LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
GlobalsModRef.cpp
Go to the documentation of this file.
1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This simple pass provides alias and mod/ref information for global values
11 // that do not have their address taken, and keeps track of whether functions
12 // read or write memory (are "pure"). For this simple (but very common) case,
13 // we can provide pretty accurate and useful information.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #define DEBUG_TYPE "globalsmodref-aa"
18 #include "llvm/Analysis/Passes.h"
19 #include "llvm/ADT/SCCIterator.h"
20 #include "llvm/ADT/Statistic.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Pass.h"
33 #include <set>
34 using namespace llvm;
35 
36 STATISTIC(NumNonAddrTakenGlobalVars,
37  "Number of global vars without address taken");
38 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
39 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
40 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
41 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
42 
43 namespace {
44  /// FunctionRecord - One instance of this structure is stored for every
45  /// function in the program. Later, the entries for these functions are
46  /// removed if the function is found to call an external function (in which
47  /// case we know nothing about it.
48  struct FunctionRecord {
49  /// GlobalInfo - Maintain mod/ref info for all of the globals without
50  /// addresses taken that are read or written (transitively) by this
51  /// function.
52  std::map<const GlobalValue*, unsigned> GlobalInfo;
53 
54  /// MayReadAnyGlobal - May read global variables, but it is not known which.
55  bool MayReadAnyGlobal;
56 
57  unsigned getInfoForGlobal(const GlobalValue *GV) const {
58  unsigned Effect = MayReadAnyGlobal ? AliasAnalysis::Ref : 0;
59  std::map<const GlobalValue*, unsigned>::const_iterator I =
60  GlobalInfo.find(GV);
61  if (I != GlobalInfo.end())
62  Effect |= I->second;
63  return Effect;
64  }
65 
66  /// FunctionEffect - Capture whether or not this function reads or writes to
67  /// ANY memory. If not, we can do a lot of aggressive analysis on it.
68  unsigned FunctionEffect;
69 
70  FunctionRecord() : MayReadAnyGlobal (false), FunctionEffect(0) {}
71  };
72 
73  /// GlobalsModRef - The actual analysis pass.
74  class GlobalsModRef : public ModulePass, public AliasAnalysis {
75  /// NonAddressTakenGlobals - The globals that do not have their addresses
76  /// taken.
77  std::set<const GlobalValue*> NonAddressTakenGlobals;
78 
79  /// IndirectGlobals - The memory pointed to by this global is known to be
80  /// 'owned' by the global.
81  std::set<const GlobalValue*> IndirectGlobals;
82 
83  /// AllocsForIndirectGlobals - If an instruction allocates memory for an
84  /// indirect global, this map indicates which one.
85  std::map<const Value*, const GlobalValue*> AllocsForIndirectGlobals;
86 
87  /// FunctionInfo - For each function, keep track of what globals are
88  /// modified or read.
89  std::map<const Function*, FunctionRecord> FunctionInfo;
90 
91  public:
92  static char ID;
93  GlobalsModRef() : ModulePass(ID) {
95  }
96 
97  bool runOnModule(Module &M) {
98  InitializeAliasAnalysis(this); // set up super class
99  AnalyzeGlobals(M); // find non-addr taken globals
100  AnalyzeCallGraph(getAnalysis<CallGraph>(), M); // Propagate on CG
101  return false;
102  }
103 
104  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
106  AU.addRequired<CallGraph>();
107  AU.setPreservesAll(); // Does not transform code
108  }
109 
110  //------------------------------------------------
111  // Implement the AliasAnalysis API
112  //
113  AliasResult alias(const Location &LocA, const Location &LocB);
114  ModRefResult getModRefInfo(ImmutableCallSite CS,
115  const Location &Loc);
116  ModRefResult getModRefInfo(ImmutableCallSite CS1,
117  ImmutableCallSite CS2) {
118  return AliasAnalysis::getModRefInfo(CS1, CS2);
119  }
120 
121  /// getModRefBehavior - Return the behavior of the specified function if
122  /// called from the specified call site. The call site may be null in which
123  /// case the most generic behavior of this function should be returned.
124  ModRefBehavior getModRefBehavior(const Function *F) {
125  ModRefBehavior Min = UnknownModRefBehavior;
126 
127  if (FunctionRecord *FR = getFunctionInfo(F)) {
128  if (FR->FunctionEffect == 0)
129  Min = DoesNotAccessMemory;
130  else if ((FR->FunctionEffect & Mod) == 0)
131  Min = OnlyReadsMemory;
132  }
133 
135  }
136 
137  /// getModRefBehavior - Return the behavior of the specified function if
138  /// called from the specified call site. The call site may be null in which
139  /// case the most generic behavior of this function should be returned.
140  ModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
141  ModRefBehavior Min = UnknownModRefBehavior;
142 
143  if (const Function* F = CS.getCalledFunction())
144  if (FunctionRecord *FR = getFunctionInfo(F)) {
145  if (FR->FunctionEffect == 0)
146  Min = DoesNotAccessMemory;
147  else if ((FR->FunctionEffect & Mod) == 0)
148  Min = OnlyReadsMemory;
149  }
150 
152  }
153 
154  virtual void deleteValue(Value *V);
155  virtual void copyValue(Value *From, Value *To);
156  virtual void addEscapingUse(Use &U);
157 
158  /// getAdjustedAnalysisPointer - This method is used when a pass implements
159  /// an analysis interface through multiple inheritance. If needed, it
160  /// should override this to adjust the this pointer as needed for the
161  /// specified pass info.
162  virtual void *getAdjustedAnalysisPointer(AnalysisID PI) {
163  if (PI == &AliasAnalysis::ID)
164  return (AliasAnalysis*)this;
165  return this;
166  }
167 
168  private:
169  /// getFunctionInfo - Return the function info for the function, or null if
170  /// we don't have anything useful to say about it.
171  FunctionRecord *getFunctionInfo(const Function *F) {
172  std::map<const Function*, FunctionRecord>::iterator I =
173  FunctionInfo.find(F);
174  if (I != FunctionInfo.end())
175  return &I->second;
176  return 0;
177  }
178 
179  void AnalyzeGlobals(Module &M);
180  void AnalyzeCallGraph(CallGraph &CG, Module &M);
181  bool AnalyzeUsesOfPointer(Value *V, std::vector<Function*> &Readers,
182  std::vector<Function*> &Writers,
183  GlobalValue *OkayStoreDest = 0);
184  bool AnalyzeIndirectGlobalMemory(GlobalValue *GV);
185  };
186 }
187 
188 char GlobalsModRef::ID = 0;
190  "globalsmodref-aa", "Simple mod/ref analysis for globals",
191  false, true, false)
194  "globalsmodref-aa", "Simple mod/ref analysis for globals",
195  false, true, false)
196 
197 Pass *llvm::createGlobalsModRefPass() { return new GlobalsModRef(); }
198 
199 /// AnalyzeGlobals - Scan through the users of all of the internal
200 /// GlobalValue's in the program. If none of them have their "address taken"
201 /// (really, their address passed to something nontrivial), record this fact,
202 /// and record the functions that they are used directly in.
203 void GlobalsModRef::AnalyzeGlobals(Module &M) {
204  std::vector<Function*> Readers, Writers;
205  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
206  if (I->hasLocalLinkage()) {
207  if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
208  // Remember that we are tracking this global.
209  NonAddressTakenGlobals.insert(I);
210  ++NumNonAddrTakenFunctions;
211  }
212  Readers.clear(); Writers.clear();
213  }
214 
215  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
216  I != E; ++I)
217  if (I->hasLocalLinkage()) {
218  if (!AnalyzeUsesOfPointer(I, Readers, Writers)) {
219  // Remember that we are tracking this global, and the mod/ref fns
220  NonAddressTakenGlobals.insert(I);
221 
222  for (unsigned i = 0, e = Readers.size(); i != e; ++i)
223  FunctionInfo[Readers[i]].GlobalInfo[I] |= Ref;
224 
225  if (!I->isConstant()) // No need to keep track of writers to constants
226  for (unsigned i = 0, e = Writers.size(); i != e; ++i)
227  FunctionInfo[Writers[i]].GlobalInfo[I] |= Mod;
228  ++NumNonAddrTakenGlobalVars;
229 
230  // If this global holds a pointer type, see if it is an indirect global.
231  if (I->getType()->getElementType()->isPointerTy() &&
232  AnalyzeIndirectGlobalMemory(I))
233  ++NumIndirectGlobalVars;
234  }
235  Readers.clear(); Writers.clear();
236  }
237 }
238 
239 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
240 /// If this is used by anything complex (i.e., the address escapes), return
241 /// true. Also, while we are at it, keep track of those functions that read and
242 /// write to the value.
243 ///
244 /// If OkayStoreDest is non-null, stores into this global are allowed.
245 bool GlobalsModRef::AnalyzeUsesOfPointer(Value *V,
246  std::vector<Function*> &Readers,
247  std::vector<Function*> &Writers,
248  GlobalValue *OkayStoreDest) {
249  if (!V->getType()->isPointerTy()) return true;
250 
251  for (Value::use_iterator UI = V->use_begin(), E=V->use_end(); UI != E; ++UI) {
252  User *U = *UI;
253  if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
254  Readers.push_back(LI->getParent()->getParent());
255  } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
256  if (V == SI->getOperand(1)) {
257  Writers.push_back(SI->getParent()->getParent());
258  } else if (SI->getOperand(1) != OkayStoreDest) {
259  return true; // Storing the pointer
260  }
261  } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
262  if (AnalyzeUsesOfPointer(GEP, Readers, Writers)) return true;
263  } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
264  if (AnalyzeUsesOfPointer(BCI, Readers, Writers, OkayStoreDest))
265  return true;
266  } else if (isFreeCall(U, TLI)) {
267  Writers.push_back(cast<Instruction>(U)->getParent()->getParent());
268  } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
269  // Make sure that this is just the function being called, not that it is
270  // passing into the function.
271  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
272  if (CI->getArgOperand(i) == V) return true;
273  } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
274  // Make sure that this is just the function being called, not that it is
275  // passing into the function.
276  for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i)
277  if (II->getArgOperand(i) == V) return true;
278  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
279  if (CE->getOpcode() == Instruction::GetElementPtr ||
280  CE->getOpcode() == Instruction::BitCast) {
281  if (AnalyzeUsesOfPointer(CE, Readers, Writers))
282  return true;
283  } else {
284  return true;
285  }
286  } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) {
287  if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
288  return true; // Allow comparison against null.
289  } else {
290  return true;
291  }
292  }
293 
294  return false;
295 }
296 
297 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
298 /// which holds a pointer type. See if the global always points to non-aliased
299 /// heap memory: that is, all initializers of the globals are allocations, and
300 /// those allocations have no use other than initialization of the global.
301 /// Further, all loads out of GV must directly use the memory, not store the
302 /// pointer somewhere. If this is true, we consider the memory pointed to by
303 /// GV to be owned by GV and can disambiguate other pointers from it.
304 bool GlobalsModRef::AnalyzeIndirectGlobalMemory(GlobalValue *GV) {
305  // Keep track of values related to the allocation of the memory, f.e. the
306  // value produced by the malloc call and any casts.
307  std::vector<Value*> AllocRelatedValues;
308 
309  // Walk the user list of the global. If we find anything other than a direct
310  // load or store, bail out.
311  for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
312  User *U = *I;
313  if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
314  // The pointer loaded from the global can only be used in simple ways:
315  // we allow addressing of it and loading storing to it. We do *not* allow
316  // storing the loaded pointer somewhere else or passing to a function.
317  std::vector<Function*> ReadersWriters;
318  if (AnalyzeUsesOfPointer(LI, ReadersWriters, ReadersWriters))
319  return false; // Loaded pointer escapes.
320  // TODO: Could try some IP mod/ref of the loaded pointer.
321  } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
322  // Storing the global itself.
323  if (SI->getOperand(0) == GV) return false;
324 
325  // If storing the null pointer, ignore it.
326  if (isa<ConstantPointerNull>(SI->getOperand(0)))
327  continue;
328 
329  // Check the value being stored.
330  Value *Ptr = GetUnderlyingObject(SI->getOperand(0));
331 
332  if (!isAllocLikeFn(Ptr, TLI))
333  return false; // Too hard to analyze.
334 
335  // Analyze all uses of the allocation. If any of them are used in a
336  // non-simple way (e.g. stored to another global) bail out.
337  std::vector<Function*> ReadersWriters;
338  if (AnalyzeUsesOfPointer(Ptr, ReadersWriters, ReadersWriters, GV))
339  return false; // Loaded pointer escapes.
340 
341  // Remember that this allocation is related to the indirect global.
342  AllocRelatedValues.push_back(Ptr);
343  } else {
344  // Something complex, bail out.
345  return false;
346  }
347  }
348 
349  // Okay, this is an indirect global. Remember all of the allocations for
350  // this global in AllocsForIndirectGlobals.
351  while (!AllocRelatedValues.empty()) {
352  AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
353  AllocRelatedValues.pop_back();
354  }
355  IndirectGlobals.insert(GV);
356  return true;
357 }
358 
359 /// AnalyzeCallGraph - At this point, we know the functions where globals are
360 /// immediately stored to and read from. Propagate this information up the call
361 /// graph to all callers and compute the mod/ref info for all memory for each
362 /// function.
363 void GlobalsModRef::AnalyzeCallGraph(CallGraph &CG, Module &M) {
364  // We do a bottom-up SCC traversal of the call graph. In other words, we
365  // visit all callees before callers (leaf-first).
366  for (scc_iterator<CallGraph*> I = scc_begin(&CG), E = scc_end(&CG); I != E;
367  ++I) {
368  std::vector<CallGraphNode *> &SCC = *I;
369  assert(!SCC.empty() && "SCC with no functions?");
370 
371  if (!SCC[0]->getFunction()) {
372  // Calls externally - can't say anything useful. Remove any existing
373  // function records (may have been created when scanning globals).
374  for (unsigned i = 0, e = SCC.size(); i != e; ++i)
375  FunctionInfo.erase(SCC[i]->getFunction());
376  continue;
377  }
378 
379  FunctionRecord &FR = FunctionInfo[SCC[0]->getFunction()];
380 
381  bool KnowNothing = false;
382  unsigned FunctionEffect = 0;
383 
384  // Collect the mod/ref properties due to called functions. We only compute
385  // one mod-ref set.
386  for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
387  Function *F = SCC[i]->getFunction();
388  if (!F) {
389  KnowNothing = true;
390  break;
391  }
392 
393  if (F->isDeclaration()) {
394  // Try to get mod/ref behaviour from function attributes.
395  if (F->doesNotAccessMemory()) {
396  // Can't do better than that!
397  } else if (F->onlyReadsMemory()) {
398  FunctionEffect |= Ref;
399  if (!F->isIntrinsic())
400  // This function might call back into the module and read a global -
401  // consider every global as possibly being read by this function.
402  FR.MayReadAnyGlobal = true;
403  } else {
404  FunctionEffect |= ModRef;
405  // Can't say anything useful unless it's an intrinsic - they don't
406  // read or write global variables of the kind considered here.
407  KnowNothing = !F->isIntrinsic();
408  }
409  continue;
410  }
411 
412  for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
413  CI != E && !KnowNothing; ++CI)
414  if (Function *Callee = CI->second->getFunction()) {
415  if (FunctionRecord *CalleeFR = getFunctionInfo(Callee)) {
416  // Propagate function effect up.
417  FunctionEffect |= CalleeFR->FunctionEffect;
418 
419  // Incorporate callee's effects on globals into our info.
420  for (std::map<const GlobalValue*, unsigned>::iterator GI =
421  CalleeFR->GlobalInfo.begin(), E = CalleeFR->GlobalInfo.end();
422  GI != E; ++GI)
423  FR.GlobalInfo[GI->first] |= GI->second;
424  FR.MayReadAnyGlobal |= CalleeFR->MayReadAnyGlobal;
425  } else {
426  // Can't say anything about it. However, if it is inside our SCC,
427  // then nothing needs to be done.
428  CallGraphNode *CalleeNode = CG[Callee];
429  if (std::find(SCC.begin(), SCC.end(), CalleeNode) == SCC.end())
430  KnowNothing = true;
431  }
432  } else {
433  KnowNothing = true;
434  }
435  }
436 
437  // If we can't say anything useful about this SCC, remove all SCC functions
438  // from the FunctionInfo map.
439  if (KnowNothing) {
440  for (unsigned i = 0, e = SCC.size(); i != e; ++i)
441  FunctionInfo.erase(SCC[i]->getFunction());
442  continue;
443  }
444 
445  // Scan the function bodies for explicit loads or stores.
446  for (unsigned i = 0, e = SCC.size(); i != e && FunctionEffect != ModRef;++i)
447  for (inst_iterator II = inst_begin(SCC[i]->getFunction()),
448  E = inst_end(SCC[i]->getFunction());
449  II != E && FunctionEffect != ModRef; ++II)
450  if (LoadInst *LI = dyn_cast<LoadInst>(&*II)) {
451  FunctionEffect |= Ref;
452  if (LI->isVolatile())
453  // Volatile loads may have side-effects, so mark them as writing
454  // memory (for example, a flag inside the processor).
455  FunctionEffect |= Mod;
456  } else if (StoreInst *SI = dyn_cast<StoreInst>(&*II)) {
457  FunctionEffect |= Mod;
458  if (SI->isVolatile())
459  // Treat volatile stores as reading memory somewhere.
460  FunctionEffect |= Ref;
461  } else if (isAllocationFn(&*II, TLI) || isFreeCall(&*II, TLI)) {
462  FunctionEffect |= ModRef;
463  } else if (IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(&*II)) {
464  // The callgraph doesn't include intrinsic calls.
465  Function *Callee = Intrinsic->getCalledFunction();
467  FunctionEffect |= (Behaviour & ModRef);
468  }
469 
470  if ((FunctionEffect & Mod) == 0)
471  ++NumReadMemFunctions;
472  if (FunctionEffect == 0)
473  ++NumNoMemFunctions;
474  FR.FunctionEffect = FunctionEffect;
475 
476  // Finally, now that we know the full effect on this SCC, clone the
477  // information to each function in the SCC.
478  for (unsigned i = 1, e = SCC.size(); i != e; ++i)
479  FunctionInfo[SCC[i]->getFunction()] = FR;
480  }
481 }
482 
483 
484 
485 /// alias - If one of the pointers is to a global that we are tracking, and the
486 /// other is some random pointer, we know there cannot be an alias, because the
487 /// address of the global isn't taken.
489 GlobalsModRef::alias(const Location &LocA,
490  const Location &LocB) {
491  // Get the base object these pointers point to.
492  const Value *UV1 = GetUnderlyingObject(LocA.Ptr);
493  const Value *UV2 = GetUnderlyingObject(LocB.Ptr);
494 
495  // If either of the underlying values is a global, they may be non-addr-taken
496  // globals, which we can answer queries about.
497  const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
498  const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
499  if (GV1 || GV2) {
500  // If the global's address is taken, pretend we don't know it's a pointer to
501  // the global.
502  if (GV1 && !NonAddressTakenGlobals.count(GV1)) GV1 = 0;
503  if (GV2 && !NonAddressTakenGlobals.count(GV2)) GV2 = 0;
504 
505  // If the two pointers are derived from two different non-addr-taken
506  // globals, or if one is and the other isn't, we know these can't alias.
507  if ((GV1 || GV2) && GV1 != GV2)
508  return NoAlias;
509 
510  // Otherwise if they are both derived from the same addr-taken global, we
511  // can't know the two accesses don't overlap.
512  }
513 
514  // These pointers may be based on the memory owned by an indirect global. If
515  // so, we may be able to handle this. First check to see if the base pointer
516  // is a direct load from an indirect global.
517  GV1 = GV2 = 0;
518  if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
519  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
520  if (IndirectGlobals.count(GV))
521  GV1 = GV;
522  if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
523  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
524  if (IndirectGlobals.count(GV))
525  GV2 = GV;
526 
527  // These pointers may also be from an allocation for the indirect global. If
528  // so, also handle them.
529  if (AllocsForIndirectGlobals.count(UV1))
530  GV1 = AllocsForIndirectGlobals[UV1];
531  if (AllocsForIndirectGlobals.count(UV2))
532  GV2 = AllocsForIndirectGlobals[UV2];
533 
534  // Now that we know whether the two pointers are related to indirect globals,
535  // use this to disambiguate the pointers. If either pointer is based on an
536  // indirect global and if they are not both based on the same indirect global,
537  // they cannot alias.
538  if ((GV1 || GV2) && GV1 != GV2)
539  return NoAlias;
540 
541  return AliasAnalysis::alias(LocA, LocB);
542 }
543 
545 GlobalsModRef::getModRefInfo(ImmutableCallSite CS,
546  const Location &Loc) {
547  unsigned Known = ModRef;
548 
549  // If we are asking for mod/ref info of a direct call with a pointer to a
550  // global we are tracking, return information if we have it.
551  if (const GlobalValue *GV =
552  dyn_cast<GlobalValue>(GetUnderlyingObject(Loc.Ptr)))
553  if (GV->hasLocalLinkage())
554  if (const Function *F = CS.getCalledFunction())
555  if (NonAddressTakenGlobals.count(GV))
556  if (const FunctionRecord *FR = getFunctionInfo(F))
557  Known = FR->getInfoForGlobal(GV);
558 
559  if (Known == NoModRef)
560  return NoModRef; // No need to query other mod/ref analyses
561  return ModRefResult(Known & AliasAnalysis::getModRefInfo(CS, Loc));
562 }
563 
564 
565 //===----------------------------------------------------------------------===//
566 // Methods to update the analysis as a result of the client transformation.
567 //
568 void GlobalsModRef::deleteValue(Value *V) {
569  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
570  if (NonAddressTakenGlobals.erase(GV)) {
571  // This global might be an indirect global. If so, remove it and remove
572  // any AllocRelatedValues for it.
573  if (IndirectGlobals.erase(GV)) {
574  // Remove any entries in AllocsForIndirectGlobals for this global.
575  for (std::map<const Value*, const GlobalValue*>::iterator
576  I = AllocsForIndirectGlobals.begin(),
577  E = AllocsForIndirectGlobals.end(); I != E; ) {
578  if (I->second == GV) {
579  AllocsForIndirectGlobals.erase(I++);
580  } else {
581  ++I;
582  }
583  }
584  }
585  }
586  }
587 
588  // Otherwise, if this is an allocation related to an indirect global, remove
589  // it.
590  AllocsForIndirectGlobals.erase(V);
591 
593 }
594 
595 void GlobalsModRef::copyValue(Value *From, Value *To) {
596  AliasAnalysis::copyValue(From, To);
597 }
598 
599 void GlobalsModRef::addEscapingUse(Use &U) {
600  // For the purposes of this analysis, it is conservatively correct to treat
601  // a newly escaping value equivalently to a deleted one. We could perhaps
602  // be more precise by processing the new use and attempting to update our
603  // saved analysis results to accommodate it.
604  deleteValue(U);
605 
607 }
use_iterator use_end()
Definition: Value.h:152
bool isAllocationFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates or reallocates memory (eith...
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
STATISTIC(NumNonAddrTakenGlobalVars,"Number of global vars without address taken")
static PassRegistry * getPassRegistry()
ModRefResult getModRefInfo(const Instruction *I, const Location &Loc)
bool onlyReadsMemory() const
Determine if the function does not access or only reads memory.
Definition: Function.h:246
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
bool isIntrinsic() const
Definition: Function.h:156
const_iterator begin(StringRef path)
Get begin iterator over path.
Definition: Path.cpp:173
F(f)
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
const CallInst * isFreeCall(const Value *I, const TargetLibraryInfo *TLI)
isFreeCall - Returns non-null if the value is a call to the builtin free()
std::vector< CallRecord >::iterator iterator
Definition: CallGraph.h:208
Value * GetUnderlyingObject(Value *V, const DataLayout *TD=0, unsigned MaxLookup=6)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
inst_iterator inst_begin(Function *F)
Definition: InstIterator.h:128
globalsmodref aa
Definition: Use.h:60
INITIALIZE_AG_PASS_BEGIN(GlobalsModRef, AliasAnalysis,"globalsmodref-aa","Simple mod/ref analysis for globals", false, true, false) INITIALIZE_AG_PASS_END(GlobalsModRef
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
virtual void copyValue(Value *From, Value *To)
scc_iterator< T > scc_begin(const T &G)
Definition: SCCIterator.h:199
global_iterator global_begin()
Definition: Module.h:521
Pass * createGlobalsModRefPass()
globalsmodref Simple mod ref analysis for globals
This class represents a no-op cast from one type to another.
virtual void addEscapingUse(Use &U)
void initializeGlobalsModRefPass(PassRegistry &)
bool doesNotAccessMemory() const
Determine if the function does not access memory.
Definition: Function.h:237
scc_iterator< T > scc_end(const T &G)
Definition: SCCIterator.h:204
virtual AliasResult alias(const Location &LocA, const Location &LocB)
#define ModRefBehavior
Represent an integer comparison operator.
Definition: Instructions.h:911
for(unsigned i=0, e=MI->getNumOperands();i!=e;++i)
bool isPointerTy() const
Definition: Type.h:220
virtual void deleteValue(Value *V)
virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS)
getModRefBehavior - Return the behavior when calling the given call site.
global_iterator global_end()
Definition: Module.h:523
globalsmodref Simple mod ref analysis for true
Type * getType() const
Definition: Value.h:111
globalsmodref Simple mod ref analysis for false
use_iterator use_begin()
Definition: Value.h:150
iterator end()
Definition: Module.h:533
bool isDeclaration() const
Definition: Globals.cpp:66
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:318
#define I(x, y, z)
Definition: MD5.cpp:54
bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc...
iterator begin()
Definition: Module.h:531
const void * AnalysisID
Definition: Pass.h:47
bool hasLocalLinkage() const
Definition: GlobalValue.h:211
LLVM Value Representation.
Definition: Value.h:66
static const Function * getParent(const Value *V)
virtual void getAnalysisUsage(AnalysisUsage &AU) const
#define INITIALIZE_AG_PASS_END(passName, agName, arg, n, cfg, analysis, def)
Definition: PassSupport.h:289
inst_iterator inst_end(Function *F)
Definition: InstIterator.h:129
FunTy * getCalledFunction() const
Definition: CallSite.h:93