3603  if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3604  return NULL;
3605  }
3606  else
3607  llvm_unreachable("expected only MIV subscripts at this point");
3608  }
3609 
3610  // update Result.DV from constraint vector
3611  DEBUG(dbgs() << " updating\n");
3612  for (int SJ = ConstrainedLevels.find_first();
3613  SJ >= 0; SJ = ConstrainedLevels.find_next(SJ)) {
3614  updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3615  if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3616  return NULL;
3617  }
3618  }
3619  }
3620 
3621  // Make sure the Scalar flags are set correctly.
3622  SmallBitVector CompleteLoops(MaxLevels + 1);
3623  for (unsigned SI = 0; SI < Pairs; ++SI)
3624  CompleteLoops |= Pair[SI].Loops;
3625  for (unsigned II = 1; II <= CommonLevels; ++II)
3626  if (CompleteLoops[II])
3627  Result.DV[II - 1].Scalar = false;
3628 
3629  if (PossiblyLoopIndependent) {
3630  // Make sure the LoopIndependent flag is set correctly.
3631  // All directions must include equal, otherwise no
3632  // loop-independent dependence is possible.
3633  for (unsigned II = 1; II <= CommonLevels; ++II) {
3634  if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3635  Result.LoopIndependent = false;
3636  break;
3637  }
3638  }
3639  }
3640  else {
3641  // On the other hand, if all directions are equal and there's no
3642  // loop-independent dependence possible, then no dependence exists.
3643  bool AllEqual = true;
3644  for (unsigned II = 1; II <= CommonLevels; ++II) {
3645  if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3646  AllEqual = false;
3647  break;
3648  }
3649  }
3650  if (AllEqual)
3651  return NULL;
3652  }
3653 
3654  FullDependence *Final = new FullDependence(Result);
3655  Result.DV = NULL;
3656  return Final;
3657 }
3658 
3659 
3660 
3661 //===----------------------------------------------------------------------===//
3662 // getSplitIteration -
3663 // Rather than spend rarely-used space recording the splitting iteration
3664 // during the Weak-Crossing SIV test, we re-compute it on demand.
3665 // The re-computation is basically a repeat of the entire dependence test,
3666 // though simplified since we know that the dependence exists.
3667 // It's tedious, since we must go through all propagations, etc.
3668 //
3669 // Care is required to keep this code up to date with respect to the routine
3670 // above, depends().
3671 //
3672 // Generally, the dependence analyzer will be used to build
3673 // a dependence graph for a function (basically a map from instructions
3674 // to dependences). Looking for cycles in the graph shows us loops
3675 // that cannot be trivially vectorized/parallelized.
3676 //
3677 // We can try to improve the situation by examining all the dependences
3678 // that make up the cycle, looking for ones we can break.
3679 // Sometimes, peeling the first or last iteration of a loop will break
3680 // dependences, and we've got flags for those possibilities.
3681 // Sometimes, splitting a loop at some other iteration will do the trick,
3682 // and we've got a flag for that case. Rather than waste the space to
3683 // record the exact iteration (since we rarely know), we provide
3684 // a method that calculates the iteration. It's a drag that it must work
3685 // from scratch, but wonderful in that it's possible.
3686 //
3687 // Here's an example:
3688 //
3689 // for (i = 0; i < 10; i++)
3690 // A[i] = ...
3691 // ... = A[11 - i]
3692 //
3693 // There's a loop-carried flow dependence from the store to the load,
3694 // found by the weak-crossing SIV test. The dependence will have a flag,
3695 // indicating that the dependence can be broken by splitting the loop.
3696 // Calling getSplitIteration will return 5.
3697 // Splitting the loop breaks the dependence, like so:
3698 //
3699 // for (i = 0; i <= 5; i++)
3700 // A[i] = ...
3701 // ... = A[11 - i]
3702 // for (i = 6; i < 10; i++)
3703 // A[i] = ...
3704 // ... = A[11 - i]
3705 //
3706 // breaks the dependence and allows us to vectorize/parallelize
3707 // both loops.
3709  unsigned SplitLevel) {
3710  assert(Dep && "expected a pointer to a Dependence");
3711  assert(Dep->isSplitable(SplitLevel) &&
3712  "Dep should be splitable at SplitLevel");
3713  Instruction *Src = Dep->getSrc();
3714  Instruction *Dst = Dep->getDst();
3715  assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3716  assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3717  assert(isLoadOrStore(Src));
3718  assert(isLoadOrStore(Dst));
3719  Value *SrcPtr = getPointerOperand(Src);
3720  Value *DstPtr = getPointerOperand(Dst);
3721  assert(underlyingObjectsAlias(AA, DstPtr, SrcPtr) ==
3723 
3724  // establish loop nesting levels
3725  establishNestingLevels(Src, Dst);
3726 
3727  FullDependence Result(Src, Dst, false, CommonLevels);
3728 
3729  // See if there are GEPs we can use.
3730  bool UsefulGEP = false;
3731  GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3732  GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3733  if (SrcGEP && DstGEP &&
3734  SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3735  const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3736  const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3737  UsefulGEP =
3738  isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3739  isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent()));
3740  }
3741  unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3742  SmallVector<Subscript, 4> Pair(Pairs);
3743  if (UsefulGEP) {
3744  unsigned P = 0;
3745  for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3746  SrcEnd = SrcGEP->idx_end(),
3747  DstIdx = DstGEP->idx_begin();
3748  SrcIdx != SrcEnd;
3749  ++SrcIdx, ++DstIdx, ++P) {
3750  Pair[P].Src = SE->getSCEV(*SrcIdx);
3751  Pair[P].Dst = SE->getSCEV(*DstIdx);
3752  }
3753  }
3754  else {
3755  const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3756  const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3757  Pair[0].Src = SrcSCEV;
3758  Pair[0].Dst = DstSCEV;
3759  }
3760 
3761  if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
3762  tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair)) {
3763  DEBUG(dbgs() << " delinerized GEP\n");
3764  Pairs = Pair.size();
3765  }
3766 
3767  for (unsigned P = 0; P < Pairs; ++P) {
3768  Pair[P].Loops.resize(MaxLevels + 1);
3769  Pair[P].GroupLoops.resize(MaxLevels + 1);
3770  Pair[P].Group.resize(Pairs);
3771  removeMatchingExtensions(&Pair[P]);
3772  Pair[P].Classification =
3773  classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3774  Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3775  Pair[P].Loops);
3776  Pair[P].GroupLoops = Pair[P].Loops;
3777  Pair[P].Group.set(P);
3778  }
3779 
3780  SmallBitVector Separable(Pairs);
3781  SmallBitVector Coupled(Pairs);
3782 
3783  // partition subscripts into separable and minimally-coupled groups
3784  for (unsigned SI = 0; SI < Pairs; ++SI) {
3785  if (Pair[SI].Classification == Subscript::NonLinear) {
3786  // ignore these, but collect loops for later
3787  collectCommonLoops(Pair[SI].Src,
3788  LI->getLoopFor(Src->getParent()),
3789  Pair[SI].Loops);
3790  collectCommonLoops(Pair[SI].Dst,
3791  LI->getLoopFor(Dst->getParent()),
3792  Pair[SI].Loops);
3793  Result.Consistent = false;
3794  }
3795  else if (Pair[SI].Classification == Subscript::ZIV)
3796  Separable.set(SI);
3797  else {
3798  // SIV, RDIV, or MIV, so check for coupled group
3799  bool Done = true;
3800  for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3801  SmallBitVector Intersection = Pair[SI].GroupLoops;
3802  Intersection &= Pair[SJ].GroupLoops;
3803  if (Intersection.any()) {
3804  // accumulate set of all the loops in group
3805  Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3806  // accumulate set of all subscripts in group
3807  Pair[SJ].Group |= Pair[SI].Group;
3808  Done = false;
3809  }
3810  }
3811  if (Done) {
3812  if (Pair[SI].Group.count() == 1)
3813  Separable.set(SI);
3814  else
3815  Coupled.set(SI);
3816  }
3817  }
3818  }
3819 
3820  Constraint NewConstraint;
3821  NewConstraint.setAny(SE);
3822 
3823  // test separable subscripts
3824  for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3825  switch (Pair[SI].Classification) {
3826  case Subscript::SIV: {
3827  unsigned Level;
3828  const SCEV *SplitIter = NULL;
3829  (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3830  Result, NewConstraint, SplitIter);
3831  if (Level == SplitLevel) {
3832  assert(SplitIter != NULL);
3833  return SplitIter;
3834  }
3835  break;
3836  }
3837  case Subscript::ZIV:
3838  case Subscript::RDIV:
3839  case Subscript::MIV:
3840  break;
3841  default:
3842  llvm_unreachable("subscript has unexpected classification");
3843  }
3844  }
3845 
3846  if (Coupled.count()) {
3847  // test coupled subscript groups
3848  SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3849  for (unsigned II = 0; II <= MaxLevels; ++II)
3850  Constraints[II].setAny(SE);
3851  for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3852  SmallBitVector Group(Pair[SI].Group);
3853  SmallBitVector Sivs(Pairs);
3854  SmallBitVector Mivs(Pairs);
3855  SmallBitVector ConstrainedLevels(MaxLevels + 1);
3856  for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3857  if (Pair[SJ].Classification == Subscript::SIV)
3858  Sivs.set(SJ);
3859  else
3860  Mivs.set(SJ);
3861  }
3862  while (Sivs.any()) {
3863  bool Changed = false;
3864  for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3865  // SJ is an SIV subscript that's part of the current coupled group
3866  unsigned Level;
3867  const SCEV *SplitIter = NULL;
3868  (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3869  Result, NewConstraint, SplitIter);
3870  if (Level == SplitLevel && SplitIter)
3871  return SplitIter;
3872  ConstrainedLevels.set(Level);
3873  if (intersectConstraints(&Constraints[Level], &NewConstraint))
3874  Changed = true;
3875  Sivs.reset(SJ);
3876  }
3877  if (Changed) {
3878  // propagate, possibly creating new SIVs and ZIVs
3879  for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3880  // SJ is an MIV subscript that's part of the current coupled group
3881  if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3882  Pair[SJ].Loops, Constraints, Result.Consistent)) {
3883  Pair[SJ].Classification =
3884  classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3885  Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3886  Pair[SJ].Loops);
3887  switch (Pair[SJ].Classification) {
3888  case Subscript::ZIV:
3889  Mivs.reset(SJ);
3890  break;
3891  case Subscript::SIV:
3892  Sivs.set(SJ);
3893  Mivs.reset(SJ);
3894  break;
3895  case Subscript::RDIV:
3896  case Subscript::MIV:
3897  break;
3898  default:
3899  llvm_unreachable("bad subscript classification");
3900  }
3901  }
3902  }
3903  }
3904  }
3905  }
3906  }
3907  llvm_unreachable("somehow reached end of routine");
3908  return NULL;
3909 }
NoWrapFlags getNoWrapFlags(NoWrapFlags Mask=NoWrapMask) const
Pointers differ, but pointees overlap.
bool isPeelFirst(unsigned Level) const
raw_ostream & errs()
APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const
Get the absolute value;.
Definition: APInt.h:1521
INITIALIZE_PASS_BEGIN(DependenceAnalysis,"da","Dependence Analysis", true, true) INITIALIZE_PASS_END(DependenceAnalysis
virtual bool isConfused() const
static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT)
bool isOne() const
const SCEV * getConstant(ConstantInt *V)
APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2)
Compute GCD of two APInt values.
Definition: APInt.cpp:804
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
virtual bool isPeelFirst(unsigned Level) const
bool isZero() const
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
FunctionPass * createDependenceAnalysisPass()
bool isScalar(unsigned Level) const
bool isKnownNonNegative(const SCEV *S)
static APInt ceilingOfQuotient(APInt A, APInt B)
static void dumpExampleDependence(raw_ostream &OS, Function *F, DependenceAnalysis *DA)
static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, APInt &Remainder)
Definition: APInt.cpp:1978
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
static Value * getPointerOperand(Instruction *I)
static void dumpSmallBitVector(SmallBitVector &BV)
bool isLoopInvariant(const SCEV *S, const Loop *L)
LoopT * getParentLoop() const
Definition: LoopInfo.h:96
F(f)
op_iterator idx_end()
Definition: Operator.h:379
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:423
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
const SCEV * getStart() const
bool isKnownNonPositive(const SCEV *S)
const SCEV * getDistance(unsigned Level) const
Type * getPointerOperandType() const
Definition: Operator.h:394
Value * GetUnderlyingObject(Value *V, const DataLayout *TD=0, unsigned MaxLookup=6)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
Hexagon Hardware Loops
inst_iterator inst_begin(Function *F)
Definition: InstIterator.h:128
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
#define llvm_unreachable(msg)
Definition: Use.h:60
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
static bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta, APInt &G, APInt &X, APInt &Y)
uint64_t getTypeSizeInBits(Type *Ty) const
int find_first() const
virtual bool isSplitable(unsigned Level) const
unsigned count() const
count - Returns the number of bits which are set.
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define G(x, y, z)
Definition: MD5.cpp:52
bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS)
bool mayReadFromMemory() const
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1100
uint64_t getTypeStoreSize(Type *Ty)
static cl::opt< bool > Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore, cl::desc("Try to delinearize array references."))
STATISTIC(TotalArrayPairs,"Array pairs tested")
static const SCEVConstant * getConstantPart(const SCEVMulExpr *Product)
Dependence Analysis
const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
void getAnalysisUsage(AnalysisUsage &) const
void print(raw_ostream &, const Module *=0) const
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
* if(!EatIfPresent(lltok::kw_thread_local)) return false
static AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA, const Value *A, const Value *B)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
Type * getType() const
Dependence * depends(Instruction *Src, Instruction *Dst, bool PossiblyLoopIndependent)
virtual AliasResult alias(const Location &LocA, const Location &LocB)
LLVM Constant Representation.
Definition: Constant.h:41
virtual bool isScalar(unsigned Level) const
const SCEV * getOperand(unsigned i) const
static bool isLoadOrStore(const Instruction *I)
const SCEV * getSMaxExpr(const SCEV *LHS, const SCEV *RHS)
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
unsigned getDirection(unsigned Level) const
int find_next(unsigned Prev) const
Value * getPointerOperand()
Definition: Operator.h:382
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1879
const SCEV * getSplitIteration(const Dependence *Dep, unsigned Level)
virtual const SCEV * getDistance(unsigned Level) const
bool isKnownNegative(const SCEV *S)
Instruction * getSrc() const
static APInt minAPInt(APInt A, APInt B)
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
const SCEV * getNoopOrZeroExtend(const SCEV *V, Type *Ty)
virtual unsigned getDirection(unsigned Level) const
op_iterator idx_begin()
Definition: Operator.h:377
virtual bool isConsistent() const
bool mayWriteToMemory() const
signed greater than
Definition: InstrTypes.h:678
APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const
Function for signed remainder operation.
Definition: APInt.cpp:1927
bool isPeelLast(unsigned Level) const
SmallBitVector & set()
const SCEV * getSMinExpr(const SCEV *LHS, const SCEV *RHS)
SmallBitVector & reset()
static bool isZero(Value *V, DataLayout *DL)
Definition: Lint.cpp:507
bool isKnownPositive(const SCEV *S)
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.cpp:547
Type * getType() const
Definition: Value.h:111
static APInt floorOfQuotient(APInt A, APInt B)
signed less than
Definition: InstrTypes.h:680
virtual unsigned getLevels() const
ConstantInt * getValue() const
const SCEV * delinearize(ScalarEvolution &SE, SmallVectorImpl< const SCEV * > &Subscripts, SmallVectorImpl< const SCEV * > &Sizes) const
virtual bool isPeelLast(unsigned Level) const
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
signed less or equal
Definition: InstrTypes.h:681
Class for arbitrary precision integers.
Definition: APInt.h:75
FullDependence(Instruction *Src, Instruction *Dst, bool LoopIndependent, unsigned Levels)
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
virtual bool isLoopIndependent() const
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
Instruction * getDst() const
void resize(unsigned N)
Definition: SmallVector.h:401
void dump(raw_ostream &OS) const
bool isKnownNonZero(const SCEV *S)
static bool isRemainderZero(const SCEVConstant *Dividend, const SCEVConstant *Divisor)
AnalysisUsage & addRequiredTransitive()
const Loop * getLoop() const
static APInt maxAPInt(APInt A, APInt B)
const SCEV * getBackedgeTakenCount(const Loop *L)
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:433
LLVM Value Representation.
Definition: Value.h:66
bool any() const
any - Returns true if any bit is set.
const SCEV * getSCEV(Value *V)
Dependence true
void dump() const
Definition: Pass.cpp:113
#define DEBUG(X)
Definition: Debug.h:97
const SCEV * getUDivExpr(const SCEV *LHS, const SCEV *RHS)
inst_iterator inst_end(Function *F)
Definition: InstIterator.h:129
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml","ocaml 3.10-compatible collector")
const SCEV * getNegativeSCEV(const SCEV *V)
static APInt getNullValue(unsigned numBits)
Get the '0' value.
Definition: APInt.h:457
const SCEV * getOperand() const
unsigned getLoopDepth() const
Definition: LoopInfo.h:88
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
const BasicBlock * getParent() const
Definition: Instruction.h:52
bool isSplitable(unsigned Level) const
signed greater or equal
Definition: InstrTypes.h:679