LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Execution.cpp
Go to the documentation of this file.
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the actual instruction interpreter.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/Statistic.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Instructions.h"
23 #include "llvm/Support/Debug.h"
27 #include <algorithm>
28 #include <cmath>
29 using namespace llvm;
30 
31 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
32 
33 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
34  cl::desc("make the interpreter print every volatile load and store"));
35 
36 //===----------------------------------------------------------------------===//
37 // Various Helper Functions
38 //===----------------------------------------------------------------------===//
39 
40 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
41  SF.Values[V] = Val;
42 }
43 
44 //===----------------------------------------------------------------------===//
45 // Binary Instruction Implementations
46 //===----------------------------------------------------------------------===//
47 
48 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
49  case Type::TY##TyID: \
50  Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
51  break
52 
53 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
54  GenericValue Src2, Type *Ty) {
55  switch (Ty->getTypeID()) {
57  IMPLEMENT_BINARY_OPERATOR(+, Double);
58  default:
59  dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
61  }
62 }
63 
64 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
65  GenericValue Src2, Type *Ty) {
66  switch (Ty->getTypeID()) {
68  IMPLEMENT_BINARY_OPERATOR(-, Double);
69  default:
70  dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
72  }
73 }
74 
75 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
76  GenericValue Src2, Type *Ty) {
77  switch (Ty->getTypeID()) {
79  IMPLEMENT_BINARY_OPERATOR(*, Double);
80  default:
81  dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
83  }
84 }
85 
86 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
87  GenericValue Src2, Type *Ty) {
88  switch (Ty->getTypeID()) {
90  IMPLEMENT_BINARY_OPERATOR(/, Double);
91  default:
92  dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
94  }
95 }
96 
97 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
98  GenericValue Src2, Type *Ty) {
99  switch (Ty->getTypeID()) {
100  case Type::FloatTyID:
101  Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
102  break;
103  case Type::DoubleTyID:
104  Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
105  break;
106  default:
107  dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
108  llvm_unreachable(0);
109  }
110 }
111 
112 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
113  case Type::IntegerTyID: \
114  Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
115  break;
116 
117 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
118  case Type::VectorTyID: { \
119  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
120  Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
121  for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
122  Dest.AggregateVal[_i].IntVal = APInt(1, \
123  Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
124  } break;
125 
126 // Handle pointers specially because they must be compared with only as much
127 // width as the host has. We _do not_ want to be comparing 64 bit values when
128 // running on a 32-bit target, otherwise the upper 32 bits might mess up
129 // comparisons if they contain garbage.
130 #define IMPLEMENT_POINTER_ICMP(OP) \
131  case Type::PointerTyID: \
132  Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
133  (void*)(intptr_t)Src2.PointerVal); \
134  break;
135 
137  Type *Ty) {
138  GenericValue Dest;
139  switch (Ty->getTypeID()) {
140  IMPLEMENT_INTEGER_ICMP(eq,Ty);
143  default:
144  dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
145  llvm_unreachable(0);
146  }
147  return Dest;
148 }
149 
151  Type *Ty) {
152  GenericValue Dest;
153  switch (Ty->getTypeID()) {
154  IMPLEMENT_INTEGER_ICMP(ne,Ty);
157  default:
158  dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
159  llvm_unreachable(0);
160  }
161  return Dest;
162 }
163 
165  Type *Ty) {
166  GenericValue Dest;
167  switch (Ty->getTypeID()) {
168  IMPLEMENT_INTEGER_ICMP(ult,Ty);
171  default:
172  dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
173  llvm_unreachable(0);
174  }
175  return Dest;
176 }
177 
179  Type *Ty) {
180  GenericValue Dest;
181  switch (Ty->getTypeID()) {
182  IMPLEMENT_INTEGER_ICMP(slt,Ty);
185  default:
186  dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
187  llvm_unreachable(0);
188  }
189  return Dest;
190 }
191 
193  Type *Ty) {
194  GenericValue Dest;
195  switch (Ty->getTypeID()) {
196  IMPLEMENT_INTEGER_ICMP(ugt,Ty);
199  default:
200  dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
201  llvm_unreachable(0);
202  }
203  return Dest;
204 }
205 
207  Type *Ty) {
208  GenericValue Dest;
209  switch (Ty->getTypeID()) {
210  IMPLEMENT_INTEGER_ICMP(sgt,Ty);
213  default:
214  dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
215  llvm_unreachable(0);
216  }
217  return Dest;
218 }
219 
221  Type *Ty) {
222  GenericValue Dest;
223  switch (Ty->getTypeID()) {
224  IMPLEMENT_INTEGER_ICMP(ule,Ty);
227  default:
228  dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
229  llvm_unreachable(0);
230  }
231  return Dest;
232 }
233 
235  Type *Ty) {
236  GenericValue Dest;
237  switch (Ty->getTypeID()) {
238  IMPLEMENT_INTEGER_ICMP(sle,Ty);
241  default:
242  dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
243  llvm_unreachable(0);
244  }
245  return Dest;
246 }
247 
249  Type *Ty) {
250  GenericValue Dest;
251  switch (Ty->getTypeID()) {
252  IMPLEMENT_INTEGER_ICMP(uge,Ty);
255  default:
256  dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
257  llvm_unreachable(0);
258  }
259  return Dest;
260 }
261 
263  Type *Ty) {
264  GenericValue Dest;
265  switch (Ty->getTypeID()) {
266  IMPLEMENT_INTEGER_ICMP(sge,Ty);
269  default:
270  dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
271  llvm_unreachable(0);
272  }
273  return Dest;
274 }
275 
277  ExecutionContext &SF = ECStack.back();
278  Type *Ty = I.getOperand(0)->getType();
279  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
280  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
281  GenericValue R; // Result
282 
283  switch (I.getPredicate()) {
284  case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
285  case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
286  case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
287  case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
288  case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
289  case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
290  case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
291  case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
292  case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
293  case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
294  default:
295  dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
296  llvm_unreachable(0);
297  }
298 
299  SetValue(&I, R, SF);
300 }
301 
302 #define IMPLEMENT_FCMP(OP, TY) \
303  case Type::TY##TyID: \
304  Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
305  break
306 
307 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
308  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
309  Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
310  for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
311  Dest.AggregateVal[_i].IntVal = APInt(1, \
312  Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
313  break;
314 
315 #define IMPLEMENT_VECTOR_FCMP(OP) \
316  case Type::VectorTyID: \
317  if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
318  IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
319  } else { \
320  IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
321  }
322 
324  Type *Ty) {
325  GenericValue Dest;
326  switch (Ty->getTypeID()) {
327  IMPLEMENT_FCMP(==, Float);
328  IMPLEMENT_FCMP(==, Double);
330  default:
331  dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
332  llvm_unreachable(0);
333  }
334  return Dest;
335 }
336 
337 #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
338  if (TY->isFloatTy()) { \
339  if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
340  Dest.IntVal = APInt(1,false); \
341  return Dest; \
342  } \
343  } else { \
344  if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
345  Dest.IntVal = APInt(1,false); \
346  return Dest; \
347  } \
348  }
349 
350 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
351  assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
352  Dest.AggregateVal.resize( X.AggregateVal.size() ); \
353  for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
354  if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
355  Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
356  Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
357  else { \
358  Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
359  } \
360  }
361 
362 #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
363  if (TY->isVectorTy()) { \
364  if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
365  MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
366  } else { \
367  MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
368  } \
369  } \
370 
371 
372 
374  Type *Ty)
375 {
376  GenericValue Dest;
377  // if input is scalar value and Src1 or Src2 is NaN return false
378  IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
379  // if vector input detect NaNs and fill mask
380  MASK_VECTOR_NANS(Ty, Src1, Src2, false)
381  GenericValue DestMask = Dest;
382  switch (Ty->getTypeID()) {
383  IMPLEMENT_FCMP(!=, Float);
384  IMPLEMENT_FCMP(!=, Double);
386  default:
387  dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
388  llvm_unreachable(0);
389  }
390  // in vector case mask out NaN elements
391  if (Ty->isVectorTy())
392  for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
393  if (DestMask.AggregateVal[_i].IntVal == false)
394  Dest.AggregateVal[_i].IntVal = APInt(1,false);
395 
396  return Dest;
397 }
398 
400  Type *Ty) {
401  GenericValue Dest;
402  switch (Ty->getTypeID()) {
403  IMPLEMENT_FCMP(<=, Float);
404  IMPLEMENT_FCMP(<=, Double);
406  default:
407  dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
408  llvm_unreachable(0);
409  }
410  return Dest;
411 }
412 
414  Type *Ty) {
415  GenericValue Dest;
416  switch (Ty->getTypeID()) {
417  IMPLEMENT_FCMP(>=, Float);
418  IMPLEMENT_FCMP(>=, Double);
420  default:
421  dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
422  llvm_unreachable(0);
423  }
424  return Dest;
425 }
426 
428  Type *Ty) {
429  GenericValue Dest;
430  switch (Ty->getTypeID()) {
431  IMPLEMENT_FCMP(<, Float);
432  IMPLEMENT_FCMP(<, Double);
434  default:
435  dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
436  llvm_unreachable(0);
437  }
438  return Dest;
439 }
440 
442  Type *Ty) {
443  GenericValue Dest;
444  switch (Ty->getTypeID()) {
445  IMPLEMENT_FCMP(>, Float);
446  IMPLEMENT_FCMP(>, Double);
448  default:
449  dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
450  llvm_unreachable(0);
451  }
452  return Dest;
453 }
454 
455 #define IMPLEMENT_UNORDERED(TY, X,Y) \
456  if (TY->isFloatTy()) { \
457  if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
458  Dest.IntVal = APInt(1,true); \
459  return Dest; \
460  } \
461  } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
462  Dest.IntVal = APInt(1,true); \
463  return Dest; \
464  }
465 
466 #define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC) \
467  if (TY->isVectorTy()) { \
468  GenericValue DestMask = Dest; \
469  Dest = _FUNC(Src1, Src2, Ty); \
470  for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) \
471  if (DestMask.AggregateVal[_i].IntVal == true) \
472  Dest.AggregateVal[_i].IntVal = APInt(1,true); \
473  return Dest; \
474  }
475 
477  Type *Ty) {
478  GenericValue Dest;
479  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
480  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
482  return executeFCMP_OEQ(Src1, Src2, Ty);
483 
484 }
485 
487  Type *Ty) {
488  GenericValue Dest;
489  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
490  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
492  return executeFCMP_ONE(Src1, Src2, Ty);
493 }
494 
496  Type *Ty) {
497  GenericValue Dest;
498  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
499  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
501  return executeFCMP_OLE(Src1, Src2, Ty);
502 }
503 
505  Type *Ty) {
506  GenericValue Dest;
507  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
508  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
510  return executeFCMP_OGE(Src1, Src2, Ty);
511 }
512 
514  Type *Ty) {
515  GenericValue Dest;
516  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
517  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
519  return executeFCMP_OLT(Src1, Src2, Ty);
520 }
521 
523  Type *Ty) {
524  GenericValue Dest;
525  IMPLEMENT_UNORDERED(Ty, Src1, Src2)
526  MASK_VECTOR_NANS(Ty, Src1, Src2, true)
528  return executeFCMP_OGT(Src1, Src2, Ty);
529 }
530 
532  Type *Ty) {
533  GenericValue Dest;
534  if(Ty->isVectorTy()) {
535  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
536  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
537  if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
538  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
539  Dest.AggregateVal[_i].IntVal = APInt(1,
540  ( (Src1.AggregateVal[_i].FloatVal ==
541  Src1.AggregateVal[_i].FloatVal) &&
542  (Src2.AggregateVal[_i].FloatVal ==
543  Src2.AggregateVal[_i].FloatVal)));
544  } else {
545  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
546  Dest.AggregateVal[_i].IntVal = APInt(1,
547  ( (Src1.AggregateVal[_i].DoubleVal ==
548  Src1.AggregateVal[_i].DoubleVal) &&
549  (Src2.AggregateVal[_i].DoubleVal ==
550  Src2.AggregateVal[_i].DoubleVal)));
551  }
552  } else if (Ty->isFloatTy())
553  Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
554  Src2.FloatVal == Src2.FloatVal));
555  else {
556  Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
557  Src2.DoubleVal == Src2.DoubleVal));
558  }
559  return Dest;
560 }
561 
563  Type *Ty) {
564  GenericValue Dest;
565  if(Ty->isVectorTy()) {
566  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
567  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
568  if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
569  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
570  Dest.AggregateVal[_i].IntVal = APInt(1,
571  ( (Src1.AggregateVal[_i].FloatVal !=
572  Src1.AggregateVal[_i].FloatVal) ||
573  (Src2.AggregateVal[_i].FloatVal !=
574  Src2.AggregateVal[_i].FloatVal)));
575  } else {
576  for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
577  Dest.AggregateVal[_i].IntVal = APInt(1,
578  ( (Src1.AggregateVal[_i].DoubleVal !=
579  Src1.AggregateVal[_i].DoubleVal) ||
580  (Src2.AggregateVal[_i].DoubleVal !=
581  Src2.AggregateVal[_i].DoubleVal)));
582  }
583  } else if (Ty->isFloatTy())
584  Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
585  Src2.FloatVal != Src2.FloatVal));
586  else {
587  Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
588  Src2.DoubleVal != Src2.DoubleVal));
589  }
590  return Dest;
591 }
592 
594  const Type *Ty, const bool val) {
595  GenericValue Dest;
596  if(Ty->isVectorTy()) {
597  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
598  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
599  for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
600  Dest.AggregateVal[_i].IntVal = APInt(1,val);
601  } else {
602  Dest.IntVal = APInt(1, val);
603  }
604 
605  return Dest;
606 }
607 
609  ExecutionContext &SF = ECStack.back();
610  Type *Ty = I.getOperand(0)->getType();
611  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
612  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
613  GenericValue R; // Result
614 
615  switch (I.getPredicate()) {
616  default:
617  dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
618  llvm_unreachable(0);
619  break;
620  case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
621  break;
622  case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
623  break;
624  case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
625  case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
626  case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
627  case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
628  case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
629  case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
630  case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
631  case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
632  case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
633  case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
634  case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
635  case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
636  case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
637  case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
638  }
639 
640  SetValue(&I, R, SF);
641 }
642 
643 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
644  GenericValue Src2, Type *Ty) {
645  GenericValue Result;
646  switch (predicate) {
647  case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
648  case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
649  case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
650  case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
651  case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
652  case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
653  case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
654  case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
655  case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
656  case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
657  case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
658  case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
659  case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
660  case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
661  case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
662  case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
663  case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
664  case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
665  case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
666  case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
667  case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
668  case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
669  case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
670  case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
671  case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
672  case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
673  default:
674  dbgs() << "Unhandled Cmp predicate\n";
675  llvm_unreachable(0);
676  }
677 }
678 
680  ExecutionContext &SF = ECStack.back();
681  Type *Ty = I.getOperand(0)->getType();
682  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
683  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
684  GenericValue R; // Result
685 
686  // First process vector operation
687  if (Ty->isVectorTy()) {
688  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
689  R.AggregateVal.resize(Src1.AggregateVal.size());
690 
691  // Macros to execute binary operation 'OP' over integer vectors
692 #define INTEGER_VECTOR_OPERATION(OP) \
693  for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
694  R.AggregateVal[i].IntVal = \
695  Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
696 
697  // Additional macros to execute binary operations udiv/sdiv/urem/srem since
698  // they have different notation.
699 #define INTEGER_VECTOR_FUNCTION(OP) \
700  for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
701  R.AggregateVal[i].IntVal = \
702  Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
703 
704  // Macros to execute binary operation 'OP' over floating point type TY
705  // (float or double) vectors
706 #define FLOAT_VECTOR_FUNCTION(OP, TY) \
707  for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
708  R.AggregateVal[i].TY = \
709  Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
710 
711  // Macros to choose appropriate TY: float or double and run operation
712  // execution
713 #define FLOAT_VECTOR_OP(OP) { \
714  if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
715  FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
716  else { \
717  if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
718  FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
719  else { \
720  dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
721  llvm_unreachable(0); \
722  } \
723  } \
724 }
725 
726  switch(I.getOpcode()){
727  default:
728  dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
729  llvm_unreachable(0);
730  break;
731  case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
732  case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
733  case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
734  case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
735  case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
736  case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
737  case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
741  case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
742  case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
743  case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
744  case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
745  case Instruction::FRem:
746  if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())
747  for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
748  R.AggregateVal[i].FloatVal =
749  fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
750  else {
751  if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())
752  for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
753  R.AggregateVal[i].DoubleVal =
754  fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
755  else {
756  dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
757  llvm_unreachable(0);
758  }
759  }
760  break;
761  }
762  } else {
763  switch (I.getOpcode()) {
764  default:
765  dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
766  llvm_unreachable(0);
767  break;
768  case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
769  case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
770  case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
771  case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
772  case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
773  case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
774  case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
775  case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
776  case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
777  case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
778  case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
779  case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
780  case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
781  case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
782  case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
783  }
784  }
785  SetValue(&I, R, SF);
786 }
787 
789  GenericValue Src3, const Type *Ty) {
790  GenericValue Dest;
791  if(Ty->isVectorTy()) {
792  assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
793  assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
794  Dest.AggregateVal.resize( Src1.AggregateVal.size() );
795  for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
796  Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
797  Src3.AggregateVal[i] : Src2.AggregateVal[i];
798  } else {
799  Dest = (Src1.IntVal == 0) ? Src3 : Src2;
800  }
801  return Dest;
802 }
803 
805  ExecutionContext &SF = ECStack.back();
806  const Type * Ty = I.getOperand(0)->getType();
807  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
808  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
809  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
810  GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
811  SetValue(&I, R, SF);
812 }
813 
814 //===----------------------------------------------------------------------===//
815 // Terminator Instruction Implementations
816 //===----------------------------------------------------------------------===//
817 
819  // runAtExitHandlers() assumes there are no stack frames, but
820  // if exit() was called, then it had a stack frame. Blow away
821  // the stack before interpreting atexit handlers.
822  ECStack.clear();
824  exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
825 }
826 
827 /// Pop the last stack frame off of ECStack and then copy the result
828 /// back into the result variable if we are not returning void. The
829 /// result variable may be the ExitValue, or the Value of the calling
830 /// CallInst if there was a previous stack frame. This method may
831 /// invalidate any ECStack iterators you have. This method also takes
832 /// care of switching to the normal destination BB, if we are returning
833 /// from an invoke.
834 ///
835 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
836  GenericValue Result) {
837  // Pop the current stack frame.
838  ECStack.pop_back();
839 
840  if (ECStack.empty()) { // Finished main. Put result into exit code...
841  if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
842  ExitValue = Result; // Capture the exit value of the program
843  } else {
844  memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
845  }
846  } else {
847  // If we have a previous stack frame, and we have a previous call,
848  // fill in the return value...
849  ExecutionContext &CallingSF = ECStack.back();
850  if (Instruction *I = CallingSF.Caller.getInstruction()) {
851  // Save result...
852  if (!CallingSF.Caller.getType()->isVoidTy())
853  SetValue(I, Result, CallingSF);
854  if (InvokeInst *II = dyn_cast<InvokeInst> (I))
855  SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
856  CallingSF.Caller = CallSite(); // We returned from the call...
857  }
858  }
859 }
860 
862  ExecutionContext &SF = ECStack.back();
863  Type *RetTy = Type::getVoidTy(I.getContext());
864  GenericValue Result;
865 
866  // Save away the return value... (if we are not 'ret void')
867  if (I.getNumOperands()) {
868  RetTy = I.getReturnValue()->getType();
869  Result = getOperandValue(I.getReturnValue(), SF);
870  }
871 
872  popStackAndReturnValueToCaller(RetTy, Result);
873 }
874 
876  report_fatal_error("Program executed an 'unreachable' instruction!");
877 }
878 
880  ExecutionContext &SF = ECStack.back();
881  BasicBlock *Dest;
882 
883  Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
884  if (!I.isUnconditional()) {
885  Value *Cond = I.getCondition();
886  if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
887  Dest = I.getSuccessor(1);
888  }
889  SwitchToNewBasicBlock(Dest, SF);
890 }
891 
893  ExecutionContext &SF = ECStack.back();
894  Value* Cond = I.getCondition();
895  Type *ElTy = Cond->getType();
896  GenericValue CondVal = getOperandValue(Cond, SF);
897 
898  // Check to see if any of the cases match...
899  BasicBlock *Dest = 0;
900  for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
901  GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF);
902  if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
903  Dest = cast<BasicBlock>(i.getCaseSuccessor());
904  break;
905  }
906  }
907  if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
908  SwitchToNewBasicBlock(Dest, SF);
909 }
910 
912  ExecutionContext &SF = ECStack.back();
913  void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
914  SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
915 }
916 
917 
918 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
919 // This function handles the actual updating of block and instruction iterators
920 // as well as execution of all of the PHI nodes in the destination block.
921 //
922 // This method does this because all of the PHI nodes must be executed
923 // atomically, reading their inputs before any of the results are updated. Not
924 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
925 // their inputs. If the input PHI node is updated before it is read, incorrect
926 // results can happen. Thus we use a two phase approach.
927 //
928 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
929  BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
930  SF.CurBB = Dest; // Update CurBB to branch destination
931  SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
932 
933  if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
934 
935  // Loop over all of the PHI nodes in the current block, reading their inputs.
936  std::vector<GenericValue> ResultValues;
937 
938  for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
939  // Search for the value corresponding to this previous bb...
940  int i = PN->getBasicBlockIndex(PrevBB);
941  assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
942  Value *IncomingValue = PN->getIncomingValue(i);
943 
944  // Save the incoming value for this PHI node...
945  ResultValues.push_back(getOperandValue(IncomingValue, SF));
946  }
947 
948  // Now loop over all of the PHI nodes setting their values...
949  SF.CurInst = SF.CurBB->begin();
950  for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
951  PHINode *PN = cast<PHINode>(SF.CurInst);
952  SetValue(PN, ResultValues[i], SF);
953  }
954 }
955 
956 //===----------------------------------------------------------------------===//
957 // Memory Instruction Implementations
958 //===----------------------------------------------------------------------===//
959 
961  ExecutionContext &SF = ECStack.back();
962 
963  Type *Ty = I.getType()->getElementType(); // Type to be allocated
964 
965  // Get the number of elements being allocated by the array...
966  unsigned NumElements =
967  getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
968 
969  unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
970 
971  // Avoid malloc-ing zero bytes, use max()...
972  unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
973 
974  // Allocate enough memory to hold the type...
975  void *Memory = malloc(MemToAlloc);
976 
977  DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
978  << NumElements << " (Total: " << MemToAlloc << ") at "
979  << uintptr_t(Memory) << '\n');
980 
981  GenericValue Result = PTOGV(Memory);
982  assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
983  SetValue(&I, Result, SF);
984 
985  if (I.getOpcode() == Instruction::Alloca)
986  ECStack.back().Allocas.add(Memory);
987 }
988 
989 // getElementOffset - The workhorse for getelementptr.
990 //
991 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
993  ExecutionContext &SF) {
994  assert(Ptr->getType()->isPointerTy() &&
995  "Cannot getElementOffset of a nonpointer type!");
996 
997  uint64_t Total = 0;
998 
999  for (; I != E; ++I) {
1000  if (StructType *STy = dyn_cast<StructType>(*I)) {
1001  const StructLayout *SLO = TD.getStructLayout(STy);
1002 
1003  const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1004  unsigned Index = unsigned(CPU->getZExtValue());
1005 
1006  Total += SLO->getElementOffset(Index);
1007  } else {
1008  SequentialType *ST = cast<SequentialType>(*I);
1009  // Get the index number for the array... which must be long type...
1010  GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1011 
1012  int64_t Idx;
1013  unsigned BitWidth =
1014  cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1015  if (BitWidth == 32)
1016  Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1017  else {
1018  assert(BitWidth == 64 && "Invalid index type for getelementptr");
1019  Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1020  }
1021  Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
1022  }
1023  }
1024 
1025  GenericValue Result;
1026  Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1027  DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1028  return Result;
1029 }
1030 
1032  ExecutionContext &SF = ECStack.back();
1033  SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1034  gep_type_begin(I), gep_type_end(I), SF), SF);
1035 }
1036 
1038  ExecutionContext &SF = ECStack.back();
1039  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1040  GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1041  GenericValue Result;
1042  LoadValueFromMemory(Result, Ptr, I.getType());
1043  SetValue(&I, Result, SF);
1044  if (I.isVolatile() && PrintVolatile)
1045  dbgs() << "Volatile load " << I;
1046 }
1047 
1049  ExecutionContext &SF = ECStack.back();
1050  GenericValue Val = getOperandValue(I.getOperand(0), SF);
1051  GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1052  StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1053  I.getOperand(0)->getType());
1054  if (I.isVolatile() && PrintVolatile)
1055  dbgs() << "Volatile store: " << I;
1056 }
1057 
1058 //===----------------------------------------------------------------------===//
1059 // Miscellaneous Instruction Implementations
1060 //===----------------------------------------------------------------------===//
1061 
1063  ExecutionContext &SF = ECStack.back();
1064 
1065  // Check to see if this is an intrinsic function call...
1066  Function *F = CS.getCalledFunction();
1067  if (F && F->isDeclaration())
1068  switch (F->getIntrinsicID()) {
1070  break;
1071  case Intrinsic::vastart: { // va_start
1072  GenericValue ArgIndex;
1073  ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1074  ArgIndex.UIntPairVal.second = 0;
1075  SetValue(CS.getInstruction(), ArgIndex, SF);
1076  return;
1077  }
1078  case Intrinsic::vaend: // va_end is a noop for the interpreter
1079  return;
1080  case Intrinsic::vacopy: // va_copy: dest = src
1081  SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
1082  return;
1083  default:
1084  // If it is an unknown intrinsic function, use the intrinsic lowering
1085  // class to transform it into hopefully tasty LLVM code.
1086  //
1088  BasicBlock *Parent = CS.getInstruction()->getParent();
1089  bool atBegin(Parent->begin() == me);
1090  if (!atBegin)
1091  --me;
1092  IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
1093 
1094  // Restore the CurInst pointer to the first instruction newly inserted, if
1095  // any.
1096  if (atBegin) {
1097  SF.CurInst = Parent->begin();
1098  } else {
1099  SF.CurInst = me;
1100  ++SF.CurInst;
1101  }
1102  return;
1103  }
1104 
1105 
1106  SF.Caller = CS;
1107  std::vector<GenericValue> ArgVals;
1108  const unsigned NumArgs = SF.Caller.arg_size();
1109  ArgVals.reserve(NumArgs);
1110  uint16_t pNum = 1;
1111  for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
1112  e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
1113  Value *V = *i;
1114  ArgVals.push_back(getOperandValue(V, SF));
1115  }
1116 
1117  // To handle indirect calls, we must get the pointer value from the argument
1118  // and treat it as a function pointer.
1119  GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
1120  callFunction((Function*)GVTOP(SRC), ArgVals);
1121 }
1122 
1123 // auxilary function for shift operations
1124 static unsigned getShiftAmount(uint64_t orgShiftAmount,
1125  llvm::APInt valueToShift) {
1126  unsigned valueWidth = valueToShift.getBitWidth();
1127  if (orgShiftAmount < (uint64_t)valueWidth)
1128  return orgShiftAmount;
1129  // according to the llvm documentation, if orgShiftAmount > valueWidth,
1130  // the result is undfeined. but we do shift by this rule:
1131  return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1132 }
1133 
1134 
1136  ExecutionContext &SF = ECStack.back();
1137  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1138  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1139  GenericValue Dest;
1140  const Type *Ty = I.getType();
1141 
1142  if (Ty->isVectorTy()) {
1143  uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1144  assert(src1Size == Src2.AggregateVal.size());
1145  for (unsigned i = 0; i < src1Size; i++) {
1146  GenericValue Result;
1147  uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1148  llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1149  Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1150  Dest.AggregateVal.push_back(Result);
1151  }
1152  } else {
1153  // scalar
1154  uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1155  llvm::APInt valueToShift = Src1.IntVal;
1156  Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1157  }
1158 
1159  SetValue(&I, Dest, SF);
1160 }
1161 
1163  ExecutionContext &SF = ECStack.back();
1164  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1165  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1166  GenericValue Dest;
1167  const Type *Ty = I.getType();
1168 
1169  if (Ty->isVectorTy()) {
1170  uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1171  assert(src1Size == Src2.AggregateVal.size());
1172  for (unsigned i = 0; i < src1Size; i++) {
1173  GenericValue Result;
1174  uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1175  llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1176  Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1177  Dest.AggregateVal.push_back(Result);
1178  }
1179  } else {
1180  // scalar
1181  uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1182  llvm::APInt valueToShift = Src1.IntVal;
1183  Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1184  }
1185 
1186  SetValue(&I, Dest, SF);
1187 }
1188 
1190  ExecutionContext &SF = ECStack.back();
1191  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1192  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1193  GenericValue Dest;
1194  const Type *Ty = I.getType();
1195 
1196  if (Ty->isVectorTy()) {
1197  size_t src1Size = Src1.AggregateVal.size();
1198  assert(src1Size == Src2.AggregateVal.size());
1199  for (unsigned i = 0; i < src1Size; i++) {
1200  GenericValue Result;
1201  uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1202  llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1203  Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1204  Dest.AggregateVal.push_back(Result);
1205  }
1206  } else {
1207  // scalar
1208  uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1209  llvm::APInt valueToShift = Src1.IntVal;
1210  Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1211  }
1212 
1213  SetValue(&I, Dest, SF);
1214 }
1215 
1216 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1217  ExecutionContext &SF) {
1218  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1219  Type *SrcTy = SrcVal->getType();
1220  if (SrcTy->isVectorTy()) {
1221  Type *DstVecTy = DstTy->getScalarType();
1222  unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1223  unsigned NumElts = Src.AggregateVal.size();
1224  // the sizes of src and dst vectors must be equal
1225  Dest.AggregateVal.resize(NumElts);
1226  for (unsigned i = 0; i < NumElts; i++)
1227  Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1228  } else {
1229  IntegerType *DITy = cast<IntegerType>(DstTy);
1230  unsigned DBitWidth = DITy->getBitWidth();
1231  Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1232  }
1233  return Dest;
1234 }
1235 
1236 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1237  ExecutionContext &SF) {
1238  const Type *SrcTy = SrcVal->getType();
1239  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1240  if (SrcTy->isVectorTy()) {
1241  const Type *DstVecTy = DstTy->getScalarType();
1242  unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1243  unsigned size = Src.AggregateVal.size();
1244  // the sizes of src and dst vectors must be equal.
1245  Dest.AggregateVal.resize(size);
1246  for (unsigned i = 0; i < size; i++)
1247  Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1248  } else {
1249  const IntegerType *DITy = cast<IntegerType>(DstTy);
1250  unsigned DBitWidth = DITy->getBitWidth();
1251  Dest.IntVal = Src.IntVal.sext(DBitWidth);
1252  }
1253  return Dest;
1254 }
1255 
1256 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1257  ExecutionContext &SF) {
1258  const Type *SrcTy = SrcVal->getType();
1259  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1260  if (SrcTy->isVectorTy()) {
1261  const Type *DstVecTy = DstTy->getScalarType();
1262  unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1263 
1264  unsigned size = Src.AggregateVal.size();
1265  // the sizes of src and dst vectors must be equal.
1266  Dest.AggregateVal.resize(size);
1267  for (unsigned i = 0; i < size; i++)
1268  Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1269  } else {
1270  const IntegerType *DITy = cast<IntegerType>(DstTy);
1271  unsigned DBitWidth = DITy->getBitWidth();
1272  Dest.IntVal = Src.IntVal.zext(DBitWidth);
1273  }
1274  return Dest;
1275 }
1276 
1277 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1278  ExecutionContext &SF) {
1279  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1280 
1281  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1282  assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1283  DstTy->getScalarType()->isFloatTy() &&
1284  "Invalid FPTrunc instruction");
1285 
1286  unsigned size = Src.AggregateVal.size();
1287  // the sizes of src and dst vectors must be equal.
1288  Dest.AggregateVal.resize(size);
1289  for (unsigned i = 0; i < size; i++)
1290  Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1291  } else {
1292  assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1293  "Invalid FPTrunc instruction");
1294  Dest.FloatVal = (float)Src.DoubleVal;
1295  }
1296 
1297  return Dest;
1298 }
1299 
1300 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1301  ExecutionContext &SF) {
1302  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1303 
1304  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1305  assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1306  DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1307 
1308  unsigned size = Src.AggregateVal.size();
1309  // the sizes of src and dst vectors must be equal.
1310  Dest.AggregateVal.resize(size);
1311  for (unsigned i = 0; i < size; i++)
1312  Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1313  } else {
1314  assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1315  "Invalid FPExt instruction");
1316  Dest.DoubleVal = (double)Src.FloatVal;
1317  }
1318 
1319  return Dest;
1320 }
1321 
1322 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1323  ExecutionContext &SF) {
1324  Type *SrcTy = SrcVal->getType();
1325  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1326 
1327  if (SrcTy->getTypeID() == Type::VectorTyID) {
1328  const Type *DstVecTy = DstTy->getScalarType();
1329  const Type *SrcVecTy = SrcTy->getScalarType();
1330  uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1331  unsigned size = Src.AggregateVal.size();
1332  // the sizes of src and dst vectors must be equal.
1333  Dest.AggregateVal.resize(size);
1334 
1335  if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1336  assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1337  for (unsigned i = 0; i < size; i++)
1338  Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1339  Src.AggregateVal[i].FloatVal, DBitWidth);
1340  } else {
1341  for (unsigned i = 0; i < size; i++)
1342  Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1343  Src.AggregateVal[i].DoubleVal, DBitWidth);
1344  }
1345  } else {
1346  // scalar
1347  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1348  assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1349 
1350  if (SrcTy->getTypeID() == Type::FloatTyID)
1351  Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1352  else {
1353  Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1354  }
1355  }
1356 
1357  return Dest;
1358 }
1359 
1360 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1361  ExecutionContext &SF) {
1362  Type *SrcTy = SrcVal->getType();
1363  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1364 
1365  if (SrcTy->getTypeID() == Type::VectorTyID) {
1366  const Type *DstVecTy = DstTy->getScalarType();
1367  const Type *SrcVecTy = SrcTy->getScalarType();
1368  uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1369  unsigned size = Src.AggregateVal.size();
1370  // the sizes of src and dst vectors must be equal
1371  Dest.AggregateVal.resize(size);
1372 
1373  if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1374  assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1375  for (unsigned i = 0; i < size; i++)
1376  Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1377  Src.AggregateVal[i].FloatVal, DBitWidth);
1378  } else {
1379  for (unsigned i = 0; i < size; i++)
1380  Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1381  Src.AggregateVal[i].DoubleVal, DBitWidth);
1382  }
1383  } else {
1384  // scalar
1385  unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1386  assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1387 
1388  if (SrcTy->getTypeID() == Type::FloatTyID)
1389  Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1390  else {
1391  Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1392  }
1393  }
1394  return Dest;
1395 }
1396 
1397 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1398  ExecutionContext &SF) {
1399  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1400 
1401  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1402  const Type *DstVecTy = DstTy->getScalarType();
1403  unsigned size = Src.AggregateVal.size();
1404  // the sizes of src and dst vectors must be equal
1405  Dest.AggregateVal.resize(size);
1406 
1407  if (DstVecTy->getTypeID() == Type::FloatTyID) {
1408  assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1409  for (unsigned i = 0; i < size; i++)
1410  Dest.AggregateVal[i].FloatVal =
1412  } else {
1413  for (unsigned i = 0; i < size; i++)
1414  Dest.AggregateVal[i].DoubleVal =
1416  }
1417  } else {
1418  // scalar
1419  assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1420  if (DstTy->getTypeID() == Type::FloatTyID)
1422  else {
1424  }
1425  }
1426  return Dest;
1427 }
1428 
1429 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1430  ExecutionContext &SF) {
1431  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1432 
1433  if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
1434  const Type *DstVecTy = DstTy->getScalarType();
1435  unsigned size = Src.AggregateVal.size();
1436  // the sizes of src and dst vectors must be equal
1437  Dest.AggregateVal.resize(size);
1438 
1439  if (DstVecTy->getTypeID() == Type::FloatTyID) {
1440  assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1441  for (unsigned i = 0; i < size; i++)
1442  Dest.AggregateVal[i].FloatVal =
1444  } else {
1445  for (unsigned i = 0; i < size; i++)
1446  Dest.AggregateVal[i].DoubleVal =
1448  }
1449  } else {
1450  // scalar
1451  assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1452 
1453  if (DstTy->getTypeID() == Type::FloatTyID)
1455  else {
1457  }
1458  }
1459 
1460  return Dest;
1461 }
1462 
1463 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1464  ExecutionContext &SF) {
1465  uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1466  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1467  assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1468 
1469  Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1470  return Dest;
1471 }
1472 
1473 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1474  ExecutionContext &SF) {
1475  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1476  assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1477 
1478  uint32_t PtrSize = TD.getPointerSizeInBits();
1479  if (PtrSize != Src.IntVal.getBitWidth())
1480  Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1481 
1483  return Dest;
1484 }
1485 
1486 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1487  ExecutionContext &SF) {
1488 
1489  // This instruction supports bitwise conversion of vectors to integers and
1490  // to vectors of other types (as long as they have the same size)
1491  Type *SrcTy = SrcVal->getType();
1492  GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1493 
1494  if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1495  (DstTy->getTypeID() == Type::VectorTyID)) {
1496  // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1497  // scalar src bitcast to vector dst
1498  bool isLittleEndian = TD.isLittleEndian();
1499  GenericValue TempDst, TempSrc, SrcVec;
1500  const Type *SrcElemTy;
1501  const Type *DstElemTy;
1502  unsigned SrcBitSize;
1503  unsigned DstBitSize;
1504  unsigned SrcNum;
1505  unsigned DstNum;
1506 
1507  if (SrcTy->getTypeID() == Type::VectorTyID) {
1508  SrcElemTy = SrcTy->getScalarType();
1509  SrcBitSize = SrcTy->getScalarSizeInBits();
1510  SrcNum = Src.AggregateVal.size();
1511  SrcVec = Src;
1512  } else {
1513  // if src is scalar value, make it vector <1 x type>
1514  SrcElemTy = SrcTy;
1515  SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1516  SrcNum = 1;
1517  SrcVec.AggregateVal.push_back(Src);
1518  }
1519 
1520  if (DstTy->getTypeID() == Type::VectorTyID) {
1521  DstElemTy = DstTy->getScalarType();
1522  DstBitSize = DstTy->getScalarSizeInBits();
1523  DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1524  } else {
1525  DstElemTy = DstTy;
1526  DstBitSize = DstTy->getPrimitiveSizeInBits();
1527  DstNum = 1;
1528  }
1529 
1530  if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1531  llvm_unreachable("Invalid BitCast");
1532 
1533  // If src is floating point, cast to integer first.
1534  TempSrc.AggregateVal.resize(SrcNum);
1535  if (SrcElemTy->isFloatTy()) {
1536  for (unsigned i = 0; i < SrcNum; i++)
1537  TempSrc.AggregateVal[i].IntVal =
1538  APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1539 
1540  } else if (SrcElemTy->isDoubleTy()) {
1541  for (unsigned i = 0; i < SrcNum; i++)
1542  TempSrc.AggregateVal[i].IntVal =
1543  APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1544  } else if (SrcElemTy->isIntegerTy()) {
1545  for (unsigned i = 0; i < SrcNum; i++)
1546  TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1547  } else {
1548  // Pointers are not allowed as the element type of vector.
1549  llvm_unreachable("Invalid Bitcast");
1550  }
1551 
1552  // now TempSrc is integer type vector
1553  if (DstNum < SrcNum) {
1554  // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1555  unsigned Ratio = SrcNum / DstNum;
1556  unsigned SrcElt = 0;
1557  for (unsigned i = 0; i < DstNum; i++) {
1558  GenericValue Elt;
1559  Elt.IntVal = 0;
1560  Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1561  unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1562  for (unsigned j = 0; j < Ratio; j++) {
1563  APInt Tmp;
1564  Tmp = Tmp.zext(SrcBitSize);
1565  Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1566  Tmp = Tmp.zext(DstBitSize);
1567  Tmp = Tmp.shl(ShiftAmt);
1568  ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1569  Elt.IntVal |= Tmp;
1570  }
1571  TempDst.AggregateVal.push_back(Elt);
1572  }
1573  } else {
1574  // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1575  unsigned Ratio = DstNum / SrcNum;
1576  for (unsigned i = 0; i < SrcNum; i++) {
1577  unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1578  for (unsigned j = 0; j < Ratio; j++) {
1579  GenericValue Elt;
1580  Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1581  Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1582  Elt.IntVal = Elt.IntVal.lshr(ShiftAmt);
1583  // it could be DstBitSize == SrcBitSize, so check it
1584  if (DstBitSize < SrcBitSize)
1585  Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1586  ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1587  TempDst.AggregateVal.push_back(Elt);
1588  }
1589  }
1590  }
1591 
1592  // convert result from integer to specified type
1593  if (DstTy->getTypeID() == Type::VectorTyID) {
1594  if (DstElemTy->isDoubleTy()) {
1595  Dest.AggregateVal.resize(DstNum);
1596  for (unsigned i = 0; i < DstNum; i++)
1597  Dest.AggregateVal[i].DoubleVal =
1598  TempDst.AggregateVal[i].IntVal.bitsToDouble();
1599  } else if (DstElemTy->isFloatTy()) {
1600  Dest.AggregateVal.resize(DstNum);
1601  for (unsigned i = 0; i < DstNum; i++)
1602  Dest.AggregateVal[i].FloatVal =
1603  TempDst.AggregateVal[i].IntVal.bitsToFloat();
1604  } else {
1605  Dest = TempDst;
1606  }
1607  } else {
1608  if (DstElemTy->isDoubleTy())
1609  Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1610  else if (DstElemTy->isFloatTy()) {
1611  Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1612  } else {
1613  Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1614  }
1615  }
1616  } else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
1617  // (DstTy->getTypeID() == Type::VectorTyID))
1618 
1619  // scalar src bitcast to scalar dst
1620  if (DstTy->isPointerTy()) {
1621  assert(SrcTy->isPointerTy() && "Invalid BitCast");
1622  Dest.PointerVal = Src.PointerVal;
1623  } else if (DstTy->isIntegerTy()) {
1624  if (SrcTy->isFloatTy())
1625  Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1626  else if (SrcTy->isDoubleTy()) {
1627  Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1628  } else if (SrcTy->isIntegerTy()) {
1629  Dest.IntVal = Src.IntVal;
1630  } else {
1631  llvm_unreachable("Invalid BitCast");
1632  }
1633  } else if (DstTy->isFloatTy()) {
1634  if (SrcTy->isIntegerTy())
1635  Dest.FloatVal = Src.IntVal.bitsToFloat();
1636  else {
1637  Dest.FloatVal = Src.FloatVal;
1638  }
1639  } else if (DstTy->isDoubleTy()) {
1640  if (SrcTy->isIntegerTy())
1641  Dest.DoubleVal = Src.IntVal.bitsToDouble();
1642  else {
1643  Dest.DoubleVal = Src.DoubleVal;
1644  }
1645  } else {
1646  llvm_unreachable("Invalid Bitcast");
1647  }
1648  }
1649 
1650  return Dest;
1651 }
1652 
1654  ExecutionContext &SF = ECStack.back();
1655  SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1656 }
1657 
1659  ExecutionContext &SF = ECStack.back();
1660  SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1661 }
1662 
1664  ExecutionContext &SF = ECStack.back();
1665  SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1666 }
1667 
1669  ExecutionContext &SF = ECStack.back();
1670  SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1671 }
1672 
1674  ExecutionContext &SF = ECStack.back();
1675  SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1676 }
1677 
1679  ExecutionContext &SF = ECStack.back();
1680  SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1681 }
1682 
1684  ExecutionContext &SF = ECStack.back();
1685  SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1686 }
1687 
1689  ExecutionContext &SF = ECStack.back();
1690  SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1691 }
1692 
1694  ExecutionContext &SF = ECStack.back();
1695  SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1696 }
1697 
1699  ExecutionContext &SF = ECStack.back();
1700  SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1701 }
1702 
1704  ExecutionContext &SF = ECStack.back();
1705  SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1706 }
1707 
1709  ExecutionContext &SF = ECStack.back();
1710  SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1711 }
1712 
1713 #define IMPLEMENT_VAARG(TY) \
1714  case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1715 
1717  ExecutionContext &SF = ECStack.back();
1718 
1719  // Get the incoming valist parameter. LLI treats the valist as a
1720  // (ec-stack-depth var-arg-index) pair.
1721  GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1722  GenericValue Dest;
1723  GenericValue Src = ECStack[VAList.UIntPairVal.first]
1724  .VarArgs[VAList.UIntPairVal.second];
1725  Type *Ty = I.getType();
1726  switch (Ty->getTypeID()) {
1727  case Type::IntegerTyID:
1728  Dest.IntVal = Src.IntVal;
1729  break;
1730  IMPLEMENT_VAARG(Pointer);
1732  IMPLEMENT_VAARG(Double);
1733  default:
1734  dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1735  llvm_unreachable(0);
1736  }
1737 
1738  // Set the Value of this Instruction.
1739  SetValue(&I, Dest, SF);
1740 
1741  // Move the pointer to the next vararg.
1742  ++VAList.UIntPairVal.second;
1743 }
1744 
1746  ExecutionContext &SF = ECStack.back();
1747  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1748  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1749  GenericValue Dest;
1750 
1751  Type *Ty = I.getType();
1752  const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1753 
1754  if(Src1.AggregateVal.size() > indx) {
1755  switch (Ty->getTypeID()) {
1756  default:
1757  dbgs() << "Unhandled destination type for extractelement instruction: "
1758  << *Ty << "\n";
1759  llvm_unreachable(0);
1760  break;
1761  case Type::IntegerTyID:
1762  Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1763  break;
1764  case Type::FloatTyID:
1765  Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1766  break;
1767  case Type::DoubleTyID:
1768  Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1769  break;
1770  }
1771  } else {
1772  dbgs() << "Invalid index in extractelement instruction\n";
1773  }
1774 
1775  SetValue(&I, Dest, SF);
1776 }
1777 
1779  ExecutionContext &SF = ECStack.back();
1780  Type *Ty = I.getType();
1781 
1782  if(!(Ty->isVectorTy()) )
1783  llvm_unreachable("Unhandled dest type for insertelement instruction");
1784 
1785  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1786  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1787  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1788  GenericValue Dest;
1789 
1790  Type *TyContained = Ty->getContainedType(0);
1791 
1792  const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1793  Dest.AggregateVal = Src1.AggregateVal;
1794 
1795  if(Src1.AggregateVal.size() <= indx)
1796  llvm_unreachable("Invalid index in insertelement instruction");
1797  switch (TyContained->getTypeID()) {
1798  default:
1799  llvm_unreachable("Unhandled dest type for insertelement instruction");
1800  case Type::IntegerTyID:
1801  Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1802  break;
1803  case Type::FloatTyID:
1804  Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1805  break;
1806  case Type::DoubleTyID:
1807  Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1808  break;
1809  }
1810  SetValue(&I, Dest, SF);
1811 }
1812 
1814  ExecutionContext &SF = ECStack.back();
1815 
1816  Type *Ty = I.getType();
1817  if(!(Ty->isVectorTy()))
1818  llvm_unreachable("Unhandled dest type for shufflevector instruction");
1819 
1820  GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1821  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1822  GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1823  GenericValue Dest;
1824 
1825  // There is no need to check types of src1 and src2, because the compiled
1826  // bytecode can't contain different types for src1 and src2 for a
1827  // shufflevector instruction.
1828 
1829  Type *TyContained = Ty->getContainedType(0);
1830  unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1831  unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1832  unsigned src3Size = (unsigned)Src3.AggregateVal.size();
1833 
1834  Dest.AggregateVal.resize(src3Size);
1835 
1836  switch (TyContained->getTypeID()) {
1837  default:
1838  llvm_unreachable("Unhandled dest type for insertelement instruction");
1839  break;
1840  case Type::IntegerTyID:
1841  for( unsigned i=0; i<src3Size; i++) {
1842  unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1843  if(j < src1Size)
1844  Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1845  else if(j < src1Size + src2Size)
1846  Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1847  else
1848  // The selector may not be greater than sum of lengths of first and
1849  // second operands and llasm should not allow situation like
1850  // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1851  // <2 x i32> < i32 0, i32 5 >,
1852  // where i32 5 is invalid, but let it be additional check here:
1853  llvm_unreachable("Invalid mask in shufflevector instruction");
1854  }
1855  break;
1856  case Type::FloatTyID:
1857  for( unsigned i=0; i<src3Size; i++) {
1858  unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1859  if(j < src1Size)
1860  Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1861  else if(j < src1Size + src2Size)
1862  Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1863  else
1864  llvm_unreachable("Invalid mask in shufflevector instruction");
1865  }
1866  break;
1867  case Type::DoubleTyID:
1868  for( unsigned i=0; i<src3Size; i++) {
1869  unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
1870  if(j < src1Size)
1871  Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1872  else if(j < src1Size + src2Size)
1873  Dest.AggregateVal[i].DoubleVal =
1874  Src2.AggregateVal[j-src1Size].DoubleVal;
1875  else
1876  llvm_unreachable("Invalid mask in shufflevector instruction");
1877  }
1878  break;
1879  }
1880  SetValue(&I, Dest, SF);
1881 }
1882 
1884  ExecutionContext &SF = ECStack.back();
1885  Value *Agg = I.getAggregateOperand();
1886  GenericValue Dest;
1887  GenericValue Src = getOperandValue(Agg, SF);
1888 
1890  unsigned Num = I.getNumIndices();
1891  GenericValue *pSrc = &Src;
1892 
1893  for (unsigned i = 0 ; i < Num; ++i) {
1894  pSrc = &pSrc->AggregateVal[*IdxBegin];
1895  ++IdxBegin;
1896  }
1897 
1898  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1899  switch (IndexedType->getTypeID()) {
1900  default:
1901  llvm_unreachable("Unhandled dest type for extractelement instruction");
1902  break;
1903  case Type::IntegerTyID:
1904  Dest.IntVal = pSrc->IntVal;
1905  break;
1906  case Type::FloatTyID:
1907  Dest.FloatVal = pSrc->FloatVal;
1908  break;
1909  case Type::DoubleTyID:
1910  Dest.DoubleVal = pSrc->DoubleVal;
1911  break;
1912  case Type::ArrayTyID:
1913  case Type::StructTyID:
1914  case Type::VectorTyID:
1915  Dest.AggregateVal = pSrc->AggregateVal;
1916  break;
1917  case Type::PointerTyID:
1918  Dest.PointerVal = pSrc->PointerVal;
1919  break;
1920  }
1921 
1922  SetValue(&I, Dest, SF);
1923 }
1924 
1926 
1927  ExecutionContext &SF = ECStack.back();
1928  Value *Agg = I.getAggregateOperand();
1929 
1930  GenericValue Src1 = getOperandValue(Agg, SF);
1931  GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1932  GenericValue Dest = Src1; // Dest is a slightly changed Src1
1933 
1935  unsigned Num = I.getNumIndices();
1936 
1937  GenericValue *pDest = &Dest;
1938  for (unsigned i = 0 ; i < Num; ++i) {
1939  pDest = &pDest->AggregateVal[*IdxBegin];
1940  ++IdxBegin;
1941  }
1942  // pDest points to the target value in the Dest now
1943 
1944  Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1945 
1946  switch (IndexedType->getTypeID()) {
1947  default:
1948  llvm_unreachable("Unhandled dest type for insertelement instruction");
1949  break;
1950  case Type::IntegerTyID:
1951  pDest->IntVal = Src2.IntVal;
1952  break;
1953  case Type::FloatTyID:
1954  pDest->FloatVal = Src2.FloatVal;
1955  break;
1956  case Type::DoubleTyID:
1957  pDest->DoubleVal = Src2.DoubleVal;
1958  break;
1959  case Type::ArrayTyID:
1960  case Type::StructTyID:
1961  case Type::VectorTyID:
1962  pDest->AggregateVal = Src2.AggregateVal;
1963  break;
1964  case Type::PointerTyID:
1965  pDest->PointerVal = Src2.PointerVal;
1966  break;
1967  }
1968 
1969  SetValue(&I, Dest, SF);
1970 }
1971 
1972 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1973  ExecutionContext &SF) {
1974  switch (CE->getOpcode()) {
1975  case Instruction::Trunc:
1976  return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1977  case Instruction::ZExt:
1978  return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1979  case Instruction::SExt:
1980  return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1981  case Instruction::FPTrunc:
1982  return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1983  case Instruction::FPExt:
1984  return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1985  case Instruction::UIToFP:
1986  return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1987  case Instruction::SIToFP:
1988  return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1989  case Instruction::FPToUI:
1990  return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1991  case Instruction::FPToSI:
1992  return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1993  case Instruction::PtrToInt:
1994  return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1995  case Instruction::IntToPtr:
1996  return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1997  case Instruction::BitCast:
1998  return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1999  case Instruction::GetElementPtr:
2000  return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
2001  gep_type_end(CE), SF);
2002  case Instruction::FCmp:
2003  case Instruction::ICmp:
2004  return executeCmpInst(CE->getPredicate(),
2005  getOperandValue(CE->getOperand(0), SF),
2006  getOperandValue(CE->getOperand(1), SF),
2007  CE->getOperand(0)->getType());
2008  case Instruction::Select:
2009  return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
2010  getOperandValue(CE->getOperand(1), SF),
2011  getOperandValue(CE->getOperand(2), SF),
2012  CE->getOperand(0)->getType());
2013  default :
2014  break;
2015  }
2016 
2017  // The cases below here require a GenericValue parameter for the result
2018  // so we initialize one, compute it and then return it.
2019  GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2020  GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2021  GenericValue Dest;
2022  Type * Ty = CE->getOperand(0)->getType();
2023  switch (CE->getOpcode()) {
2024  case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2025  case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2026  case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2027  case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
2028  case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
2029  case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
2030  case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
2031  case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
2032  case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
2033  case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
2034  case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
2035  case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
2036  case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
2037  case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
2038  case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2039  case Instruction::Shl:
2040  Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2041  break;
2042  case Instruction::LShr:
2043  Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
2044  break;
2045  case Instruction::AShr:
2046  Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
2047  break;
2048  default:
2049  dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2050  llvm_unreachable("Unhandled ConstantExpr");
2051  }
2052  return Dest;
2053 }
2054 
2055 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2056  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2057  return getConstantExprValue(CE, SF);
2058  } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2059  return getConstantValue(CPV);
2060  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2061  return PTOGV(getPointerToGlobal(GV));
2062  } else {
2063  return SF.Values[V];
2064  }
2065 }
2066 
2067 //===----------------------------------------------------------------------===//
2068 // Dispatch and Execution Code
2069 //===----------------------------------------------------------------------===//
2070 
2071 //===----------------------------------------------------------------------===//
2072 // callFunction - Execute the specified function...
2073 //
2075  const std::vector<GenericValue> &ArgVals) {
2076  assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
2077  ECStack.back().Caller.arg_size() == ArgVals.size()) &&
2078  "Incorrect number of arguments passed into function call!");
2079  // Make a new stack frame... and fill it in.
2080  ECStack.push_back(ExecutionContext());
2081  ExecutionContext &StackFrame = ECStack.back();
2082  StackFrame.CurFunction = F;
2083 
2084  // Special handling for external functions.
2085  if (F->isDeclaration()) {
2086  GenericValue Result = callExternalFunction (F, ArgVals);
2087  // Simulate a 'ret' instruction of the appropriate type.
2088  popStackAndReturnValueToCaller (F->getReturnType (), Result);
2089  return;
2090  }
2091 
2092  // Get pointers to first LLVM BB & Instruction in function.
2093  StackFrame.CurBB = F->begin();
2094  StackFrame.CurInst = StackFrame.CurBB->begin();
2095 
2096  // Run through the function arguments and initialize their values...
2097  assert((ArgVals.size() == F->arg_size() ||
2098  (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2099  "Invalid number of values passed to function invocation!");
2100 
2101  // Handle non-varargs arguments...
2102  unsigned i = 0;
2103  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2104  AI != E; ++AI, ++i)
2105  SetValue(AI, ArgVals[i], StackFrame);
2106 
2107  // Handle varargs arguments...
2108  StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2109 }
2110 
2111 
2113  while (!ECStack.empty()) {
2114  // Interpret a single instruction & increment the "PC".
2115  ExecutionContext &SF = ECStack.back(); // Current stack frame
2116  Instruction &I = *SF.CurInst++; // Increment before execute
2117 
2118  // Track the number of dynamic instructions executed.
2119  ++NumDynamicInsts;
2120 
2121  DEBUG(dbgs() << "About to interpret: " << I);
2122  visit(I); // Dispatch to one of the visit* methods...
2123 #if 0
2124  // This is not safe, as visiting the instruction could lower it and free I.
2125 DEBUG(
2126  if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
2127  I.getType() != Type::VoidTy) {
2128  dbgs() << " --> ";
2129  const GenericValue &Val = SF.Values[&I];
2130  switch (I.getType()->getTypeID()) {
2131  default: llvm_unreachable("Invalid GenericValue Type");
2132  case Type::VoidTyID: dbgs() << "void"; break;
2133  case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break;
2134  case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break;
2135  case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
2136  break;
2137  case Type::IntegerTyID:
2138  dbgs() << "i" << Val.IntVal.getBitWidth() << " "
2139  << Val.IntVal.toStringUnsigned(10)
2140  << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
2141  break;
2142  }
2143  });
2144 #endif
2145  }
2146 }
void visitVAArgInst(VAArgInst &I)
Definition: Execution.cpp:1716
APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const
Arithmetic right-shift function.
Definition: APInt.cpp:1038
PointerTy PointerVal
Definition: GenericValue.h:34
std::vector< GenericValue > AggregateVal
Definition: GenericValue.h:40
static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:234
#define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, _FUNC)
Definition: Execution.cpp:466
Value * getAggregateOperand()
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:1745
GenericValue callExternalFunction(Function *F, const std::vector< GenericValue > &ArgVals)
static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:513
bool isVolatile() const
Definition: Instructions.h:287
ArrayRef< unsigned > getIndices() const
void visitAllocaInst(AllocaInst &I)
Definition: Execution.cpp:960
void visitStoreInst(StoreInst &I)
Definition: Execution.cpp:1048
unsigned getScalarSizeInBits()
Definition: Type.cpp:135
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float vlalue.
Definition: APInt.h:1757
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF)
Definition: Execution.cpp:40
IterTy arg_end() const
Definition: CallSite.h:143
2: 32-bit floating point type
Definition: Type.h:57
void visitTruncInst(TruncInst &I)
Definition: Execution.cpp:1653
void visitFPToUIInst(FPToUIInst &I)
Definition: Execution.cpp:1688
unsigned char Untyped[8]
Definition: GenericValue.h:36
static void executeFDivInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:86
unsigned arg_size() const
Definition: CallSite.h:145
An abstraction for memory operations.
Definition: Memory.h:45
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
This class represents zero extension of integer types.
unsigned getNumOperands() const
Definition: User.h:108
void visitGetElementPtrInst(GetElementPtrInst &I)
Definition: Execution.cpp:1031
#define MASK_VECTOR_NANS(TY, X, Y, FLAG)
Definition: Execution.cpp:362
gep_type_iterator gep_type_end(const User *GEP)
unsigned less or equal
Definition: InstrTypes.h:677
unsigned less than
Definition: InstrTypes.h:676
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:657
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:531
std::map< Value *, GenericValue > Values
bool isDoubleTy() const
isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:149
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:667
void visitExtractElementInst(ExtractElementInst &I)
Definition: Execution.cpp:1745
Type * getReturnType() const
Definition: Function.cpp:179
unsigned getNumIndices() const
void visitShl(BinaryOperator &I)
Definition: Execution.cpp:1135
arg_iterator arg_end()
Definition: Function.h:418
12: Structures
Definition: Type.h:70
F(f)
This class represents a sign extension of integer types.
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:61
#define IMPLEMENT_VECTOR_FCMP(OP)
Definition: Execution.cpp:315
14: Pointers
Definition: Type.h:72
static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:427
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:1002
unsigned getOpcode() const
getOpcode - Return the opcode at the root of this constant expression
Definition: Constants.h:1049
void toStringUnsigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Definition: APInt.h:1412
STATISTIC(NumDynamicInsts,"Number of dynamic instructions executed")
Type * getType() const
Definition: CallSite.h:149
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
size_t arg_size() const
Definition: Function.cpp:248
iterator begin()
Definition: BasicBlock.h:193
static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:206
ArrayRef< unsigned > getIndices() const
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:476
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:662
APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const
Unsigned remainder operation.
Definition: APInt.cpp:1890
void visitFCmpInst(FCmpInst &I)
Definition: Execution.cpp:608
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:661
bool isUnconditional() const
static unsigned getBitWidth(Type *Ty, const DataLayout *TD)
static Type * getIndexedType(Type *Agg, ArrayRef< unsigned > Idxs)
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
const StructLayout * getStructLayout(StructType *Ty) const
Definition: DataLayout.cpp:445
APInt urem(const APInt &LHS, const APInt &RHS)
Function for unsigned remainder operation.
Definition: APInt.h:1819
void * getPointerToGlobal(const GlobalValue *GV)
#define llvm_unreachable(msg)
Definition: Use.h:60
void visitSelectInst(SelectInst &I)
Definition: Execution.cpp:804
#define IMPLEMENT_BINARY_OPERATOR(OP, TY)
Definition: Execution.cpp:48
APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.cpp:1127
unsigned getNumIndices() const
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:658
static cl::opt< bool > PrintVolatile("interpreter-print-volatile", cl::Hidden, cl::desc("make the interpreter print every volatile load and store"))
void callFunction(Function *F, const std::vector< GenericValue > &ArgVals)
Definition: Execution.cpp:2074
static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:136
This file implements a class to represent arbitrary precision integral constant values and operations...
This class represents a cast from a pointer to an integer.
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY)
Definition: Execution.cpp:117
static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:262
static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2)
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:90
void visitInsertElementInst(InsertElementInst &I)
Definition: Execution.cpp:1778
void visitFPTruncInst(FPTruncInst &I)
Definition: Execution.cpp:1668
VectorType * getType() const
#define IMPLEMENT_SCALAR_NANS(TY, X, Y)
Definition: Execution.cpp:337
static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:164
APInt udiv(const APInt &LHS, const APInt &RHS)
Unsigned division function for APInt.
Definition: APInt.h:1809
void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr, Type *Ty)
Represents a floating point comparison operator.
BasicBlock * getSuccessor(unsigned i) const
This class represents a no-op cast from one type to another.
double fmod(double x, double y);
void visitInsertValueInst(InsertValueInst &I)
Definition: Execution.cpp:1925
TypeID getTypeID() const
Definition: Type.h:137
bool isFloatingPointTy() const
Definition: Type.h:162
bool isLittleEndian() const
Layout endianness...
Definition: DataLayout.h:195
GenericValue getConstantValue(const Constant *C)
Converts a Constant* into a GenericValue, including handling of ConstantExpr values.
ValTy * getCalledValue() const
Definition: CallSite.h:85
static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2, const Type *Ty, const bool val)
Definition: Execution.cpp:593
APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const
Left-shift function.
Definition: APInt.h:856
This class represents a cast from floating point to signed integer.
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition: APInt.h:1764
static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:220
iterator begin()
Definition: Function.h:395
void visitBitCastInst(BitCastInst &I)
Definition: Execution.cpp:1708
void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, Type *Ty)
static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:248
This class represents a truncation of integer types.
Type * getElementType() const
Definition: DerivedTypes.h:319
#define IMPLEMENT_VAARG(TY)
Definition: Execution.cpp:1713
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:442
10: Arbitrary bit width integers
Definition: Type.h:68
void visitLShr(BinaryOperator &I)
Definition: Execution.cpp:1162
static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:178
0: type with no size
Definition: Type.h:55
void visitICmpInst(ICmpInst &I)
Definition: Execution.cpp:276
static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:522
static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:192
APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:919
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
InstrTy * getInstruction() const
Definition: CallSite.h:79
void visitCallSite(CallSite CS)
Definition: Execution.cpp:1062
bool isVectorTy() const
Definition: Type.h:229
unsigned getIntrinsicID() const LLVM_READONLY
Definition: Function.cpp:371
Type * getContainedType(unsigned i) const
Definition: Type.h:339
LLVM Constant Representation.
Definition: Constant.h:41
PointerType * getType() const
Definition: Instructions.h:91
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:486
bool isFloatTy() const
isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:146
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
void visitIndirectBrInst(IndirectBrInst &I)
Definition: Execution.cpp:911
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
void visitZExtInst(ZExtInst &I)
Definition: Execution.cpp:1663
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const
Sign extend to a new width.
Definition: APInt.cpp:942
static Type * getVoidTy(LLVMContext &C)
Definition: Type.cpp:227
static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:150
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:373
void exitCalled(GenericValue GV)
Definition: Execution.cpp:818
static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:399
Represent an integer comparison operator.
Definition: Instructions.h:911
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1879
Value * getOperand(unsigned i) const
Definition: User.h:88
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:660
Value * getPointerOperand()
Definition: Instructions.h:223
static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:504
arg_iterator arg_begin()
Definition: Function.h:410
struct IntPair UIntPairVal
Definition: GenericValue.h:35
Integer representation type.
Definition: DerivedTypes.h:37
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
void visitExtractValueInst(ExtractValueInst &I)
Definition: Execution.cpp:1883
This class represents a cast from an integer to a pointer.
unsigned getPredicate() const
Definition: Constants.cpp:1082
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:668
void visitFPToSIInst(FPToSIInst &I)
Definition: Execution.cpp:1693
void visitIntToPtrInst(IntToPtrInst &I)
Definition: Execution.cpp:1703
void visitFPExtInst(FPExtInst &I)
Definition: Execution.cpp:1673
bool isPointerTy() const
Definition: Type.h:220
uint64_t NextPowerOf2(uint64_t A)
Definition: MathExtras.h:546
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
void visitUnreachableInst(UnreachableInst &I)
Definition: Execution.cpp:875
static void executeFAddInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:53
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:666
static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:413
signed greater than
Definition: InstrTypes.h:678
APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const
Function for signed remainder operation.
Definition: APInt.cpp:1927
void * GVTOP(const GenericValue &GV)
Definition: GenericValue.h:50
static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2)
static void executeFRemInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:97
13: Arrays
Definition: Type.h:71
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:655
idx_iterator idx_begin() const
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
void visitShuffleVectorInst(ShuffleVectorInst &I)
Definition: Execution.cpp:1813
static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V)
Converts a double to APInt bits.
Definition: APInt.h:1473
Class for constant integers.
Definition: Constants.h:51
void visitReturnInst(ReturnInst &I)
Definition: Execution.cpp:861
Value * getIncomingValue(unsigned i) const
15: SIMD 'packed' format, or other vector type
Definition: Type.h:73
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
void visitSExtInst(SExtInst &I)
Definition: Execution.cpp:1658
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:665
Type * getType() const
Definition: Value.h:111
bool isVolatile() const
Definition: Instructions.h:170
signed less than
Definition: InstrTypes.h:680
This class represents a cast from floating point to unsigned integer.
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2, GenericValue Src3, const Type *Ty)
Definition: Execution.cpp:788
static void executeFSubInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:64
static void executeFMulInst(GenericValue &Dest, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:75
static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:643
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
signed less or equal
Definition: InstrTypes.h:681
GenericValue PTOGV(void *P)
Definition: GenericValue.h:49
Class for arbitrary precision integers.
Definition: APInt.h:75
void visitPtrToIntInst(PtrToIntInst &I)
Definition: Execution.cpp:1698
bool isIntegerTy() const
Definition: Type.h:196
void runAtExitHandlers()
Definition: Interpreter.cpp:64
Value * getCondition() const
double bitsToDouble() const
Converts APInt bits to a double.
Definition: APInt.h:1446
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
Definition: APInt.h:1776
void visitBranchInst(BranchInst &I)
Definition: Execution.cpp:879
#define FLOAT_VECTOR_OP(OP)
void visitAShr(BinaryOperator &I)
Definition: Execution.cpp:1189
Value * getCondition() const
BasicBlock * getDefaultDest() const
void *malloc(size_t size);
APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const
Unsigned division operation.
Definition: APInt.cpp:1842
void LowerIntrinsicCall(CallInst *CI)
bool isDeclaration() const
Definition: Globals.cpp:66
static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:495
unsigned greater or equal
Definition: InstrTypes.h:675
static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V)
Converts a float to APInt bits.
Definition: APInt.h:1486
void * PointerTy
Definition: GenericValue.h:23
#define I(x, y, z)
Definition: MD5.cpp:54
#define IMPLEMENT_INTEGER_ICMP(OP, TY)
Definition: Execution.cpp:112
FunctionType * getFunctionType() const
Definition: Function.cpp:171
void visitSIToFPInst(SIToFPInst &I)
Definition: Execution.cpp:1683
unsigned getPointerSizeInBits(unsigned AS=0) const
Definition: DataLayout.h:271
This class represents a cast unsigned integer to floating point.
#define INTEGER_VECTOR_OPERATION(OP)
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:659
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:562
void visitBinaryOperator(BinaryOperator &I)
Definition: Execution.cpp:679
VectorType * getType() const
const Type * getScalarType() const
Definition: Type.cpp:51
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:663
IterTy arg_begin() const
Definition: CallSite.h:137
void visitLoadInst(LoadInst &I)
Definition: Execution.cpp:1037
bool isVarArg() const
Definition: DerivedTypes.h:120
3: 64-bit floating point type
Definition: Type.h:58
This class represents a cast from signed integer to floating point.
#define IMPLEMENT_POINTER_ICMP(OP)
Definition: Execution.cpp:130
This class represents a truncation of floating point types.
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:654
#define IMPLEMENT_UNORDERED(TY, X, Y)
Definition: Execution.cpp:455
LLVM Value Representation.
Definition: Value.h:66
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:664
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
void visitUIToFPInst(UIToFPInst &I)
Definition: Execution.cpp:1678
#define INTEGER_VECTOR_FUNCTION(OP)
#define DEBUG(X)
Definition: Debug.h:97
void visitSwitchInst(SwitchInst &I)
Definition: Execution.cpp:892
unsigned greater than
Definition: InstrTypes.h:674
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:983
static unsigned getShiftAmount(uint64_t orgShiftAmount, llvm::APInt valueToShift)
Definition: Execution.cpp:1124
idx_iterator idx_begin() const
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:323
#define IMPLEMENT_FCMP(OP, TY)
Definition: Execution.cpp:302
APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
Definition: APInt.cpp:815
This class represents an extension of floating point types.
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:656
Value * getPointerOperand()
Definition: Instructions.h:346
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition: APInt.h:1752
int getBasicBlockIndex(const BasicBlock *BB) const
const BasicBlock * getParent() const
Definition: Instruction.h:52
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:653
signed greater or equal
Definition: InstrTypes.h:679
float bitsToFloat() const
Converts APInt bits to a double.
Definition: APInt.h:1460
static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2, Type *Ty)
Definition: Execution.cpp:441
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140
FunTy * getCalledFunction() const
Definition: CallSite.h:93
gep_type_iterator gep_type_begin(const User *GEP)