LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Constants.h
Go to the documentation of this file.
1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// @file
11 /// This file contains the declarations for the subclasses of Constant,
12 /// which represent the different flavors of constant values that live in LLVM.
13 /// Note that Constants are immutable (once created they never change) and are
14 /// fully shared by structural equivalence. This means that two structurally
15 /// equivalent constants will always have the same address. Constant's are
16 /// created on demand as needed and never deleted: thus clients don't have to
17 /// worry about the lifetime of the objects.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #ifndef LLVM_IR_CONSTANTS_H
22 #define LLVM_IR_CONSTANTS_H
23 
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/DerivedTypes.h"
30 
31 namespace llvm {
32 
33 class ArrayType;
34 class IntegerType;
35 class StructType;
36 class PointerType;
37 class VectorType;
38 class SequentialType;
39 
40 template<class ConstantClass, class TypeClass, class ValType>
42 template<class ConstantClass, class TypeClass>
44 template<class ConstantClass, class TypeClass>
46 
47 //===----------------------------------------------------------------------===//
48 /// This is the shared class of boolean and integer constants. This class
49 /// represents both boolean and integral constants.
50 /// @brief Class for constant integers.
51 class ConstantInt : public Constant {
52  virtual void anchor();
53  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
55  ConstantInt(IntegerType *Ty, const APInt& V);
56  APInt Val;
57 protected:
58  // allocate space for exactly zero operands
59  void *operator new(size_t s) {
60  return User::operator new(s, 0);
61  }
62 public:
63  static ConstantInt *getTrue(LLVMContext &Context);
64  static ConstantInt *getFalse(LLVMContext &Context);
65  static Constant *getTrue(Type *Ty);
66  static Constant *getFalse(Type *Ty);
67 
68  /// If Ty is a vector type, return a Constant with a splat of the given
69  /// value. Otherwise return a ConstantInt for the given value.
70  static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
71 
72  /// Return a ConstantInt with the specified integer value for the specified
73  /// type. If the type is wider than 64 bits, the value will be zero-extended
74  /// to fit the type, unless isSigned is true, in which case the value will
75  /// be interpreted as a 64-bit signed integer and sign-extended to fit
76  /// the type.
77  /// @brief Get a ConstantInt for a specific value.
78  static ConstantInt *get(IntegerType *Ty, uint64_t V,
79  bool isSigned = false);
80 
81  /// Return a ConstantInt with the specified value for the specified type. The
82  /// value V will be canonicalized to a an unsigned APInt. Accessing it with
83  /// either getSExtValue() or getZExtValue() will yield a correctly sized and
84  /// signed value for the type Ty.
85  /// @brief Get a ConstantInt for a specific signed value.
86  static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
87  static Constant *getSigned(Type *Ty, int64_t V);
88 
89  /// Return a ConstantInt with the specified value and an implied Type. The
90  /// type is the integer type that corresponds to the bit width of the value.
91  static ConstantInt *get(LLVMContext &Context, const APInt &V);
92 
93  /// Return a ConstantInt constructed from the string strStart with the given
94  /// radix.
95  static ConstantInt *get(IntegerType *Ty, StringRef Str,
96  uint8_t radix);
97 
98  /// If Ty is a vector type, return a Constant with a splat of the given
99  /// value. Otherwise return a ConstantInt for the given value.
100  static Constant *get(Type* Ty, const APInt& V);
101 
102  /// Return the constant as an APInt value reference. This allows clients to
103  /// obtain a copy of the value, with all its precision in tact.
104  /// @brief Return the constant's value.
105  inline const APInt &getValue() const {
106  return Val;
107  }
108 
109  /// getBitWidth - Return the bitwidth of this constant.
110  unsigned getBitWidth() const { return Val.getBitWidth(); }
111 
112  /// Return the constant as a 64-bit unsigned integer value after it
113  /// has been zero extended as appropriate for the type of this constant. Note
114  /// that this method can assert if the value does not fit in 64 bits.
115  /// @brief Return the zero extended value.
116  inline uint64_t getZExtValue() const {
117  return Val.getZExtValue();
118  }
119 
120  /// Return the constant as a 64-bit integer value after it has been sign
121  /// extended as appropriate for the type of this constant. Note that
122  /// this method can assert if the value does not fit in 64 bits.
123  /// @brief Return the sign extended value.
124  inline int64_t getSExtValue() const {
125  return Val.getSExtValue();
126  }
127 
128  /// A helper method that can be used to determine if the constant contained
129  /// within is equal to a constant. This only works for very small values,
130  /// because this is all that can be represented with all types.
131  /// @brief Determine if this constant's value is same as an unsigned char.
132  bool equalsInt(uint64_t V) const {
133  return Val == V;
134  }
135 
136  /// getType - Specialize the getType() method to always return an IntegerType,
137  /// which reduces the amount of casting needed in parts of the compiler.
138  ///
139  inline IntegerType *getType() const {
140  return cast<IntegerType>(Value::getType());
141  }
142 
143  /// This static method returns true if the type Ty is big enough to
144  /// represent the value V. This can be used to avoid having the get method
145  /// assert when V is larger than Ty can represent. Note that there are two
146  /// versions of this method, one for unsigned and one for signed integers.
147  /// Although ConstantInt canonicalizes everything to an unsigned integer,
148  /// the signed version avoids callers having to convert a signed quantity
149  /// to the appropriate unsigned type before calling the method.
150  /// @returns true if V is a valid value for type Ty
151  /// @brief Determine if the value is in range for the given type.
152  static bool isValueValidForType(Type *Ty, uint64_t V);
153  static bool isValueValidForType(Type *Ty, int64_t V);
154 
155  bool isNegative() const { return Val.isNegative(); }
156 
157  /// This is just a convenience method to make client code smaller for a
158  /// common code. It also correctly performs the comparison without the
159  /// potential for an assertion from getZExtValue().
160  bool isZero() const {
161  return Val == 0;
162  }
163 
164  /// This is just a convenience method to make client code smaller for a
165  /// common case. It also correctly performs the comparison without the
166  /// potential for an assertion from getZExtValue().
167  /// @brief Determine if the value is one.
168  bool isOne() const {
169  return Val == 1;
170  }
171 
172  /// This function will return true iff every bit in this constant is set
173  /// to true.
174  /// @returns true iff this constant's bits are all set to true.
175  /// @brief Determine if the value is all ones.
176  bool isMinusOne() const {
177  return Val.isAllOnesValue();
178  }
179 
180  /// This function will return true iff this constant represents the largest
181  /// value that may be represented by the constant's type.
182  /// @returns true iff this is the largest value that may be represented
183  /// by this type.
184  /// @brief Determine if the value is maximal.
185  bool isMaxValue(bool isSigned) const {
186  if (isSigned)
187  return Val.isMaxSignedValue();
188  else
189  return Val.isMaxValue();
190  }
191 
192  /// This function will return true iff this constant represents the smallest
193  /// value that may be represented by this constant's type.
194  /// @returns true if this is the smallest value that may be represented by
195  /// this type.
196  /// @brief Determine if the value is minimal.
197  bool isMinValue(bool isSigned) const {
198  if (isSigned)
199  return Val.isMinSignedValue();
200  else
201  return Val.isMinValue();
202  }
203 
204  /// This function will return true iff this constant represents a value with
205  /// active bits bigger than 64 bits or a value greater than the given uint64_t
206  /// value.
207  /// @returns true iff this constant is greater or equal to the given number.
208  /// @brief Determine if the value is greater or equal to the given number.
209  bool uge(uint64_t Num) const {
210  return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
211  }
212 
213  /// getLimitedValue - If the value is smaller than the specified limit,
214  /// return it, otherwise return the limit value. This causes the value
215  /// to saturate to the limit.
216  /// @returns the min of the value of the constant and the specified value
217  /// @brief Get the constant's value with a saturation limit
218  uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
219  return Val.getLimitedValue(Limit);
220  }
221 
222  /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
223  static bool classof(const Value *V) {
224  return V->getValueID() == ConstantIntVal;
225  }
226 };
227 
228 
229 //===----------------------------------------------------------------------===//
230 /// ConstantFP - Floating Point Values [float, double]
231 ///
232 class ConstantFP : public Constant {
233  APFloat Val;
234  virtual void anchor();
235  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
237  friend class LLVMContextImpl;
238 protected:
239  ConstantFP(Type *Ty, const APFloat& V);
240 protected:
241  // allocate space for exactly zero operands
242  void *operator new(size_t s) {
243  return User::operator new(s, 0);
244  }
245 public:
246  /// Floating point negation must be implemented with f(x) = -0.0 - x. This
247  /// method returns the negative zero constant for floating point or vector
248  /// floating point types; for all other types, it returns the null value.
250 
251  /// get() - This returns a ConstantFP, or a vector containing a splat of a
252  /// ConstantFP, for the specified value in the specified type. This should
253  /// only be used for simple constant values like 2.0/1.0 etc, that are
254  /// known-valid both as host double and as the target format.
255  static Constant *get(Type* Ty, double V);
256  static Constant *get(Type* Ty, StringRef Str);
257  static ConstantFP *get(LLVMContext &Context, const APFloat &V);
258  static ConstantFP *getNegativeZero(Type* Ty);
259  static ConstantFP *getInfinity(Type *Ty, bool Negative = false);
260 
261  /// isValueValidForType - return true if Ty is big enough to represent V.
262  static bool isValueValidForType(Type *Ty, const APFloat &V);
263  inline const APFloat &getValueAPF() const { return Val; }
264 
265  /// isZero - Return true if the value is positive or negative zero.
266  bool isZero() const { return Val.isZero(); }
267 
268  /// isNegative - Return true if the sign bit is set.
269  bool isNegative() const { return Val.isNegative(); }
270 
271  /// isNaN - Return true if the value is a NaN.
272  bool isNaN() const { return Val.isNaN(); }
273 
274  /// isExactlyValue - We don't rely on operator== working on double values, as
275  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
276  /// As such, this method can be used to do an exact bit-for-bit comparison of
277  /// two floating point values. The version with a double operand is retained
278  /// because it's so convenient to write isExactlyValue(2.0), but please use
279  /// it only for simple constants.
280  bool isExactlyValue(const APFloat &V) const;
281 
282  bool isExactlyValue(double V) const {
283  bool ignored;
284  APFloat FV(V);
286  return isExactlyValue(FV);
287  }
288  /// Methods for support type inquiry through isa, cast, and dyn_cast:
289  static bool classof(const Value *V) {
290  return V->getValueID() == ConstantFPVal;
291  }
292 };
293 
294 //===----------------------------------------------------------------------===//
295 /// ConstantAggregateZero - All zero aggregate value
296 ///
298  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
300 protected:
302  : Constant(ty, ConstantAggregateZeroVal, 0, 0) {}
303 protected:
304  // allocate space for exactly zero operands
305  void *operator new(size_t s) {
306  return User::operator new(s, 0);
307  }
308 public:
309  static ConstantAggregateZero *get(Type *Ty);
310 
311  virtual void destroyConstant();
312 
313  /// getSequentialElement - If this CAZ has array or vector type, return a zero
314  /// with the right element type.
316 
317  /// getStructElement - If this CAZ has struct type, return a zero with the
318  /// right element type for the specified element.
319  Constant *getStructElement(unsigned Elt) const;
320 
321  /// getElementValue - Return a zero of the right value for the specified GEP
322  /// index.
324 
325  /// getElementValue - Return a zero of the right value for the specified GEP
326  /// index.
327  Constant *getElementValue(unsigned Idx) const;
328 
329  /// Methods for support type inquiry through isa, cast, and dyn_cast:
330  ///
331  static bool classof(const Value *V) {
332  return V->getValueID() == ConstantAggregateZeroVal;
333  }
334 };
335 
336 
337 //===----------------------------------------------------------------------===//
338 /// ConstantArray - Constant Array Declarations
339 ///
340 class ConstantArray : public Constant {
343 protected:
345 public:
346  // ConstantArray accessors
347  static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
348 
349  /// Transparently provide more efficient getOperand methods.
351 
352  /// getType - Specialize the getType() method to always return an ArrayType,
353  /// which reduces the amount of casting needed in parts of the compiler.
354  ///
356  return cast<ArrayType>(Value::getType());
357  }
358 
359  virtual void destroyConstant();
360  virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
361 
362  /// Methods for support type inquiry through isa, cast, and dyn_cast:
363  static bool classof(const Value *V) {
364  return V->getValueID() == ConstantArrayVal;
365  }
366 };
367 
368 template <>
370  public VariadicOperandTraits<ConstantArray> {
371 };
372 
374 
375 //===----------------------------------------------------------------------===//
376 // ConstantStruct - Constant Struct Declarations
377 //
378 class ConstantStruct : public Constant {
381 protected:
382  ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
383 public:
384  // ConstantStruct accessors
385  static Constant *get(StructType *T, ArrayRef<Constant*> V);
386  static Constant *get(StructType *T, ...) END_WITH_NULL;
387 
388  /// getAnon - Return an anonymous struct that has the specified
389  /// elements. If the struct is possibly empty, then you must specify a
390  /// context.
391  static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
392  return get(getTypeForElements(V, Packed), V);
393  }
394  static Constant *getAnon(LLVMContext &Ctx,
395  ArrayRef<Constant*> V, bool Packed = false) {
396  return get(getTypeForElements(Ctx, V, Packed), V);
397  }
398 
399  /// getTypeForElements - Return an anonymous struct type to use for a constant
400  /// with the specified set of elements. The list must not be empty.
401  static StructType *getTypeForElements(ArrayRef<Constant*> V,
402  bool Packed = false);
403  /// getTypeForElements - This version of the method allows an empty list.
404  static StructType *getTypeForElements(LLVMContext &Ctx,
406  bool Packed = false);
407 
408  /// Transparently provide more efficient getOperand methods.
410 
411  /// getType() specialization - Reduce amount of casting...
412  ///
413  inline StructType *getType() const {
414  return cast<StructType>(Value::getType());
415  }
416 
417  virtual void destroyConstant();
418  virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
419 
420  /// Methods for support type inquiry through isa, cast, and dyn_cast:
421  static bool classof(const Value *V) {
422  return V->getValueID() == ConstantStructVal;
423  }
424 };
425 
426 template <>
428  public VariadicOperandTraits<ConstantStruct> {
429 };
430 
432 
433 
434 //===----------------------------------------------------------------------===//
435 /// ConstantVector - Constant Vector Declarations
436 ///
437 class ConstantVector : public Constant {
440 protected:
441  ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
442 public:
443  // ConstantVector accessors
444  static Constant *get(ArrayRef<Constant*> V);
445 
446  /// getSplat - Return a ConstantVector with the specified constant in each
447  /// element.
448  static Constant *getSplat(unsigned NumElts, Constant *Elt);
449 
450  /// Transparently provide more efficient getOperand methods.
452 
453  /// getType - Specialize the getType() method to always return a VectorType,
454  /// which reduces the amount of casting needed in parts of the compiler.
455  ///
457  return cast<VectorType>(Value::getType());
458  }
459 
460  /// getSplatValue - If this is a splat constant, meaning that all of the
461  /// elements have the same value, return that value. Otherwise return NULL.
462  Constant *getSplatValue() const;
463 
464  virtual void destroyConstant();
465  virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
466 
467  /// Methods for support type inquiry through isa, cast, and dyn_cast:
468  static bool classof(const Value *V) {
469  return V->getValueID() == ConstantVectorVal;
470  }
471 };
472 
473 template <>
475  public VariadicOperandTraits<ConstantVector> {
476 };
477 
479 
480 //===----------------------------------------------------------------------===//
481 /// ConstantPointerNull - a constant pointer value that points to null
482 ///
484  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
486 protected:
488  : Constant(T,
489  Value::ConstantPointerNullVal, 0, 0) {}
490 
491 protected:
492  // allocate space for exactly zero operands
493  void *operator new(size_t s) {
494  return User::operator new(s, 0);
495  }
496 public:
497  /// get() - Static factory methods - Return objects of the specified value
498  static ConstantPointerNull *get(PointerType *T);
499 
500  virtual void destroyConstant();
501 
502  /// getType - Specialize the getType() method to always return an PointerType,
503  /// which reduces the amount of casting needed in parts of the compiler.
504  ///
505  inline PointerType *getType() const {
506  return cast<PointerType>(Value::getType());
507  }
508 
509  /// Methods for support type inquiry through isa, cast, and dyn_cast:
510  static bool classof(const Value *V) {
511  return V->getValueID() == ConstantPointerNullVal;
512  }
513 };
514 
515 //===----------------------------------------------------------------------===//
516 /// ConstantDataSequential - A vector or array constant whose element type is a
517 /// simple 1/2/4/8-byte integer or float/double, and whose elements are just
518 /// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no
519 /// operands because it stores all of the elements of the constant as densely
520 /// packed data, instead of as Value*'s.
521 ///
522 /// This is the common base class of ConstantDataArray and ConstantDataVector.
523 ///
525  friend class LLVMContextImpl;
526  /// DataElements - A pointer to the bytes underlying this constant (which is
527  /// owned by the uniquing StringMap).
528  const char *DataElements;
529 
530  /// Next - This forms a link list of ConstantDataSequential nodes that have
531  /// the same value but different type. For example, 0,0,0,1 could be a 4
532  /// element array of i8, or a 1-element array of i32. They'll both end up in
533  /// the same StringMap bucket, linked up.
535  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
537 protected:
538  explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
539  : Constant(ty, VT, 0, 0), DataElements(Data), Next(0) {}
540  ~ConstantDataSequential() { delete Next; }
541 
542  static Constant *getImpl(StringRef Bytes, Type *Ty);
543 
544 protected:
545  // allocate space for exactly zero operands.
546  void *operator new(size_t s) {
547  return User::operator new(s, 0);
548  }
549 public:
550 
551  /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
552  /// formed with a vector or array of the specified element type.
553  /// ConstantDataArray only works with normal float and int types that are
554  /// stored densely in memory, not with things like i42 or x86_f80.
555  static bool isElementTypeCompatible(const Type *Ty);
556 
557  /// getElementAsInteger - If this is a sequential container of integers (of
558  /// any size), return the specified element in the low bits of a uint64_t.
559  uint64_t getElementAsInteger(unsigned i) const;
560 
561  /// getElementAsAPFloat - If this is a sequential container of floating point
562  /// type, return the specified element as an APFloat.
563  APFloat getElementAsAPFloat(unsigned i) const;
564 
565  /// getElementAsFloat - If this is an sequential container of floats, return
566  /// the specified element as a float.
567  float getElementAsFloat(unsigned i) const;
568 
569  /// getElementAsDouble - If this is an sequential container of doubles, return
570  /// the specified element as a double.
571  double getElementAsDouble(unsigned i) const;
572 
573  /// getElementAsConstant - Return a Constant for a specified index's element.
574  /// Note that this has to compute a new constant to return, so it isn't as
575  /// efficient as getElementAsInteger/Float/Double.
576  Constant *getElementAsConstant(unsigned i) const;
577 
578  /// getType - Specialize the getType() method to always return a
579  /// SequentialType, which reduces the amount of casting needed in parts of the
580  /// compiler.
581  inline SequentialType *getType() const {
582  return cast<SequentialType>(Value::getType());
583  }
584 
585  /// getElementType - Return the element type of the array/vector.
586  Type *getElementType() const;
587 
588  /// getNumElements - Return the number of elements in the array or vector.
589  unsigned getNumElements() const;
590 
591  /// getElementByteSize - Return the size (in bytes) of each element in the
592  /// array/vector. The size of the elements is known to be a multiple of one
593  /// byte.
594  uint64_t getElementByteSize() const;
595 
596 
597  /// isString - This method returns true if this is an array of i8.
598  bool isString() const;
599 
600  /// isCString - This method returns true if the array "isString", ends with a
601  /// nul byte, and does not contains any other nul bytes.
602  bool isCString() const;
603 
604  /// getAsString - If this array is isString(), then this method returns the
605  /// array as a StringRef. Otherwise, it asserts out.
606  ///
608  assert(isString() && "Not a string");
609  return getRawDataValues();
610  }
611 
612  /// getAsCString - If this array is isCString(), then this method returns the
613  /// array (without the trailing null byte) as a StringRef. Otherwise, it
614  /// asserts out.
615  ///
617  assert(isCString() && "Isn't a C string");
618  StringRef Str = getAsString();
619  return Str.substr(0, Str.size()-1);
620  }
621 
622  /// getRawDataValues - Return the raw, underlying, bytes of this data. Note
623  /// that this is an extremely tricky thing to work with, as it exposes the
624  /// host endianness of the data elements.
625  StringRef getRawDataValues() const;
626 
627  virtual void destroyConstant();
628 
629  /// Methods for support type inquiry through isa, cast, and dyn_cast:
630  ///
631  static bool classof(const Value *V) {
632  return V->getValueID() == ConstantDataArrayVal ||
634  }
635 private:
636  const char *getElementPointer(unsigned Elt) const;
637 };
638 
639 //===----------------------------------------------------------------------===//
640 /// ConstantDataArray - An array constant whose element type is a simple
641 /// 1/2/4/8-byte integer or float/double, and whose elements are just simple
642 /// data values (i.e. ConstantInt/ConstantFP). This Constant node has no
643 /// operands because it stores all of the elements of the constant as densely
644 /// packed data, instead of as Value*'s.
646  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
648  virtual void anchor();
650  explicit ConstantDataArray(Type *ty, const char *Data)
652 protected:
653  // allocate space for exactly zero operands.
654  void *operator new(size_t s) {
655  return User::operator new(s, 0);
656  }
657 public:
658 
659  /// get() constructors - Return a constant with array type with an element
660  /// count and element type matching the ArrayRef passed in. Note that this
661  /// can return a ConstantAggregateZero object.
662  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
663  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
664  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
665  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
666  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
667  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
668 
669  /// getString - This method constructs a CDS and initializes it with a text
670  /// string. The default behavior (AddNull==true) causes a null terminator to
671  /// be placed at the end of the array (increasing the length of the string by
672  /// one more than the StringRef would normally indicate. Pass AddNull=false
673  /// to disable this behavior.
674  static Constant *getString(LLVMContext &Context, StringRef Initializer,
675  bool AddNull = true);
676 
677  /// getType - Specialize the getType() method to always return an ArrayType,
678  /// which reduces the amount of casting needed in parts of the compiler.
679  ///
680  inline ArrayType *getType() const {
681  return cast<ArrayType>(Value::getType());
682  }
683 
684  /// Methods for support type inquiry through isa, cast, and dyn_cast:
685  ///
686  static bool classof(const Value *V) {
687  return V->getValueID() == ConstantDataArrayVal;
688  }
689 };
690 
691 //===----------------------------------------------------------------------===//
692 /// ConstantDataVector - A vector constant whose element type is a simple
693 /// 1/2/4/8-byte integer or float/double, and whose elements are just simple
694 /// data values (i.e. ConstantInt/ConstantFP). This Constant node has no
695 /// operands because it stores all of the elements of the constant as densely
696 /// packed data, instead of as Value*'s.
698  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
700  virtual void anchor();
702  explicit ConstantDataVector(Type *ty, const char *Data)
704 protected:
705  // allocate space for exactly zero operands.
706  void *operator new(size_t s) {
707  return User::operator new(s, 0);
708  }
709 public:
710 
711  /// get() constructors - Return a constant with vector type with an element
712  /// count and element type matching the ArrayRef passed in. Note that this
713  /// can return a ConstantAggregateZero object.
714  static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
715  static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
716  static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
717  static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
718  static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
719  static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
720 
721  /// getSplat - Return a ConstantVector with the specified constant in each
722  /// element. The specified constant has to be a of a compatible type (i8/i16/
723  /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
724  static Constant *getSplat(unsigned NumElts, Constant *Elt);
725 
726  /// getSplatValue - If this is a splat constant, meaning that all of the
727  /// elements have the same value, return that value. Otherwise return NULL.
728  Constant *getSplatValue() const;
729 
730  /// getType - Specialize the getType() method to always return a VectorType,
731  /// which reduces the amount of casting needed in parts of the compiler.
732  ///
733  inline VectorType *getType() const {
734  return cast<VectorType>(Value::getType());
735  }
736 
737  /// Methods for support type inquiry through isa, cast, and dyn_cast:
738  ///
739  static bool classof(const Value *V) {
740  return V->getValueID() == ConstantDataVectorVal;
741  }
742 };
743 
744 
745 
746 /// BlockAddress - The address of a basic block.
747 ///
748 class BlockAddress : public Constant {
749  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
750  void *operator new(size_t s) { return User::operator new(s, 2); }
752 public:
753  /// get - Return a BlockAddress for the specified function and basic block.
754  static BlockAddress *get(Function *F, BasicBlock *BB);
755 
756  /// get - Return a BlockAddress for the specified basic block. The basic
757  /// block must be embedded into a function.
758  static BlockAddress *get(BasicBlock *BB);
759 
760  /// Transparently provide more efficient getOperand methods.
762 
763  Function *getFunction() const { return (Function*)Op<0>().get(); }
764  BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
765 
766  virtual void destroyConstant();
767  virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
768 
769  /// Methods for support type inquiry through isa, cast, and dyn_cast:
770  static inline bool classof(const Value *V) {
771  return V->getValueID() == BlockAddressVal;
772  }
773 };
774 
775 template <>
777  public FixedNumOperandTraits<BlockAddress, 2> {
778 };
779 
781 
782 
783 //===----------------------------------------------------------------------===//
784 /// ConstantExpr - a constant value that is initialized with an expression using
785 /// other constant values.
786 ///
787 /// This class uses the standard Instruction opcodes to define the various
788 /// constant expressions. The Opcode field for the ConstantExpr class is
789 /// maintained in the Value::SubclassData field.
790 class ConstantExpr : public Constant {
791  friend struct ConstantCreator<ConstantExpr,Type,
792  std::pair<unsigned, std::vector<Constant*> > >;
793  friend struct ConvertConstantType<ConstantExpr, Type>;
794 
795 protected:
796  ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
797  : Constant(ty, ConstantExprVal, Ops, NumOps) {
798  // Operation type (an Instruction opcode) is stored as the SubclassData.
799  setValueSubclassData(Opcode);
800  }
801 
802 public:
803  // Static methods to construct a ConstantExpr of different kinds. Note that
804  // these methods may return a object that is not an instance of the
805  // ConstantExpr class, because they will attempt to fold the constant
806  // expression into something simpler if possible.
807 
808  /// getAlignOf constant expr - computes the alignment of a type in a target
809  /// independent way (Note: the return type is an i64).
810  static Constant *getAlignOf(Type *Ty);
811 
812  /// getSizeOf constant expr - computes the (alloc) size of a type (in
813  /// address-units, not bits) in a target independent way (Note: the return
814  /// type is an i64).
815  ///
816  static Constant *getSizeOf(Type *Ty);
817 
818  /// getOffsetOf constant expr - computes the offset of a struct field in a
819  /// target independent way (Note: the return type is an i64).
820  ///
821  static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
822 
823  /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
824  /// which supports any aggregate type, and any Constant index.
825  ///
826  static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
827 
828  static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
829  static Constant *getFNeg(Constant *C);
830  static Constant *getNot(Constant *C);
831  static Constant *getAdd(Constant *C1, Constant *C2,
832  bool HasNUW = false, bool HasNSW = false);
833  static Constant *getFAdd(Constant *C1, Constant *C2);
834  static Constant *getSub(Constant *C1, Constant *C2,
835  bool HasNUW = false, bool HasNSW = false);
836  static Constant *getFSub(Constant *C1, Constant *C2);
837  static Constant *getMul(Constant *C1, Constant *C2,
838  bool HasNUW = false, bool HasNSW = false);
839  static Constant *getFMul(Constant *C1, Constant *C2);
840  static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
841  static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
842  static Constant *getFDiv(Constant *C1, Constant *C2);
843  static Constant *getURem(Constant *C1, Constant *C2);
844  static Constant *getSRem(Constant *C1, Constant *C2);
845  static Constant *getFRem(Constant *C1, Constant *C2);
846  static Constant *getAnd(Constant *C1, Constant *C2);
847  static Constant *getOr(Constant *C1, Constant *C2);
848  static Constant *getXor(Constant *C1, Constant *C2);
849  static Constant *getShl(Constant *C1, Constant *C2,
850  bool HasNUW = false, bool HasNSW = false);
851  static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
852  static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
853  static Constant *getTrunc (Constant *C, Type *Ty);
854  static Constant *getSExt (Constant *C, Type *Ty);
855  static Constant *getZExt (Constant *C, Type *Ty);
856  static Constant *getFPTrunc (Constant *C, Type *Ty);
857  static Constant *getFPExtend(Constant *C, Type *Ty);
858  static Constant *getUIToFP (Constant *C, Type *Ty);
859  static Constant *getSIToFP (Constant *C, Type *Ty);
860  static Constant *getFPToUI (Constant *C, Type *Ty);
861  static Constant *getFPToSI (Constant *C, Type *Ty);
862  static Constant *getPtrToInt(Constant *C, Type *Ty);
863  static Constant *getIntToPtr(Constant *C, Type *Ty);
864  static Constant *getBitCast (Constant *C, Type *Ty);
865  static Constant *getAddrSpaceCast(Constant *C, Type *Ty);
866 
867  static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
868  static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
869  static Constant *getNSWAdd(Constant *C1, Constant *C2) {
870  return getAdd(C1, C2, false, true);
871  }
872  static Constant *getNUWAdd(Constant *C1, Constant *C2) {
873  return getAdd(C1, C2, true, false);
874  }
875  static Constant *getNSWSub(Constant *C1, Constant *C2) {
876  return getSub(C1, C2, false, true);
877  }
878  static Constant *getNUWSub(Constant *C1, Constant *C2) {
879  return getSub(C1, C2, true, false);
880  }
881  static Constant *getNSWMul(Constant *C1, Constant *C2) {
882  return getMul(C1, C2, false, true);
883  }
884  static Constant *getNUWMul(Constant *C1, Constant *C2) {
885  return getMul(C1, C2, true, false);
886  }
887  static Constant *getNSWShl(Constant *C1, Constant *C2) {
888  return getShl(C1, C2, false, true);
889  }
890  static Constant *getNUWShl(Constant *C1, Constant *C2) {
891  return getShl(C1, C2, true, false);
892  }
893  static Constant *getExactSDiv(Constant *C1, Constant *C2) {
894  return getSDiv(C1, C2, true);
895  }
896  static Constant *getExactUDiv(Constant *C1, Constant *C2) {
897  return getUDiv(C1, C2, true);
898  }
899  static Constant *getExactAShr(Constant *C1, Constant *C2) {
900  return getAShr(C1, C2, true);
901  }
902  static Constant *getExactLShr(Constant *C1, Constant *C2) {
903  return getLShr(C1, C2, true);
904  }
905 
906  /// getBinOpIdentity - Return the identity for the given binary operation,
907  /// i.e. a constant C such that X op C = X and C op X = X for every X. It
908  /// returns null if the operator doesn't have an identity.
909  static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
910 
911  /// getBinOpAbsorber - Return the absorbing element for the given binary
912  /// operation, i.e. a constant C such that X op C = C and C op X = C for
913  /// every X. For example, this returns zero for integer multiplication.
914  /// It returns null if the operator doesn't have an absorbing element.
915  static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
916 
917  /// Transparently provide more efficient getOperand methods.
919 
920  // @brief Convenience function for getting one of the casting operations
921  // using a CastOps opcode.
922  static Constant *getCast(
923  unsigned ops, ///< The opcode for the conversion
924  Constant *C, ///< The constant to be converted
925  Type *Ty ///< The type to which the constant is converted
926  );
927 
928  // @brief Create a ZExt or BitCast cast constant expression
929  static Constant *getZExtOrBitCast(
930  Constant *C, ///< The constant to zext or bitcast
931  Type *Ty ///< The type to zext or bitcast C to
932  );
933 
934  // @brief Create a SExt or BitCast cast constant expression
935  static Constant *getSExtOrBitCast(
936  Constant *C, ///< The constant to sext or bitcast
937  Type *Ty ///< The type to sext or bitcast C to
938  );
939 
940  // @brief Create a Trunc or BitCast cast constant expression
941  static Constant *getTruncOrBitCast(
942  Constant *C, ///< The constant to trunc or bitcast
943  Type *Ty ///< The type to trunc or bitcast C to
944  );
945 
946  /// @brief Create a BitCast or a PtrToInt cast constant expression
947  static Constant *getPointerCast(
948  Constant *C, ///< The pointer value to be casted (operand 0)
949  Type *Ty ///< The type to which cast should be made
950  );
951 
952  /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
953  static Constant *getIntegerCast(
954  Constant *C, ///< The integer constant to be casted
955  Type *Ty, ///< The integer type to cast to
956  bool isSigned ///< Whether C should be treated as signed or not
957  );
958 
959  /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
960  static Constant *getFPCast(
961  Constant *C, ///< The integer constant to be casted
962  Type *Ty ///< The integer type to cast to
963  );
964 
965  /// @brief Return true if this is a convert constant expression
966  bool isCast() const;
967 
968  /// @brief Return true if this is a compare constant expression
969  bool isCompare() const;
970 
971  /// @brief Return true if this is an insertvalue or extractvalue expression,
972  /// and the getIndices() method may be used.
973  bool hasIndices() const;
974 
975  /// @brief Return true if this is a getelementptr expression and all
976  /// the index operands are compile-time known integers within the
977  /// corresponding notional static array extents. Note that this is
978  /// not equivalant to, a subset of, or a superset of the "inbounds"
979  /// property.
980  bool isGEPWithNoNotionalOverIndexing() const;
981 
982  /// Select constant expr
983  ///
984  static Constant *getSelect(Constant *C, Constant *V1, Constant *V2);
985 
986  /// get - Return a binary or shift operator constant expression,
987  /// folding if possible.
988  ///
989  static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
990  unsigned Flags = 0);
991 
992  /// @brief Return an ICmp or FCmp comparison operator constant expression.
993  static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2);
994 
995  /// get* - Return some common constants without having to
996  /// specify the full Instruction::OPCODE identifier.
997  ///
998  static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS);
999  static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS);
1000 
1001  /// Getelementptr form. Value* is only accepted for convenience;
1002  /// all elements must be Constant's.
1003  ///
1004  static Constant *getGetElementPtr(Constant *C,
1005  ArrayRef<Constant *> IdxList,
1006  bool InBounds = false) {
1007  return getGetElementPtr(C, makeArrayRef((Value * const *)IdxList.data(),
1008  IdxList.size()),
1009  InBounds);
1010  }
1011  static Constant *getGetElementPtr(Constant *C,
1012  Constant *Idx,
1013  bool InBounds = false) {
1014  // This form of the function only exists to avoid ambiguous overload
1015  // warnings about whether to convert Idx to ArrayRef<Constant *> or
1016  // ArrayRef<Value *>.
1017  return getGetElementPtr(C, cast<Value>(Idx), InBounds);
1018  }
1019  static Constant *getGetElementPtr(Constant *C,
1020  ArrayRef<Value *> IdxList,
1021  bool InBounds = false);
1022 
1023  /// Create an "inbounds" getelementptr. See the documentation for the
1024  /// "inbounds" flag in LangRef.html for details.
1025  static Constant *getInBoundsGetElementPtr(Constant *C,
1026  ArrayRef<Constant *> IdxList) {
1027  return getGetElementPtr(C, IdxList, true);
1028  }
1029  static Constant *getInBoundsGetElementPtr(Constant *C,
1030  Constant *Idx) {
1031  // This form of the function only exists to avoid ambiguous overload
1032  // warnings about whether to convert Idx to ArrayRef<Constant *> or
1033  // ArrayRef<Value *>.
1034  return getGetElementPtr(C, Idx, true);
1035  }
1036  static Constant *getInBoundsGetElementPtr(Constant *C,
1037  ArrayRef<Value *> IdxList) {
1038  return getGetElementPtr(C, IdxList, true);
1039  }
1040 
1041  static Constant *getExtractElement(Constant *Vec, Constant *Idx);
1042  static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
1043  static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
1044  static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs);
1045  static Constant *getInsertValue(Constant *Agg, Constant *Val,
1046  ArrayRef<unsigned> Idxs);
1047 
1048  /// getOpcode - Return the opcode at the root of this constant expression
1049  unsigned getOpcode() const { return getSubclassDataFromValue(); }
1050 
1051  /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
1052  /// not an ICMP or FCMP constant expression.
1053  unsigned getPredicate() const;
1054 
1055  /// getIndices - Assert that this is an insertvalue or exactvalue
1056  /// expression and return the list of indices.
1057  ArrayRef<unsigned> getIndices() const;
1058 
1059  /// getOpcodeName - Return a string representation for an opcode.
1060  const char *getOpcodeName() const;
1061 
1062  /// getWithOperandReplaced - Return a constant expression identical to this
1063  /// one, but with the specified operand set to the specified value.
1064  Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
1065 
1066  /// getWithOperands - This returns the current constant expression with the
1067  /// operands replaced with the specified values. The specified array must
1068  /// have the same number of operands as our current one.
1069  Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
1070  return getWithOperands(Ops, getType());
1071  }
1072 
1073  /// getWithOperands - This returns the current constant expression with the
1074  /// operands replaced with the specified values and with the specified result
1075  /// type. The specified array must have the same number of operands as our
1076  /// current one.
1077  Constant *getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const;
1078 
1079  /// getAsInstruction - Returns an Instruction which implements the same operation
1080  /// as this ConstantExpr. The instruction is not linked to any basic block.
1081  ///
1082  /// A better approach to this could be to have a constructor for Instruction
1083  /// which would take a ConstantExpr parameter, but that would have spread
1084  /// implementation details of ConstantExpr outside of Constants.cpp, which
1085  /// would make it harder to remove ConstantExprs altogether.
1086  Instruction *getAsInstruction();
1087 
1088  virtual void destroyConstant();
1089  virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U);
1090 
1091  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1092  static inline bool classof(const Value *V) {
1093  return V->getValueID() == ConstantExprVal;
1094  }
1095 
1096 private:
1097  // Shadow Value::setValueSubclassData with a private forwarding method so that
1098  // subclasses cannot accidentally use it.
1099  void setValueSubclassData(unsigned short D) {
1101  }
1102 };
1103 
1104 template <>
1106  public VariadicOperandTraits<ConstantExpr, 1> {
1107 };
1108 
1110 
1111 //===----------------------------------------------------------------------===//
1112 /// UndefValue - 'undef' values are things that do not have specified contents.
1113 /// These are used for a variety of purposes, including global variable
1114 /// initializers and operands to instructions. 'undef' values can occur with
1115 /// any first-class type.
1116 ///
1117 /// Undef values aren't exactly constants; if they have multiple uses, they
1118 /// can appear to have different bit patterns at each use. See
1119 /// LangRef.html#undefvalues for details.
1120 ///
1121 class UndefValue : public Constant {
1122  void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
1124 protected:
1125  explicit UndefValue(Type *T) : Constant(T, UndefValueVal, 0, 0) {}
1126 protected:
1127  // allocate space for exactly zero operands
1128  void *operator new(size_t s) {
1129  return User::operator new(s, 0);
1130  }
1131 public:
1132  /// get() - Static factory methods - Return an 'undef' object of the specified
1133  /// type.
1134  ///
1135  static UndefValue *get(Type *T);
1136 
1137  /// getSequentialElement - If this Undef has array or vector type, return a
1138  /// undef with the right element type.
1139  UndefValue *getSequentialElement() const;
1140 
1141  /// getStructElement - If this undef has struct type, return a undef with the
1142  /// right element type for the specified element.
1143  UndefValue *getStructElement(unsigned Elt) const;
1144 
1145  /// getElementValue - Return an undef of the right value for the specified GEP
1146  /// index.
1147  UndefValue *getElementValue(Constant *C) const;
1148 
1149  /// getElementValue - Return an undef of the right value for the specified GEP
1150  /// index.
1151  UndefValue *getElementValue(unsigned Idx) const;
1152 
1153  virtual void destroyConstant();
1154 
1155  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1156  static bool classof(const Value *V) {
1157  return V->getValueID() == UndefValueVal;
1158  }
1159 };
1160 
1161 } // End llvm namespace
1162 
1163 #endif
static bool isValueValidForType(Type *Ty, uint64_t V)
Determine if the value is in range for the given type.
Definition: Constants.cpp:1159
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:445
IntegerType * getType() const
Definition: Constants.h:139
static Constant * getString(LLVMContext &Context, StringRef Initializer, bool AddNull=true)
Definition: Constants.cpp:2357
APFloat getElementAsAPFloat(unsigned i) const
Definition: Constants.cpp:2465
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
VectorType * getType() const
Definition: Constants.h:733
bool isNaN() const
Returns true if and only if the float is a quiet or signaling NaN.
Definition: APFloat.h:386
size_t size() const
size - Get the string size.
Definition: StringRef.h:113
static Constant * getNSWAdd(Constant *C1, Constant *C2)
Definition: Constants.h:869
UndefValue(Type *T)
Definition: Constants.h:1125
unsigned getBitWidth() const
getBitWidth - Return the bitwidth of this constant.
Definition: Constants.h:110
static Constant * getGetElementPtr(Constant *C, ArrayRef< Constant * > IdxList, bool InBounds=false)
Definition: Constants.h:1004
Constant * getElementAsConstant(unsigned i) const
Definition: Constants.cpp:2504
static Constant * getExactSDiv(Constant *C1, Constant *C2)
Definition: Constants.h:893
Constant * getSplatValue() const
Definition: Constants.cpp:2533
static bool classof(const Value *V)
Methods for support type inquiry through isa, cast, and dyn_cast:
Definition: Constants.h:510
StringRef substr(size_t Start, size_t N=npos) const
Definition: StringRef.h:392
static Constant * getNUWShl(Constant *C1, Constant *C2)
Definition: Constants.h:890
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
Definition: APInt.h:408
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U)
Definition: Constants.cpp:1386
F(f)
static bool classof(const Value *V)
Methods for support type inquiry through isa, cast, and dyn_cast:
Definition: Constants.h:770
FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:657
unsigned getOpcode() const
getOpcode - Return the opcode at the root of this constant expression
Definition: Constants.h:1049
bool isMinusOne() const
Determine if the value is all ones.
Definition: Constants.h:176
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant)
Transparently provide more efficient getOperand methods.
static bool classof(const Value *V)
Methods for support type inquiry through isa, cast, and dyn_cast:
Definition: Constants.h:1156
bool isMinValue(bool isSigned) const
Determine if the value is minimal.
Definition: Constants.h:197
ArrayType * getType() const
Definition: Constants.h:680
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:322
bool uge(uint64_t Num) const
Determine if the value is greater or equal to the given number.
Definition: Constants.h:209
StringRef getAsCString() const
Definition: Constants.h:616
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:261
Constant * getSequentialElement() const
Definition: Constants.cpp:660
Definition: Use.h:60
static bool classof(const Value *V)
Methods for support type inquiry through isa, cast, and dyn_cast:
Definition: Constants.h:421
static Constant * getNUWNeg(Constant *C)
Definition: Constants.h:868
static Constant * getExactAShr(Constant *C1, Constant *C2)
Definition: Constants.h:899
double getElementAsDouble(unsigned i) const
Definition: Constants.cpp:2493
static bool classof(const Value *V)
Methods for support type inquiry through isa, cast, and dyn_cast:
Definition: Constants.h:468
static bool classof(const Value *V)
Definition: Constants.h:686
#define false
Definition: ConvertUTF.c:64
This file implements a class to represent arbitrary precision integral constant values and operations...
bool isNegative() const
Definition: Constants.h:155
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
ConstantPointerNull(PointerType *T)
Definition: Constants.h:487
#define DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CLASS, VALUECLASS)
Macro for generating out-of-class operand accessor definitions.
static Constant * getInBoundsGetElementPtr(Constant *C, Constant *Idx)
Definition: Constants.h:1029
static bool classof(const Value *V)
Definition: Constants.h:331
#define T
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
Get the constant's value with a saturation limit.
Definition: Constants.h:218
static bool classof(const Value *V)
Definition: Constants.h:739
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1276
SequentialType * getType() const
Definition: Constants.h:581
bool isExactlyValue(double V) const
Definition: Constants.h:282
bool isZero() const
isZero - Return true if the value is positive or negative zero.
Definition: Constants.h:266
static Constant * getNSWNeg(Constant *C)
Definition: Constants.h:867
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
virtual void destroyConstant()
Definition: Constants.cpp:1251
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
bool isNaN() const
isNaN - Return true if the value is a NaN.
Definition: Constants.h:272
always inline
static Constant * getImpl(StringRef Bytes, Type *Ty)
Definition: Constants.cpp:2248
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool isMaxValue(bool isSigned) const
Determine if the value is maximal.
Definition: Constants.h:185
LLVM Constant Representation.
Definition: Constant.h:41
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition: APInt.h:356
uint64_t getElementByteSize() const
getElementByteSize - Return the size in bytes of the elements in the data.
Definition: Constants.cpp:2225
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1318
StringRef getAsString() const
Definition: Constants.h:607
StringRef getRawDataValues() const
Definition: Constants.cpp:2193
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:745
static Constant * getNSWShl(Constant *C1, Constant *C2)
Definition: Constants.h:887
This file declares a class to represent arbitrary precision floating point values and provide a varie...
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
unsigned getValueID() const
Definition: Value.h:233
opStatus convert(const fltSemantics &, roundingMode, bool *)
Definition: APFloat.cpp:1938
static bool classof(const Value *V)
Methods for support type inquiry through isa, cast, and dyn_cast:
Definition: Constants.h:363
bool isMaxValue() const
Determine if this is the largest unsigned value.
Definition: APInt.h:350
static bool isValueValidForType(Type *Ty, const APFloat &V)
isValueValidForType - return true if Ty is big enough to represent V.
Definition: Constants.cpp:1180
static bool classof(const Value *V)
Methods to support type inquiry through isa, cast, and dyn_cast.
Definition: Constants.h:223
Integer representation type.
Definition: DerivedTypes.h:37
static Constant * getSplat(unsigned NumElts, Constant *Elt)
Definition: Constants.cpp:2405
uint64_t getElementAsInteger(unsigned i) const
Definition: Constants.cpp:2443
#define DECLARE_TRANSPARENT_OPERAND_ACCESSORS(VALUECLASS)
virtual void destroyConstant()
Definition: Constants.cpp:1244
static bool classof(const Value *V)
Methods for support type inquiry through isa, cast, and dyn_cast:
Definition: Constants.h:289
ArrayType * getType() const
Definition: Constants.h:355
Class for constant integers.
Definition: Constants.h:51
bool isNegative() const
Definition: APFloat.h:361
Type * getType() const
Definition: Value.h:111
static Constant * getNUWMul(Constant *C1, Constant *C2)
Definition: Constants.h:884
BasicBlock * getBasicBlock() const
Definition: Constants.h:764
static Constant * getNSWSub(Constant *C1, Constant *C2)
Definition: Constants.h:875
bool equalsInt(uint64_t V) const
Determine if this constant's value is same as an unsigned char.
Definition: Constants.h:132
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Get a ConstantInt for a specific signed value.
Definition: Constants.cpp:507
static bool classof(const Value *V)
Methods for support type inquiry through isa, cast, and dyn_cast:
Definition: Constants.h:1092
bool isZero() const
Definition: Constants.h:160
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:438
void setValueSubclassData(unsigned short D)
Definition: Value.h:348
#define LLVM_DELETED_FUNCTION
Definition: Compiler.h:137
Class for arbitrary precision integers.
Definition: APInt.h:75
static ConstantFP * getNegativeZero(Type *Ty)
Definition: Constants.cpp:588
static Constant * getAnon(LLVMContext &Ctx, ArrayRef< Constant * > V, bool Packed=false)
Definition: Constants.h:394
StructType * getType() const
Definition: Constants.h:413
static bool isElementTypeCompatible(const Type *Ty)
Definition: Constants.cpp:2201
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:365
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:340
bool isNegative() const
isNegative - Return true if the sign bit is set.
Definition: Constants.h:269
Constant * getElementValue(Constant *C) const
Definition: Constants.cpp:672
static Constant * getNSWMul(Constant *C1, Constant *C2)
Definition: Constants.h:881
static Constant * getInBoundsGetElementPtr(Constant *C, ArrayRef< Constant * > IdxList)
Definition: Constants.h:1025
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:371
float getElementAsFloat(unsigned i) const
Definition: Constants.cpp:2484
static Constant * getExactLShr(Constant *C1, Constant *C2)
Definition: Constants.h:902
static Constant * getZeroValueForNegation(Type *Ty)
Definition: Constants.cpp:596
unsigned getNumElements() const
getNumElements - Return the number of elements in the array or vector.
Definition: Constants.cpp:2217
bool isString() const
isString - This method returns true if this is an array of i8.
Definition: Constants.cpp:2512
PointerType * getType() const
Definition: Constants.h:505
virtual void destroyConstant()
Definition: Constants.cpp:1379
virtual void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U)
Definition: Constants.cpp:2560
const APFloat & getValueAPF() const
Definition: Constants.h:263
bool isExactlyValue(const APFloat &V) const
Definition: Constants.cpp:650
Type * getElementType() const
getElementType - Return the element type of the array/vector.
Definition: Constants.cpp:2189
virtual void destroyConstant()
Definition: Constants.cpp:2278
Function * getFunction() const
Definition: Constants.h:763
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)
Transparently provide more efficient getOperand methods.
LLVM Value Representation.
Definition: Value.h:66
bool isZero() const
Returns true if and only if the float is plus or minus zero.
Definition: APFloat.h:376
Constant * getStructElement(unsigned Elt) const
Definition: Constants.cpp:666
static Constant * getGetElementPtr(Constant *C, Constant *Idx, bool InBounds=false)
Definition: Constants.h:1011
static Constant * getExactUDiv(Constant *C1, Constant *C2)
Definition: Constants.h:896
static bool classof(const Value *V)
Definition: Constants.h:631
static Constant * getNUWSub(Constant *C1, Constant *C2)
Definition: Constants.h:878
static Constant * getInBoundsGetElementPtr(Constant *C, ArrayRef< Value * > IdxList)
Definition: Constants.h:1036
int64_t getSExtValue() const
Return the sign extended value.
Definition: Constants.h:124
static Constant * getNUWAdd(Constant *C1, Constant *C2)
Definition: Constants.h:872
const T * data() const
Definition: ArrayRef.h:106
Constant * getWithOperands(ArrayRef< Constant * > Ops) const
Definition: Constants.h:1069
const fltSemantics & getSemantics() const
Definition: APFloat.h:397
bool isOne() const
Determine if the value is one.
Definition: Constants.h:168
static ConstantFP * getInfinity(Type *Ty, bool Negative=false)
Definition: Constants.cpp:638