LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
IntegerDivision.cpp
Go to the documentation of this file.
1 //===-- IntegerDivision.cpp - Expand integer division ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains an implementation of 32bit scalar integer division for
11 // targets that don't have native support. It's largely derived from
12 // compiler-rt's implementation of __udivsi3, but hand-tuned to reduce the
13 // amount of control flow
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #define DEBUG_TYPE "integer-division"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/Intrinsics.h"
23 
24 using namespace llvm;
25 
26 /// Generate code to compute the remainder of two signed integers. Returns the
27 /// remainder, which will have the sign of the dividend. Builder's insert point
28 /// should be pointing where the caller wants code generated, e.g. at the srem
29 /// instruction. This will generate a urem in the process, and Builder's insert
30 /// point will be pointing at the uren (if present, i.e. not folded), ready to
31 /// be expanded if the user wishes
32 static Value *generateSignedRemainderCode(Value *Dividend, Value *Divisor,
33  IRBuilder<> &Builder) {
34  ConstantInt *ThirtyOne = Builder.getInt32(31);
35 
36  // ; %dividend_sgn = ashr i32 %dividend, 31
37  // ; %divisor_sgn = ashr i32 %divisor, 31
38  // ; %dvd_xor = xor i32 %dividend, %dividend_sgn
39  // ; %dvs_xor = xor i32 %divisor, %divisor_sgn
40  // ; %u_dividend = sub i32 %dvd_xor, %dividend_sgn
41  // ; %u_divisor = sub i32 %dvs_xor, %divisor_sgn
42  // ; %urem = urem i32 %dividend, %divisor
43  // ; %xored = xor i32 %urem, %dividend_sgn
44  // ; %srem = sub i32 %xored, %dividend_sgn
45  Value *DividendSign = Builder.CreateAShr(Dividend, ThirtyOne);
46  Value *DivisorSign = Builder.CreateAShr(Divisor, ThirtyOne);
47  Value *DvdXor = Builder.CreateXor(Dividend, DividendSign);
48  Value *DvsXor = Builder.CreateXor(Divisor, DivisorSign);
49  Value *UDividend = Builder.CreateSub(DvdXor, DividendSign);
50  Value *UDivisor = Builder.CreateSub(DvsXor, DivisorSign);
51  Value *URem = Builder.CreateURem(UDividend, UDivisor);
52  Value *Xored = Builder.CreateXor(URem, DividendSign);
53  Value *SRem = Builder.CreateSub(Xored, DividendSign);
54 
55  if (Instruction *URemInst = dyn_cast<Instruction>(URem))
56  Builder.SetInsertPoint(URemInst);
57 
58  return SRem;
59 }
60 
61 
62 /// Generate code to compute the remainder of two unsigned integers. Returns the
63 /// remainder. Builder's insert point should be pointing where the caller wants
64 /// code generated, e.g. at the urem instruction. This will generate a udiv in
65 /// the process, and Builder's insert point will be pointing at the udiv (if
66 /// present, i.e. not folded), ready to be expanded if the user wishes
67 static Value *generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor,
68  IRBuilder<> &Builder) {
69  // Remainder = Dividend - Quotient*Divisor
70 
71  // ; %quotient = udiv i32 %dividend, %divisor
72  // ; %product = mul i32 %divisor, %quotient
73  // ; %remainder = sub i32 %dividend, %product
74  Value *Quotient = Builder.CreateUDiv(Dividend, Divisor);
75  Value *Product = Builder.CreateMul(Divisor, Quotient);
76  Value *Remainder = Builder.CreateSub(Dividend, Product);
77 
78  if (Instruction *UDiv = dyn_cast<Instruction>(Quotient))
79  Builder.SetInsertPoint(UDiv);
80 
81  return Remainder;
82 }
83 
84 /// Generate code to divide two signed integers. Returns the quotient, rounded
85 /// towards 0. Builder's insert point should be pointing where the caller wants
86 /// code generated, e.g. at the sdiv instruction. This will generate a udiv in
87 /// the process, and Builder's insert point will be pointing at the udiv (if
88 /// present, i.e. not folded), ready to be expanded if the user wishes.
89 static Value *generateSignedDivisionCode(Value *Dividend, Value *Divisor,
90  IRBuilder<> &Builder) {
91  // Implementation taken from compiler-rt's __divsi3
92 
93  ConstantInt *ThirtyOne = Builder.getInt32(31);
94 
95  // ; %tmp = ashr i32 %dividend, 31
96  // ; %tmp1 = ashr i32 %divisor, 31
97  // ; %tmp2 = xor i32 %tmp, %dividend
98  // ; %u_dvnd = sub nsw i32 %tmp2, %tmp
99  // ; %tmp3 = xor i32 %tmp1, %divisor
100  // ; %u_dvsr = sub nsw i32 %tmp3, %tmp1
101  // ; %q_sgn = xor i32 %tmp1, %tmp
102  // ; %q_mag = udiv i32 %u_dvnd, %u_dvsr
103  // ; %tmp4 = xor i32 %q_mag, %q_sgn
104  // ; %q = sub i32 %tmp4, %q_sgn
105  Value *Tmp = Builder.CreateAShr(Dividend, ThirtyOne);
106  Value *Tmp1 = Builder.CreateAShr(Divisor, ThirtyOne);
107  Value *Tmp2 = Builder.CreateXor(Tmp, Dividend);
108  Value *U_Dvnd = Builder.CreateSub(Tmp2, Tmp);
109  Value *Tmp3 = Builder.CreateXor(Tmp1, Divisor);
110  Value *U_Dvsr = Builder.CreateSub(Tmp3, Tmp1);
111  Value *Q_Sgn = Builder.CreateXor(Tmp1, Tmp);
112  Value *Q_Mag = Builder.CreateUDiv(U_Dvnd, U_Dvsr);
113  Value *Tmp4 = Builder.CreateXor(Q_Mag, Q_Sgn);
114  Value *Q = Builder.CreateSub(Tmp4, Q_Sgn);
115 
116  if (Instruction *UDiv = dyn_cast<Instruction>(Q_Mag))
117  Builder.SetInsertPoint(UDiv);
118 
119  return Q;
120 }
121 
122 /// Generates code to divide two unsigned scalar 32-bit integers. Returns the
123 /// quotient, rounded towards 0. Builder's insert point should be pointing where
124 /// the caller wants code generated, e.g. at the udiv instruction.
125 static Value *generateUnsignedDivisionCode(Value *Dividend, Value *Divisor,
126  IRBuilder<> &Builder) {
127  // The basic algorithm can be found in the compiler-rt project's
128  // implementation of __udivsi3.c. Here, we do a lower-level IR based approach
129  // that's been hand-tuned to lessen the amount of control flow involved.
130 
131  // Some helper values
132  IntegerType *I32Ty = Builder.getInt32Ty();
133 
134  ConstantInt *Zero = Builder.getInt32(0);
135  ConstantInt *One = Builder.getInt32(1);
136  ConstantInt *ThirtyOne = Builder.getInt32(31);
137  ConstantInt *NegOne = ConstantInt::getSigned(I32Ty, -1);
138  ConstantInt *True = Builder.getTrue();
139 
140  BasicBlock *IBB = Builder.GetInsertBlock();
141  Function *F = IBB->getParent();
143  I32Ty);
144 
145  // Our CFG is going to look like:
146  // +---------------------+
147  // | special-cases |
148  // | ... |
149  // +---------------------+
150  // | |
151  // | +----------+
152  // | | bb1 |
153  // | | ... |
154  // | +----------+
155  // | | |
156  // | | +------------+
157  // | | | preheader |
158  // | | | ... |
159  // | | +------------+
160  // | | |
161  // | | | +---+
162  // | | | | |
163  // | | +------------+ |
164  // | | | do-while | |
165  // | | | ... | |
166  // | | +------------+ |
167  // | | | | |
168  // | +-----------+ +---+
169  // | | loop-exit |
170  // | | ... |
171  // | +-----------+
172  // | |
173  // +-------+
174  // | ... |
175  // | end |
176  // +-------+
177  BasicBlock *SpecialCases = Builder.GetInsertBlock();
178  SpecialCases->setName(Twine(SpecialCases->getName(), "_udiv-special-cases"));
179  BasicBlock *End = SpecialCases->splitBasicBlock(Builder.GetInsertPoint(),
180  "udiv-end");
181  BasicBlock *LoopExit = BasicBlock::Create(Builder.getContext(),
182  "udiv-loop-exit", F, End);
183  BasicBlock *DoWhile = BasicBlock::Create(Builder.getContext(),
184  "udiv-do-while", F, End);
185  BasicBlock *Preheader = BasicBlock::Create(Builder.getContext(),
186  "udiv-preheader", F, End);
187  BasicBlock *BB1 = BasicBlock::Create(Builder.getContext(),
188  "udiv-bb1", F, End);
189 
190  // We'll be overwriting the terminator to insert our extra blocks
191  SpecialCases->getTerminator()->eraseFromParent();
192 
193  // First off, check for special cases: dividend or divisor is zero, divisor
194  // is greater than dividend, and divisor is 1.
195  // ; special-cases:
196  // ; %ret0_1 = icmp eq i32 %divisor, 0
197  // ; %ret0_2 = icmp eq i32 %dividend, 0
198  // ; %ret0_3 = or i1 %ret0_1, %ret0_2
199  // ; %tmp0 = tail call i32 @llvm.ctlz.i32(i32 %divisor, i1 true)
200  // ; %tmp1 = tail call i32 @llvm.ctlz.i32(i32 %dividend, i1 true)
201  // ; %sr = sub nsw i32 %tmp0, %tmp1
202  // ; %ret0_4 = icmp ugt i32 %sr, 31
203  // ; %ret0 = or i1 %ret0_3, %ret0_4
204  // ; %retDividend = icmp eq i32 %sr, 31
205  // ; %retVal = select i1 %ret0, i32 0, i32 %dividend
206  // ; %earlyRet = or i1 %ret0, %retDividend
207  // ; br i1 %earlyRet, label %end, label %bb1
208  Builder.SetInsertPoint(SpecialCases);
209  Value *Ret0_1 = Builder.CreateICmpEQ(Divisor, Zero);
210  Value *Ret0_2 = Builder.CreateICmpEQ(Dividend, Zero);
211  Value *Ret0_3 = Builder.CreateOr(Ret0_1, Ret0_2);
212  Value *Tmp0 = Builder.CreateCall2(CTLZi32, Divisor, True);
213  Value *Tmp1 = Builder.CreateCall2(CTLZi32, Dividend, True);
214  Value *SR = Builder.CreateSub(Tmp0, Tmp1);
215  Value *Ret0_4 = Builder.CreateICmpUGT(SR, ThirtyOne);
216  Value *Ret0 = Builder.CreateOr(Ret0_3, Ret0_4);
217  Value *RetDividend = Builder.CreateICmpEQ(SR, ThirtyOne);
218  Value *RetVal = Builder.CreateSelect(Ret0, Zero, Dividend);
219  Value *EarlyRet = Builder.CreateOr(Ret0, RetDividend);
220  Builder.CreateCondBr(EarlyRet, End, BB1);
221 
222  // ; bb1: ; preds = %special-cases
223  // ; %sr_1 = add i32 %sr, 1
224  // ; %tmp2 = sub i32 31, %sr
225  // ; %q = shl i32 %dividend, %tmp2
226  // ; %skipLoop = icmp eq i32 %sr_1, 0
227  // ; br i1 %skipLoop, label %loop-exit, label %preheader
228  Builder.SetInsertPoint(BB1);
229  Value *SR_1 = Builder.CreateAdd(SR, One);
230  Value *Tmp2 = Builder.CreateSub(ThirtyOne, SR);
231  Value *Q = Builder.CreateShl(Dividend, Tmp2);
232  Value *SkipLoop = Builder.CreateICmpEQ(SR_1, Zero);
233  Builder.CreateCondBr(SkipLoop, LoopExit, Preheader);
234 
235  // ; preheader: ; preds = %bb1
236  // ; %tmp3 = lshr i32 %dividend, %sr_1
237  // ; %tmp4 = add i32 %divisor, -1
238  // ; br label %do-while
239  Builder.SetInsertPoint(Preheader);
240  Value *Tmp3 = Builder.CreateLShr(Dividend, SR_1);
241  Value *Tmp4 = Builder.CreateAdd(Divisor, NegOne);
242  Builder.CreateBr(DoWhile);
243 
244  // ; do-while: ; preds = %do-while, %preheader
245  // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
246  // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
247  // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
248  // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
249  // ; %tmp5 = shl i32 %r_1, 1
250  // ; %tmp6 = lshr i32 %q_2, 31
251  // ; %tmp7 = or i32 %tmp5, %tmp6
252  // ; %tmp8 = shl i32 %q_2, 1
253  // ; %q_1 = or i32 %carry_1, %tmp8
254  // ; %tmp9 = sub i32 %tmp4, %tmp7
255  // ; %tmp10 = ashr i32 %tmp9, 31
256  // ; %carry = and i32 %tmp10, 1
257  // ; %tmp11 = and i32 %tmp10, %divisor
258  // ; %r = sub i32 %tmp7, %tmp11
259  // ; %sr_2 = add i32 %sr_3, -1
260  // ; %tmp12 = icmp eq i32 %sr_2, 0
261  // ; br i1 %tmp12, label %loop-exit, label %do-while
262  Builder.SetInsertPoint(DoWhile);
263  PHINode *Carry_1 = Builder.CreatePHI(I32Ty, 2);
264  PHINode *SR_3 = Builder.CreatePHI(I32Ty, 2);
265  PHINode *R_1 = Builder.CreatePHI(I32Ty, 2);
266  PHINode *Q_2 = Builder.CreatePHI(I32Ty, 2);
267  Value *Tmp5 = Builder.CreateShl(R_1, One);
268  Value *Tmp6 = Builder.CreateLShr(Q_2, ThirtyOne);
269  Value *Tmp7 = Builder.CreateOr(Tmp5, Tmp6);
270  Value *Tmp8 = Builder.CreateShl(Q_2, One);
271  Value *Q_1 = Builder.CreateOr(Carry_1, Tmp8);
272  Value *Tmp9 = Builder.CreateSub(Tmp4, Tmp7);
273  Value *Tmp10 = Builder.CreateAShr(Tmp9, 31);
274  Value *Carry = Builder.CreateAnd(Tmp10, One);
275  Value *Tmp11 = Builder.CreateAnd(Tmp10, Divisor);
276  Value *R = Builder.CreateSub(Tmp7, Tmp11);
277  Value *SR_2 = Builder.CreateAdd(SR_3, NegOne);
278  Value *Tmp12 = Builder.CreateICmpEQ(SR_2, Zero);
279  Builder.CreateCondBr(Tmp12, LoopExit, DoWhile);
280 
281  // ; loop-exit: ; preds = %do-while, %bb1
282  // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
283  // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
284  // ; %tmp13 = shl i32 %q_3, 1
285  // ; %q_4 = or i32 %carry_2, %tmp13
286  // ; br label %end
287  Builder.SetInsertPoint(LoopExit);
288  PHINode *Carry_2 = Builder.CreatePHI(I32Ty, 2);
289  PHINode *Q_3 = Builder.CreatePHI(I32Ty, 2);
290  Value *Tmp13 = Builder.CreateShl(Q_3, One);
291  Value *Q_4 = Builder.CreateOr(Carry_2, Tmp13);
292  Builder.CreateBr(End);
293 
294  // ; end: ; preds = %loop-exit, %special-cases
295  // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
296  // ; ret i32 %q_5
297  Builder.SetInsertPoint(End, End->begin());
298  PHINode *Q_5 = Builder.CreatePHI(I32Ty, 2);
299 
300  // Populate the Phis, since all values have now been created. Our Phis were:
301  // ; %carry_1 = phi i32 [ 0, %preheader ], [ %carry, %do-while ]
302  Carry_1->addIncoming(Zero, Preheader);
303  Carry_1->addIncoming(Carry, DoWhile);
304  // ; %sr_3 = phi i32 [ %sr_1, %preheader ], [ %sr_2, %do-while ]
305  SR_3->addIncoming(SR_1, Preheader);
306  SR_3->addIncoming(SR_2, DoWhile);
307  // ; %r_1 = phi i32 [ %tmp3, %preheader ], [ %r, %do-while ]
308  R_1->addIncoming(Tmp3, Preheader);
309  R_1->addIncoming(R, DoWhile);
310  // ; %q_2 = phi i32 [ %q, %preheader ], [ %q_1, %do-while ]
311  Q_2->addIncoming(Q, Preheader);
312  Q_2->addIncoming(Q_1, DoWhile);
313  // ; %carry_2 = phi i32 [ 0, %bb1 ], [ %carry, %do-while ]
314  Carry_2->addIncoming(Zero, BB1);
315  Carry_2->addIncoming(Carry, DoWhile);
316  // ; %q_3 = phi i32 [ %q, %bb1 ], [ %q_1, %do-while ]
317  Q_3->addIncoming(Q, BB1);
318  Q_3->addIncoming(Q_1, DoWhile);
319  // ; %q_5 = phi i32 [ %q_4, %loop-exit ], [ %retVal, %special-cases ]
320  Q_5->addIncoming(Q_4, LoopExit);
321  Q_5->addIncoming(RetVal, SpecialCases);
322 
323  return Q_5;
324 }
325 
326 /// Generate code to calculate the remainder of two integers, replacing Rem with
327 /// the generated code. This currently generates code using the udiv expansion,
328 /// but future work includes generating more specialized code, e.g. when more
329 /// information about the operands are known. Currently only implements 32bit
330 /// scalar division (due to udiv's limitation), but future work is removing this
331 /// limitation.
332 ///
333 /// @brief Replace Rem with generated code.
335  assert((Rem->getOpcode() == Instruction::SRem ||
336  Rem->getOpcode() == Instruction::URem) &&
337  "Trying to expand remainder from a non-remainder function");
338 
339  IRBuilder<> Builder(Rem);
340 
341  // First prepare the sign if it's a signed remainder
342  if (Rem->getOpcode() == Instruction::SRem) {
343  Value *Remainder = generateSignedRemainderCode(Rem->getOperand(0),
344  Rem->getOperand(1), Builder);
345 
346  Rem->replaceAllUsesWith(Remainder);
347  Rem->dropAllReferences();
348  Rem->eraseFromParent();
349 
350  // If we didn't actually generate a udiv instruction, we're done
352  if (!BO || BO->getOpcode() != Instruction::URem)
353  return true;
354 
355  Rem = BO;
356  }
357 
358  Value *Remainder = generatedUnsignedRemainderCode(Rem->getOperand(0),
359  Rem->getOperand(1),
360  Builder);
361 
362  Rem->replaceAllUsesWith(Remainder);
363  Rem->dropAllReferences();
364  Rem->eraseFromParent();
365 
366  // Expand the udiv
367  if (BinaryOperator *UDiv = dyn_cast<BinaryOperator>(Builder.GetInsertPoint())) {
368  assert(UDiv->getOpcode() == Instruction::UDiv && "Non-udiv in expansion?");
369  expandDivision(UDiv);
370  }
371 
372  return true;
373 }
374 
375 
376 /// Generate code to divide two integers, replacing Div with the generated
377 /// code. This currently generates code similarly to compiler-rt's
378 /// implementations, but future work includes generating more specialized code
379 /// when more information about the operands are known. Currently only
380 /// implements 32bit scalar division, but future work is removing this
381 /// limitation.
382 ///
383 /// @brief Replace Div with generated code.
385  assert((Div->getOpcode() == Instruction::SDiv ||
386  Div->getOpcode() == Instruction::UDiv) &&
387  "Trying to expand division from a non-division function");
388 
389  IRBuilder<> Builder(Div);
390 
391  if (Div->getType()->isVectorTy())
392  llvm_unreachable("Div over vectors not supported");
393 
394  // First prepare the sign if it's a signed division
395  if (Div->getOpcode() == Instruction::SDiv) {
396  // Lower the code to unsigned division, and reset Div to point to the udiv.
397  Value *Quotient = generateSignedDivisionCode(Div->getOperand(0),
398  Div->getOperand(1), Builder);
399  Div->replaceAllUsesWith(Quotient);
400  Div->dropAllReferences();
401  Div->eraseFromParent();
402 
403  // If we didn't actually generate a udiv instruction, we're done
405  if (!BO || BO->getOpcode() != Instruction::UDiv)
406  return true;
407 
408  Div = BO;
409  }
410 
411  // Insert the unsigned division code
412  Value *Quotient = generateUnsignedDivisionCode(Div->getOperand(0),
413  Div->getOperand(1),
414  Builder);
415  Div->replaceAllUsesWith(Quotient);
416  Div->dropAllReferences();
417  Div->eraseFromParent();
418 
419  return true;
420 }
421 
422 /// Generate code to compute the remainder of two integers of bitwidth up to
423 /// 32 bits. Uses the above routines and extends the inputs/truncates the
424 /// outputs to operate in 32 bits; that is, these routines are good for targets
425 /// that have no or very little suppport for smaller than 32 bit integer
426 /// arithmetic.
427 ///
428 /// @brief Replace Rem with emulation code.
430  assert((Rem->getOpcode() == Instruction::SRem ||
431  Rem->getOpcode() == Instruction::URem) &&
432  "Trying to expand remainder from a non-remainder function");
433 
434  Type *RemTy = Rem->getType();
435  if (RemTy->isVectorTy())
436  llvm_unreachable("Div over vectors not supported");
437 
438  unsigned RemTyBitWidth = RemTy->getIntegerBitWidth();
439 
440  if (RemTyBitWidth > 32)
441  llvm_unreachable("Div of bitwidth greater than 32 not supported");
442 
443  if (RemTyBitWidth == 32)
444  return expandRemainder(Rem);
445 
446  // If bitwidth smaller than 32 extend inputs, truncate output and proceed
447  // with 32 bit division.
448  IRBuilder<> Builder(Rem);
449 
450  Value *ExtDividend;
451  Value *ExtDivisor;
452  Value *ExtRem;
453  Value *Trunc;
454  Type *Int32Ty = Builder.getInt32Ty();
455 
456  if (Rem->getOpcode() == Instruction::SRem) {
457  ExtDividend = Builder.CreateSExt(Rem->getOperand(0), Int32Ty);
458  ExtDivisor = Builder.CreateSExt(Rem->getOperand(1), Int32Ty);
459  ExtRem = Builder.CreateSRem(ExtDividend, ExtDivisor);
460  } else {
461  ExtDividend = Builder.CreateZExt(Rem->getOperand(0), Int32Ty);
462  ExtDivisor = Builder.CreateZExt(Rem->getOperand(1), Int32Ty);
463  ExtRem = Builder.CreateURem(ExtDividend, ExtDivisor);
464  }
465  Trunc = Builder.CreateTrunc(ExtRem, RemTy);
466 
467  Rem->replaceAllUsesWith(Trunc);
468  Rem->dropAllReferences();
469  Rem->eraseFromParent();
470 
471  return expandRemainder(cast<BinaryOperator>(ExtRem));
472 }
473 
474 
475 /// Generate code to divide two integers of bitwidth up to 32 bits. Uses the
476 /// above routines and extends the inputs/truncates the outputs to operate
477 /// in 32 bits; that is, these routines are good for targets that have no
478 /// or very little support for smaller than 32 bit integer arithmetic.
479 ///
480 /// @brief Replace Div with emulation code.
482  assert((Div->getOpcode() == Instruction::SDiv ||
483  Div->getOpcode() == Instruction::UDiv) &&
484  "Trying to expand division from a non-division function");
485 
486  Type *DivTy = Div->getType();
487  if (DivTy->isVectorTy())
488  llvm_unreachable("Div over vectors not supported");
489 
490  unsigned DivTyBitWidth = DivTy->getIntegerBitWidth();
491 
492  if (DivTyBitWidth > 32)
493  llvm_unreachable("Div of bitwidth greater than 32 not supported");
494 
495  if (DivTyBitWidth == 32)
496  return expandDivision(Div);
497 
498  // If bitwidth smaller than 32 extend inputs, truncate output and proceed
499  // with 32 bit division.
500  IRBuilder<> Builder(Div);
501 
502  Value *ExtDividend;
503  Value *ExtDivisor;
504  Value *ExtDiv;
505  Value *Trunc;
506  Type *Int32Ty = Builder.getInt32Ty();
507 
508  if (Div->getOpcode() == Instruction::SDiv) {
509  ExtDividend = Builder.CreateSExt(Div->getOperand(0), Int32Ty);
510  ExtDivisor = Builder.CreateSExt(Div->getOperand(1), Int32Ty);
511  ExtDiv = Builder.CreateSDiv(ExtDividend, ExtDivisor);
512  } else {
513  ExtDividend = Builder.CreateZExt(Div->getOperand(0), Int32Ty);
514  ExtDivisor = Builder.CreateZExt(Div->getOperand(1), Int32Ty);
515  ExtDiv = Builder.CreateUDiv(ExtDividend, ExtDivisor);
516  }
517  Trunc = Builder.CreateTrunc(ExtDiv, DivTy);
518 
519  Div->replaceAllUsesWith(Trunc);
520  Div->dropAllReferences();
521  Div->eraseFromParent();
522 
523  return expandDivision(cast<BinaryOperator>(ExtDiv));
524 }
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:753
BasicBlock::iterator GetInsertPoint() const
Definition: IRBuilder.h:78
void addIncoming(Value *V, BasicBlock *BB)
void dropAllReferences()
Definition: User.h:168
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
Value * CreateSRem(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:719
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
F(f)
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1206
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:637
iterator begin()
Definition: BasicBlock.h:193
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Definition: IRBuilder.h:310
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Definition: IRBuilder.h:1299
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:821
#define llvm_unreachable(msg)
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=0)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Definition: IRBuilder.h:532
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
void setName(const Twine &Name)
Definition: Value.cpp:175
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:789
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:805
bool expandRemainderUpTo32Bits(BinaryOperator *Rem)
Replace Rem with generated code.
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:683
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
bool expandRemainder(BinaryOperator *Rem)
Replace Rem with generated code.
Value * CreateAShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:771
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:83
static Value * generateSignedDivisionCode(Value *Dividend, Value *Divisor, IRBuilder<> &Builder)
bool expandDivisionUpTo32Bits(BinaryOperator *Div)
Replace Rem with generated code.
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition: IRBuilder.h:256
Type * Int32Ty
bool isVectorTy() const
Definition: Type.h:229
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:615
bool expandDivision(BinaryOperator *Div)
Replace Div with generated code.
Value * getOperand(unsigned i) const
Definition: User.h:88
Integer representation type.
Definition: DerivedTypes.h:37
LLVMContext & getContext() const
Definition: IRBuilder.h:79
static Value * generatedUnsignedRemainderCode(Value *Dividend, Value *Divisor, IRBuilder<> &Builder)
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
unsigned getIntegerBitWidth() const
Definition: Type.cpp:178
Class for constant integers.
Definition: Constants.h:51
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1071
Type * getType() const
Definition: Value.h:111
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:276
BasicBlock * GetInsertBlock() const
Definition: IRBuilder.h:77
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:659
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Get a ConstantInt for a specific signed value.
Definition: Constants.cpp:507
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:713
Value * CreateSDiv(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:693
Value * CreateUDiv(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:681
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="")
Definition: IRBuilder.h:1336
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:734
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1074
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
static Value * generateUnsignedDivisionCode(Value *Dividend, Value *Divisor, IRBuilder<> &Builder)
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=0, BasicBlock *InsertBefore=0)
Creates a new BasicBlock.
Definition: BasicBlock.h:109
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="")
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:298
CallInst * CreateCall2(Value *Callee, Value *Arg1, Value *Arg2, const Twine &Name="")
Definition: IRBuilder.h:1310
Module * getParent()
Definition: GlobalValue.h:286
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1068
LLVM Value Representation.
Definition: Value.h:66
static Value * generateSignedRemainderCode(Value *Dividend, Value *Divisor, IRBuilder<> &Builder)
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:526
Value * CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1212