LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
IntervalMap.h
Go to the documentation of this file.
1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a coalescing interval map for small objects.
11 //
12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13 // same value are represented in a compressed form.
14 //
15 // Iterators provide ordered access to the compressed intervals rather than the
16 // individual keys, and insert and erase operations use key intervals as well.
17 //
18 // Like SmallVector, IntervalMap will store the first N intervals in the map
19 // object itself without any allocations. When space is exhausted it switches to
20 // a B+-tree representation with very small overhead for small key and value
21 // objects.
22 //
23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
24 // work with both closed and half-open intervals.
25 //
26 // Keys and values are not stored next to each other in a std::pair, so we don't
27 // provide such a value_type. Dereferencing iterators only returns the mapped
28 // value. The interval bounds are accessible through the start() and stop()
29 // iterator methods.
30 //
31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32 // is the optimal size. For large objects use std::map instead.
33 //
34 //===----------------------------------------------------------------------===//
35 //
36 // Synopsis:
37 //
38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
39 // class IntervalMap {
40 // public:
41 // typedef KeyT key_type;
42 // typedef ValT mapped_type;
43 // typedef RecyclingAllocator<...> Allocator;
44 // class iterator;
45 // class const_iterator;
46 //
47 // explicit IntervalMap(Allocator&);
48 // ~IntervalMap():
49 //
50 // bool empty() const;
51 // KeyT start() const;
52 // KeyT stop() const;
53 // ValT lookup(KeyT x, Value NotFound = Value()) const;
54 //
55 // const_iterator begin() const;
56 // const_iterator end() const;
57 // iterator begin();
58 // iterator end();
59 // const_iterator find(KeyT x) const;
60 // iterator find(KeyT x);
61 //
62 // void insert(KeyT a, KeyT b, ValT y);
63 // void clear();
64 // };
65 //
66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
67 // class IntervalMap::const_iterator :
68 // public std::iterator<std::bidirectional_iterator_tag, ValT> {
69 // public:
70 // bool operator==(const const_iterator &) const;
71 // bool operator!=(const const_iterator &) const;
72 // bool valid() const;
73 //
74 // const KeyT &start() const;
75 // const KeyT &stop() const;
76 // const ValT &value() const;
77 // const ValT &operator*() const;
78 // const ValT *operator->() const;
79 //
80 // const_iterator &operator++();
81 // const_iterator &operator++(int);
82 // const_iterator &operator--();
83 // const_iterator &operator--(int);
84 // void goToBegin();
85 // void goToEnd();
86 // void find(KeyT x);
87 // void advanceTo(KeyT x);
88 // };
89 //
90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
91 // class IntervalMap::iterator : public const_iterator {
92 // public:
93 // void insert(KeyT a, KeyT b, Value y);
94 // void erase();
95 // };
96 //
97 //===----------------------------------------------------------------------===//
98 
99 #ifndef LLVM_ADT_INTERVALMAP_H
100 #define LLVM_ADT_INTERVALMAP_H
101 
102 #include "llvm/ADT/PointerIntPair.h"
103 #include "llvm/ADT/SmallVector.h"
104 #include "llvm/Support/Allocator.h"
106 #include <iterator>
107 
108 namespace llvm {
109 
110 
111 //===----------------------------------------------------------------------===//
112 //--- Key traits ---//
113 //===----------------------------------------------------------------------===//
114 //
115 // The IntervalMap works with closed or half-open intervals.
116 // Adjacent intervals that map to the same value are coalesced.
117 //
118 // The IntervalMapInfo traits class is used to determine if a key is contained
119 // in an interval, and if two intervals are adjacent so they can be coalesced.
120 // The provided implementation works for closed integer intervals, other keys
121 // probably need a specialized version.
122 //
123 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
124 //
125 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
126 // allowed. This is so that stopLess(a, b) can be used to determine if two
127 // intervals overlap.
128 //
129 //===----------------------------------------------------------------------===//
130 
131 template <typename T>
133 
134  /// startLess - Return true if x is not in [a;b].
135  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
136  static inline bool startLess(const T &x, const T &a) {
137  return x < a;
138  }
139 
140  /// stopLess - Return true if x is not in [a;b].
141  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
142  static inline bool stopLess(const T &b, const T &x) {
143  return b < x;
144  }
145 
146  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
147  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
148  static inline bool adjacent(const T &a, const T &b) {
149  return a+1 == b;
150  }
151 
152 };
153 
154 template <typename T>
156 
157  /// startLess - Return true if x is not in [a;b).
158  static inline bool startLess(const T &x, const T &a) {
159  return x < a;
160  }
161 
162  /// stopLess - Return true if x is not in [a;b).
163  static inline bool stopLess(const T &b, const T &x) {
164  return b <= x;
165  }
166 
167  /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
168  static inline bool adjacent(const T &a, const T &b) {
169  return a == b;
170  }
171 
172 };
173 
174 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
175 /// It should be considered private to the implementation.
176 namespace IntervalMapImpl {
177 
178 // Forward declarations.
179 template <typename, typename, unsigned, typename> class LeafNode;
180 template <typename, typename, unsigned, typename> class BranchNode;
181 
182 typedef std::pair<unsigned,unsigned> IdxPair;
183 
184 
185 //===----------------------------------------------------------------------===//
186 //--- IntervalMapImpl::NodeBase ---//
187 //===----------------------------------------------------------------------===//
188 //
189 // Both leaf and branch nodes store vectors of pairs.
190 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
191 //
192 // Keys and values are stored in separate arrays to avoid padding caused by
193 // different object alignments. This also helps improve locality of reference
194 // when searching the keys.
195 //
196 // The nodes don't know how many elements they contain - that information is
197 // stored elsewhere. Omitting the size field prevents padding and allows a node
198 // to fill the allocated cache lines completely.
199 //
200 // These are typical key and value sizes, the node branching factor (N), and
201 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
202 //
203 // T1 T2 N Waste Used by
204 // 4 4 24 0 Branch<4> (32-bit pointers)
205 // 8 4 16 0 Leaf<4,4>, Branch<4>
206 // 8 8 12 0 Leaf<4,8>, Branch<8>
207 // 16 4 9 12 Leaf<8,4>
208 // 16 8 8 0 Leaf<8,8>
209 //
210 //===----------------------------------------------------------------------===//
211 
212 template <typename T1, typename T2, unsigned N>
213 class NodeBase {
214 public:
215  enum { Capacity = N };
216 
218  T2 second[N];
219 
220  /// copy - Copy elements from another node.
221  /// @param Other Node elements are copied from.
222  /// @param i Beginning of the source range in other.
223  /// @param j Beginning of the destination range in this.
224  /// @param Count Number of elements to copy.
225  template <unsigned M>
226  void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
227  unsigned j, unsigned Count) {
228  assert(i + Count <= M && "Invalid source range");
229  assert(j + Count <= N && "Invalid dest range");
230  for (unsigned e = i + Count; i != e; ++i, ++j) {
231  first[j] = Other.first[i];
232  second[j] = Other.second[i];
233  }
234  }
235 
236  /// moveLeft - Move elements to the left.
237  /// @param i Beginning of the source range.
238  /// @param j Beginning of the destination range.
239  /// @param Count Number of elements to copy.
240  void moveLeft(unsigned i, unsigned j, unsigned Count) {
241  assert(j <= i && "Use moveRight shift elements right");
242  copy(*this, i, j, Count);
243  }
244 
245  /// moveRight - Move elements to the right.
246  /// @param i Beginning of the source range.
247  /// @param j Beginning of the destination range.
248  /// @param Count Number of elements to copy.
249  void moveRight(unsigned i, unsigned j, unsigned Count) {
250  assert(i <= j && "Use moveLeft shift elements left");
251  assert(j + Count <= N && "Invalid range");
252  while (Count--) {
253  first[j + Count] = first[i + Count];
254  second[j + Count] = second[i + Count];
255  }
256  }
257 
258  /// erase - Erase elements [i;j).
259  /// @param i Beginning of the range to erase.
260  /// @param j End of the range. (Exclusive).
261  /// @param Size Number of elements in node.
262  void erase(unsigned i, unsigned j, unsigned Size) {
263  moveLeft(j, i, Size - j);
264  }
265 
266  /// erase - Erase element at i.
267  /// @param i Index of element to erase.
268  /// @param Size Number of elements in node.
269  void erase(unsigned i, unsigned Size) {
270  erase(i, i+1, Size);
271  }
272 
273  /// shift - Shift elements [i;size) 1 position to the right.
274  /// @param i Beginning of the range to move.
275  /// @param Size Number of elements in node.
276  void shift(unsigned i, unsigned Size) {
277  moveRight(i, i + 1, Size - i);
278  }
279 
280  /// transferToLeftSib - Transfer elements to a left sibling node.
281  /// @param Size Number of elements in this.
282  /// @param Sib Left sibling node.
283  /// @param SSize Number of elements in sib.
284  /// @param Count Number of elements to transfer.
285  void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
286  unsigned Count) {
287  Sib.copy(*this, 0, SSize, Count);
288  erase(0, Count, Size);
289  }
290 
291  /// transferToRightSib - Transfer elements to a right sibling node.
292  /// @param Size Number of elements in this.
293  /// @param Sib Right sibling node.
294  /// @param SSize Number of elements in sib.
295  /// @param Count Number of elements to transfer.
296  void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
297  unsigned Count) {
298  Sib.moveRight(0, Count, SSize);
299  Sib.copy(*this, Size-Count, 0, Count);
300  }
301 
302  /// adjustFromLeftSib - Adjust the number if elements in this node by moving
303  /// elements to or from a left sibling node.
304  /// @param Size Number of elements in this.
305  /// @param Sib Right sibling node.
306  /// @param SSize Number of elements in sib.
307  /// @param Add The number of elements to add to this node, possibly < 0.
308  /// @return Number of elements added to this node, possibly negative.
309  int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
310  if (Add > 0) {
311  // We want to grow, copy from sib.
312  unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
313  Sib.transferToRightSib(SSize, *this, Size, Count);
314  return Count;
315  } else {
316  // We want to shrink, copy to sib.
317  unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
318  transferToLeftSib(Size, Sib, SSize, Count);
319  return -Count;
320  }
321  }
322 };
323 
324 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
325 /// @param Node Array of pointers to sibling nodes.
326 /// @param Nodes Number of nodes.
327 /// @param CurSize Array of current node sizes, will be overwritten.
328 /// @param NewSize Array of desired node sizes.
329 template <typename NodeT>
330 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
331  unsigned CurSize[], const unsigned NewSize[]) {
332  // Move elements right.
333  for (int n = Nodes - 1; n; --n) {
334  if (CurSize[n] == NewSize[n])
335  continue;
336  for (int m = n - 1; m != -1; --m) {
337  int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
338  NewSize[n] - CurSize[n]);
339  CurSize[m] -= d;
340  CurSize[n] += d;
341  // Keep going if the current node was exhausted.
342  if (CurSize[n] >= NewSize[n])
343  break;
344  }
345  }
346 
347  if (Nodes == 0)
348  return;
349 
350  // Move elements left.
351  for (unsigned n = 0; n != Nodes - 1; ++n) {
352  if (CurSize[n] == NewSize[n])
353  continue;
354  for (unsigned m = n + 1; m != Nodes; ++m) {
355  int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
356  CurSize[n] - NewSize[n]);
357  CurSize[m] += d;
358  CurSize[n] -= d;
359  // Keep going if the current node was exhausted.
360  if (CurSize[n] >= NewSize[n])
361  break;
362  }
363  }
364 
365 #ifndef NDEBUG
366  for (unsigned n = 0; n != Nodes; n++)
367  assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
368 #endif
369 }
370 
371 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
372 /// after an overflow or underflow. Reserve space for a new element at Position,
373 /// and compute the node that will hold Position after redistributing node
374 /// elements.
375 ///
376 /// It is required that
377 ///
378 /// Elements == sum(CurSize), and
379 /// Elements + Grow <= Nodes * Capacity.
380 ///
381 /// NewSize[] will be filled in such that:
382 ///
383 /// sum(NewSize) == Elements, and
384 /// NewSize[i] <= Capacity.
385 ///
386 /// The returned index is the node where Position will go, so:
387 ///
388 /// sum(NewSize[0..idx-1]) <= Position
389 /// sum(NewSize[0..idx]) >= Position
390 ///
391 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
392 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
393 /// before the one holding the Position'th element where there is room for an
394 /// insertion.
395 ///
396 /// @param Nodes The number of nodes.
397 /// @param Elements Total elements in all nodes.
398 /// @param Capacity The capacity of each node.
399 /// @param CurSize Array[Nodes] of current node sizes, or NULL.
400 /// @param NewSize Array[Nodes] to receive the new node sizes.
401 /// @param Position Insert position.
402 /// @param Grow Reserve space for a new element at Position.
403 /// @return (node, offset) for Position.
404 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
405  const unsigned *CurSize, unsigned NewSize[],
406  unsigned Position, bool Grow);
407 
408 
409 //===----------------------------------------------------------------------===//
410 //--- IntervalMapImpl::NodeSizer ---//
411 //===----------------------------------------------------------------------===//
412 //
413 // Compute node sizes from key and value types.
414 //
415 // The branching factors are chosen to make nodes fit in three cache lines.
416 // This may not be possible if keys or values are very large. Such large objects
417 // are handled correctly, but a std::map would probably give better performance.
418 //
419 //===----------------------------------------------------------------------===//
420 
421 enum {
422  // Cache line size. Most architectures have 32 or 64 byte cache lines.
423  // We use 64 bytes here because it provides good branching factors.
427 };
428 
429 template <typename KeyT, typename ValT>
430 struct NodeSizer {
431  enum {
432  // Compute the leaf node branching factor that makes a node fit in three
433  // cache lines. The branching factor must be at least 3, or some B+-tree
434  // balancing algorithms won't work.
435  // LeafSize can't be larger than CacheLineBytes. This is required by the
436  // PointerIntPair used by NodeRef.
438  static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
441  };
442 
444 
445  enum {
446  // Now that we have the leaf branching factor, compute the actual allocation
447  // unit size by rounding up to a whole number of cache lines.
449 
450  // Determine the branching factor for branch nodes.
452  static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
453  };
454 
455  /// Allocator - The recycling allocator used for both branch and leaf nodes.
456  /// This typedef is very likely to be identical for all IntervalMaps with
457  /// reasonably sized entries, so the same allocator can be shared among
458  /// different kinds of maps.
459  typedef RecyclingAllocator<BumpPtrAllocator, char,
461 
462 };
463 
464 
465 //===----------------------------------------------------------------------===//
466 //--- IntervalMapImpl::NodeRef ---//
467 //===----------------------------------------------------------------------===//
468 //
469 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
470 // pointer that can point to both kinds.
471 //
472 // All nodes are cache line aligned and the low 6 bits of a node pointer are
473 // always 0. These bits are used to store the number of elements in the
474 // referenced node. Besides saving space, placing node sizes in the parents
475 // allow tree balancing algorithms to run without faulting cache lines for nodes
476 // that may not need to be modified.
477 //
478 // A NodeRef doesn't know whether it references a leaf node or a branch node.
479 // It is the responsibility of the caller to use the correct types.
480 //
481 // Nodes are never supposed to be empty, and it is invalid to store a node size
482 // of 0 in a NodeRef. The valid range of sizes is 1-64.
483 //
484 //===----------------------------------------------------------------------===//
485 
486 class NodeRef {
487  struct CacheAlignedPointerTraits {
488  static inline void *getAsVoidPointer(void *P) { return P; }
489  static inline void *getFromVoidPointer(void *P) { return P; }
490  enum { NumLowBitsAvailable = Log2CacheLine };
491  };
493 
494 public:
495  /// NodeRef - Create a null ref.
496  NodeRef() {}
497 
498  /// operator bool - Detect a null ref.
499  LLVM_EXPLICIT operator bool() const { return pip.getOpaqueValue(); }
500 
501  /// NodeRef - Create a reference to the node p with n elements.
502  template <typename NodeT>
503  NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
504  assert(n <= NodeT::Capacity && "Size too big for node");
505  }
506 
507  /// size - Return the number of elements in the referenced node.
508  unsigned size() const { return pip.getInt() + 1; }
509 
510  /// setSize - Update the node size.
511  void setSize(unsigned n) { pip.setInt(n - 1); }
512 
513  /// subtree - Access the i'th subtree reference in a branch node.
514  /// This depends on branch nodes storing the NodeRef array as their first
515  /// member.
516  NodeRef &subtree(unsigned i) const {
517  return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
518  }
519 
520  /// get - Dereference as a NodeT reference.
521  template <typename NodeT>
522  NodeT &get() const {
523  return *reinterpret_cast<NodeT*>(pip.getPointer());
524  }
525 
526  bool operator==(const NodeRef &RHS) const {
527  if (pip == RHS.pip)
528  return true;
529  assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
530  return false;
531  }
532 
533  bool operator!=(const NodeRef &RHS) const {
534  return !operator==(RHS);
535  }
536 };
537 
538 //===----------------------------------------------------------------------===//
539 //--- IntervalMapImpl::LeafNode ---//
540 //===----------------------------------------------------------------------===//
541 //
542 // Leaf nodes store up to N disjoint intervals with corresponding values.
543 //
544 // The intervals are kept sorted and fully coalesced so there are no adjacent
545 // intervals mapping to the same value.
546 //
547 // These constraints are always satisfied:
548 //
549 // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
550 //
551 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
552 //
553 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
554 // - Fully coalesced.
555 //
556 //===----------------------------------------------------------------------===//
557 
558 template <typename KeyT, typename ValT, unsigned N, typename Traits>
559 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
560 public:
561  const KeyT &start(unsigned i) const { return this->first[i].first; }
562  const KeyT &stop(unsigned i) const { return this->first[i].second; }
563  const ValT &value(unsigned i) const { return this->second[i]; }
564 
565  KeyT &start(unsigned i) { return this->first[i].first; }
566  KeyT &stop(unsigned i) { return this->first[i].second; }
567  ValT &value(unsigned i) { return this->second[i]; }
568 
569  /// findFrom - Find the first interval after i that may contain x.
570  /// @param i Starting index for the search.
571  /// @param Size Number of elements in node.
572  /// @param x Key to search for.
573  /// @return First index with !stopLess(key[i].stop, x), or size.
574  /// This is the first interval that can possibly contain x.
575  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
576  assert(i <= Size && Size <= N && "Bad indices");
577  assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
578  "Index is past the needed point");
579  while (i != Size && Traits::stopLess(stop(i), x)) ++i;
580  return i;
581  }
582 
583  /// safeFind - Find an interval that is known to exist. This is the same as
584  /// findFrom except is it assumed that x is at least within range of the last
585  /// interval.
586  /// @param i Starting index for the search.
587  /// @param x Key to search for.
588  /// @return First index with !stopLess(key[i].stop, x), never size.
589  /// This is the first interval that can possibly contain x.
590  unsigned safeFind(unsigned i, KeyT x) const {
591  assert(i < N && "Bad index");
592  assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
593  "Index is past the needed point");
594  while (Traits::stopLess(stop(i), x)) ++i;
595  assert(i < N && "Unsafe intervals");
596  return i;
597  }
598 
599  /// safeLookup - Lookup mapped value for a safe key.
600  /// It is assumed that x is within range of the last entry.
601  /// @param x Key to search for.
602  /// @param NotFound Value to return if x is not in any interval.
603  /// @return The mapped value at x or NotFound.
604  ValT safeLookup(KeyT x, ValT NotFound) const {
605  unsigned i = safeFind(0, x);
606  return Traits::startLess(x, start(i)) ? NotFound : value(i);
607  }
608 
609  unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
610 };
611 
612 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
613 /// possible. This may cause the node to grow by 1, or it may cause the node
614 /// to shrink because of coalescing.
615 /// @param Pos Starting index = insertFrom(0, size, a)
616 /// @param Size Number of elements in node.
617 /// @param a Interval start.
618 /// @param b Interval stop.
619 /// @param y Value be mapped.
620 /// @return (insert position, new size), or (i, Capacity+1) on overflow.
621 template <typename KeyT, typename ValT, unsigned N, typename Traits>
623 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
624  unsigned i = Pos;
625  assert(i <= Size && Size <= N && "Invalid index");
626  assert(!Traits::stopLess(b, a) && "Invalid interval");
627 
628  // Verify the findFrom invariant.
629  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
630  assert((i == Size || !Traits::stopLess(stop(i), a)));
631  assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
632 
633  // Coalesce with previous interval.
634  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
635  Pos = i - 1;
636  // Also coalesce with next interval?
637  if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
638  stop(i - 1) = stop(i);
639  this->erase(i, Size);
640  return Size - 1;
641  }
642  stop(i - 1) = b;
643  return Size;
644  }
645 
646  // Detect overflow.
647  if (i == N)
648  return N + 1;
649 
650  // Add new interval at end.
651  if (i == Size) {
652  start(i) = a;
653  stop(i) = b;
654  value(i) = y;
655  return Size + 1;
656  }
657 
658  // Try to coalesce with following interval.
659  if (value(i) == y && Traits::adjacent(b, start(i))) {
660  start(i) = a;
661  return Size;
662  }
663 
664  // We must insert before i. Detect overflow.
665  if (Size == N)
666  return N + 1;
667 
668  // Insert before i.
669  this->shift(i, Size);
670  start(i) = a;
671  stop(i) = b;
672  value(i) = y;
673  return Size + 1;
674 }
675 
676 
677 //===----------------------------------------------------------------------===//
678 //--- IntervalMapImpl::BranchNode ---//
679 //===----------------------------------------------------------------------===//
680 //
681 // A branch node stores references to 1--N subtrees all of the same height.
682 //
683 // The key array in a branch node holds the rightmost stop key of each subtree.
684 // It is redundant to store the last stop key since it can be found in the
685 // parent node, but doing so makes tree balancing a lot simpler.
686 //
687 // It is unusual for a branch node to only have one subtree, but it can happen
688 // in the root node if it is smaller than the normal nodes.
689 //
690 // When all of the leaf nodes from all the subtrees are concatenated, they must
691 // satisfy the same constraints as a single leaf node. They must be sorted,
692 // sane, and fully coalesced.
693 //
694 //===----------------------------------------------------------------------===//
695 
696 template <typename KeyT, typename ValT, unsigned N, typename Traits>
697 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
698 public:
699  const KeyT &stop(unsigned i) const { return this->second[i]; }
700  const NodeRef &subtree(unsigned i) const { return this->first[i]; }
701 
702  KeyT &stop(unsigned i) { return this->second[i]; }
703  NodeRef &subtree(unsigned i) { return this->first[i]; }
704 
705  /// findFrom - Find the first subtree after i that may contain x.
706  /// @param i Starting index for the search.
707  /// @param Size Number of elements in node.
708  /// @param x Key to search for.
709  /// @return First index with !stopLess(key[i], x), or size.
710  /// This is the first subtree that can possibly contain x.
711  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
712  assert(i <= Size && Size <= N && "Bad indices");
713  assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
714  "Index to findFrom is past the needed point");
715  while (i != Size && Traits::stopLess(stop(i), x)) ++i;
716  return i;
717  }
718 
719  /// safeFind - Find a subtree that is known to exist. This is the same as
720  /// findFrom except is it assumed that x is in range.
721  /// @param i Starting index for the search.
722  /// @param x Key to search for.
723  /// @return First index with !stopLess(key[i], x), never size.
724  /// This is the first subtree that can possibly contain x.
725  unsigned safeFind(unsigned i, KeyT x) const {
726  assert(i < N && "Bad index");
727  assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
728  "Index is past the needed point");
729  while (Traits::stopLess(stop(i), x)) ++i;
730  assert(i < N && "Unsafe intervals");
731  return i;
732  }
733 
734  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
735  /// @param x Key to search for.
736  /// @return Subtree containing x
738  return subtree(safeFind(0, x));
739  }
740 
741  /// insert - Insert a new (subtree, stop) pair.
742  /// @param i Insert position, following entries will be shifted.
743  /// @param Size Number of elements in node.
744  /// @param Node Subtree to insert.
745  /// @param Stop Last key in subtree.
746  void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
747  assert(Size < N && "branch node overflow");
748  assert(i <= Size && "Bad insert position");
749  this->shift(i, Size);
750  subtree(i) = Node;
751  stop(i) = Stop;
752  }
753 };
754 
755 //===----------------------------------------------------------------------===//
756 //--- IntervalMapImpl::Path ---//
757 //===----------------------------------------------------------------------===//
758 //
759 // A Path is used by iterators to represent a position in a B+-tree, and the
760 // path to get there from the root.
761 //
762 // The Path class also contains the tree navigation code that doesn't have to
763 // be templatized.
764 //
765 //===----------------------------------------------------------------------===//
766 
767 class Path {
768  /// Entry - Each step in the path is a node pointer and an offset into that
769  /// node.
770  struct Entry {
771  void *node;
772  unsigned size;
773  unsigned offset;
774 
775  Entry(void *Node, unsigned Size, unsigned Offset)
776  : node(Node), size(Size), offset(Offset) {}
777 
778  Entry(NodeRef Node, unsigned Offset)
779  : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
780 
781  NodeRef &subtree(unsigned i) const {
782  return reinterpret_cast<NodeRef*>(node)[i];
783  }
784  };
785 
786  /// path - The path entries, path[0] is the root node, path.back() is a leaf.
788 
789 public:
790  // Node accessors.
791  template <typename NodeT> NodeT &node(unsigned Level) const {
792  return *reinterpret_cast<NodeT*>(path[Level].node);
793  }
794  unsigned size(unsigned Level) const { return path[Level].size; }
795  unsigned offset(unsigned Level) const { return path[Level].offset; }
796  unsigned &offset(unsigned Level) { return path[Level].offset; }
797 
798  // Leaf accessors.
799  template <typename NodeT> NodeT &leaf() const {
800  return *reinterpret_cast<NodeT*>(path.back().node);
801  }
802  unsigned leafSize() const { return path.back().size; }
803  unsigned leafOffset() const { return path.back().offset; }
804  unsigned &leafOffset() { return path.back().offset; }
805 
806  /// valid - Return true if path is at a valid node, not at end().
807  bool valid() const {
808  return !path.empty() && path.front().offset < path.front().size;
809  }
810 
811  /// height - Return the height of the tree corresponding to this path.
812  /// This matches map->height in a full path.
813  unsigned height() const { return path.size() - 1; }
814 
815  /// subtree - Get the subtree referenced from Level. When the path is
816  /// consistent, node(Level + 1) == subtree(Level).
817  /// @param Level 0..height-1. The leaves have no subtrees.
818  NodeRef &subtree(unsigned Level) const {
819  return path[Level].subtree(path[Level].offset);
820  }
821 
822  /// reset - Reset cached information about node(Level) from subtree(Level -1).
823  /// @param Level 1..height. THe node to update after parent node changed.
824  void reset(unsigned Level) {
825  path[Level] = Entry(subtree(Level - 1), offset(Level));
826  }
827 
828  /// push - Add entry to path.
829  /// @param Node Node to add, should be subtree(path.size()-1).
830  /// @param Offset Offset into Node.
831  void push(NodeRef Node, unsigned Offset) {
832  path.push_back(Entry(Node, Offset));
833  }
834 
835  /// pop - Remove the last path entry.
836  void pop() {
837  path.pop_back();
838  }
839 
840  /// setSize - Set the size of a node both in the path and in the tree.
841  /// @param Level 0..height. Note that setting the root size won't change
842  /// map->rootSize.
843  /// @param Size New node size.
844  void setSize(unsigned Level, unsigned Size) {
845  path[Level].size = Size;
846  if (Level)
847  subtree(Level - 1).setSize(Size);
848  }
849 
850  /// setRoot - Clear the path and set a new root node.
851  /// @param Node New root node.
852  /// @param Size New root size.
853  /// @param Offset Offset into root node.
854  void setRoot(void *Node, unsigned Size, unsigned Offset) {
855  path.clear();
856  path.push_back(Entry(Node, Size, Offset));
857  }
858 
859  /// replaceRoot - Replace the current root node with two new entries after the
860  /// tree height has increased.
861  /// @param Root The new root node.
862  /// @param Size Number of entries in the new root.
863  /// @param Offsets Offsets into the root and first branch nodes.
864  void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
865 
866  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
867  /// @param Level Get the sibling to node(Level).
868  /// @return Left sibling, or NodeRef().
869  NodeRef getLeftSibling(unsigned Level) const;
870 
871  /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
872  /// unaltered.
873  /// @param Level Move node(Level).
874  void moveLeft(unsigned Level);
875 
876  /// fillLeft - Grow path to Height by taking leftmost branches.
877  /// @param Height The target height.
878  void fillLeft(unsigned Height) {
879  while (height() < Height)
880  push(subtree(height()), 0);
881  }
882 
883  /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
884  /// @param Level Get the sinbling to node(Level).
885  /// @return Left sibling, or NodeRef().
886  NodeRef getRightSibling(unsigned Level) const;
887 
888  /// moveRight - Move path to the left sibling at Level. Leave nodes below
889  /// Level unaltered.
890  /// @param Level Move node(Level).
891  void moveRight(unsigned Level);
892 
893  /// atBegin - Return true if path is at begin().
894  bool atBegin() const {
895  for (unsigned i = 0, e = path.size(); i != e; ++i)
896  if (path[i].offset != 0)
897  return false;
898  return true;
899  }
900 
901  /// atLastEntry - Return true if the path is at the last entry of the node at
902  /// Level.
903  /// @param Level Node to examine.
904  bool atLastEntry(unsigned Level) const {
905  return path[Level].offset == path[Level].size - 1;
906  }
907 
908  /// legalizeForInsert - Prepare the path for an insertion at Level. When the
909  /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
910  /// ensures that node(Level) is real by moving back to the last node at Level,
911  /// and setting offset(Level) to size(Level) if required.
912  /// @param Level The level where an insertion is about to take place.
913  void legalizeForInsert(unsigned Level) {
914  if (valid())
915  return;
916  moveLeft(Level);
917  ++path[Level].offset;
918  }
919 };
920 
921 } // namespace IntervalMapImpl
922 
923 
924 //===----------------------------------------------------------------------===//
925 //--- IntervalMap ----//
926 //===----------------------------------------------------------------------===//
927 
928 template <typename KeyT, typename ValT,
929  unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
930  typename Traits = IntervalMapInfo<KeyT> >
931 class IntervalMap {
935  Branch;
938 
939  // The RootLeaf capacity is given as a template parameter. We must compute the
940  // corresponding RootBranch capacity.
941  enum {
942  DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
943  (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
944  RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
945  };
946 
948  RootBranch;
949 
950  // When branched, we store a global start key as well as the branch node.
951  struct RootBranchData {
952  KeyT start;
953  RootBranch node;
954  };
955 
956  enum {
957  RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
958  sizeof(RootBranchData) : sizeof(RootLeaf)
959  };
960 
961 public:
962  typedef typename Sizer::Allocator Allocator;
963  typedef KeyT KeyType;
964  typedef ValT ValueType;
965  typedef Traits KeyTraits;
966 
967 private:
968  // The root data is either a RootLeaf or a RootBranchData instance.
969  // We can't put them in a union since C++03 doesn't allow non-trivial
970  // constructors in unions.
971  // Instead, we use a char array with pointer alignment. The alignment is
972  // ensured by the allocator member in the class, but still verified in the
973  // constructor. We don't support keys or values that are more aligned than a
974  // pointer.
975  char data[RootDataSize];
976 
977  // Tree height.
978  // 0: Leaves in root.
979  // 1: Root points to leaf.
980  // 2: root->branch->leaf ...
981  unsigned height;
982 
983  // Number of entries in the root node.
984  unsigned rootSize;
985 
986  // Allocator used for creating external nodes.
987  Allocator &allocator;
988 
989  /// dataAs - Represent data as a node type without breaking aliasing rules.
990  template <typename T>
991  T &dataAs() const {
992  union {
993  const char *d;
994  T *t;
995  } u;
996  u.d = data;
997  return *u.t;
998  }
999 
1000  const RootLeaf &rootLeaf() const {
1001  assert(!branched() && "Cannot acces leaf data in branched root");
1002  return dataAs<RootLeaf>();
1003  }
1004  RootLeaf &rootLeaf() {
1005  assert(!branched() && "Cannot acces leaf data in branched root");
1006  return dataAs<RootLeaf>();
1007  }
1008  RootBranchData &rootBranchData() const {
1009  assert(branched() && "Cannot access branch data in non-branched root");
1010  return dataAs<RootBranchData>();
1011  }
1012  RootBranchData &rootBranchData() {
1013  assert(branched() && "Cannot access branch data in non-branched root");
1014  return dataAs<RootBranchData>();
1015  }
1016  const RootBranch &rootBranch() const { return rootBranchData().node; }
1017  RootBranch &rootBranch() { return rootBranchData().node; }
1018  KeyT rootBranchStart() const { return rootBranchData().start; }
1019  KeyT &rootBranchStart() { return rootBranchData().start; }
1020 
1021  template <typename NodeT> NodeT *newNode() {
1022  return new(allocator.template Allocate<NodeT>()) NodeT();
1023  }
1024 
1025  template <typename NodeT> void deleteNode(NodeT *P) {
1026  P->~NodeT();
1027  allocator.Deallocate(P);
1028  }
1029 
1030  IdxPair branchRoot(unsigned Position);
1031  IdxPair splitRoot(unsigned Position);
1032 
1033  void switchRootToBranch() {
1034  rootLeaf().~RootLeaf();
1035  height = 1;
1036  new (&rootBranchData()) RootBranchData();
1037  }
1038 
1039  void switchRootToLeaf() {
1040  rootBranchData().~RootBranchData();
1041  height = 0;
1042  new(&rootLeaf()) RootLeaf();
1043  }
1044 
1045  bool branched() const { return height > 0; }
1046 
1047  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1048  void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1049  unsigned Level));
1050  void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1051 
1052 public:
1053  explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1054  assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
1055  "Insufficient alignment");
1056  new(&rootLeaf()) RootLeaf();
1057  }
1058 
1060  clear();
1061  rootLeaf().~RootLeaf();
1062  }
1063 
1064  /// empty - Return true when no intervals are mapped.
1065  bool empty() const {
1066  return rootSize == 0;
1067  }
1068 
1069  /// start - Return the smallest mapped key in a non-empty map.
1070  KeyT start() const {
1071  assert(!empty() && "Empty IntervalMap has no start");
1072  return !branched() ? rootLeaf().start(0) : rootBranchStart();
1073  }
1074 
1075  /// stop - Return the largest mapped key in a non-empty map.
1076  KeyT stop() const {
1077  assert(!empty() && "Empty IntervalMap has no stop");
1078  return !branched() ? rootLeaf().stop(rootSize - 1) :
1079  rootBranch().stop(rootSize - 1);
1080  }
1081 
1082  /// lookup - Return the mapped value at x or NotFound.
1083  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1084  if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1085  return NotFound;
1086  return branched() ? treeSafeLookup(x, NotFound) :
1087  rootLeaf().safeLookup(x, NotFound);
1088  }
1089 
1090  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1091  /// It is assumed that no key in the interval is mapped to another value, but
1092  /// overlapping intervals already mapped to y will be coalesced.
1093  void insert(KeyT a, KeyT b, ValT y) {
1094  if (branched() || rootSize == RootLeaf::Capacity)
1095  return find(a).insert(a, b, y);
1096 
1097  // Easy insert into root leaf.
1098  unsigned p = rootLeaf().findFrom(0, rootSize, a);
1099  rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1100  }
1101 
1102  /// clear - Remove all entries.
1103  void clear();
1104 
1105  class const_iterator;
1106  class iterator;
1107  friend class const_iterator;
1108  friend class iterator;
1109 
1110  const_iterator begin() const {
1111  const_iterator I(*this);
1112  I.goToBegin();
1113  return I;
1114  }
1115 
1116  iterator begin() {
1117  iterator I(*this);
1118  I.goToBegin();
1119  return I;
1120  }
1121 
1122  const_iterator end() const {
1123  const_iterator I(*this);
1124  I.goToEnd();
1125  return I;
1126  }
1127 
1128  iterator end() {
1129  iterator I(*this);
1130  I.goToEnd();
1131  return I;
1132  }
1133 
1134  /// find - Return an iterator pointing to the first interval ending at or
1135  /// after x, or end().
1136  const_iterator find(KeyT x) const {
1137  const_iterator I(*this);
1138  I.find(x);
1139  return I;
1140  }
1141 
1142  iterator find(KeyT x) {
1143  iterator I(*this);
1144  I.find(x);
1145  return I;
1146  }
1147 };
1148 
1149 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1150 /// branched root.
1151 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1152 ValT IntervalMap<KeyT, ValT, N, Traits>::
1153 treeSafeLookup(KeyT x, ValT NotFound) const {
1154  assert(branched() && "treeLookup assumes a branched root");
1155 
1156  IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1157  for (unsigned h = height-1; h; --h)
1158  NR = NR.get<Branch>().safeLookup(x);
1159  return NR.get<Leaf>().safeLookup(x, NotFound);
1160 }
1161 
1162 
1163 // branchRoot - Switch from a leaf root to a branched root.
1164 // Return the new (root offset, node offset) corresponding to Position.
1165 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1166 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1167 branchRoot(unsigned Position) {
1168  using namespace IntervalMapImpl;
1169  // How many external leaf nodes to hold RootLeaf+1?
1170  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1171 
1172  // Compute element distribution among new nodes.
1173  unsigned size[Nodes];
1174  IdxPair NewOffset(0, Position);
1175 
1176  // Is is very common for the root node to be smaller than external nodes.
1177  if (Nodes == 1)
1178  size[0] = rootSize;
1179  else
1180  NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, size,
1181  Position, true);
1182 
1183  // Allocate new nodes.
1184  unsigned pos = 0;
1185  NodeRef node[Nodes];
1186  for (unsigned n = 0; n != Nodes; ++n) {
1187  Leaf *L = newNode<Leaf>();
1188  L->copy(rootLeaf(), pos, 0, size[n]);
1189  node[n] = NodeRef(L, size[n]);
1190  pos += size[n];
1191  }
1192 
1193  // Destroy the old leaf node, construct branch node instead.
1194  switchRootToBranch();
1195  for (unsigned n = 0; n != Nodes; ++n) {
1196  rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1197  rootBranch().subtree(n) = node[n];
1198  }
1199  rootBranchStart() = node[0].template get<Leaf>().start(0);
1200  rootSize = Nodes;
1201  return NewOffset;
1202 }
1203 
1204 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
1205 // Return the new (root offset, node offset) corresponding to Position.
1206 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1207 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
1208 splitRoot(unsigned Position) {
1209  using namespace IntervalMapImpl;
1210  // How many external leaf nodes to hold RootBranch+1?
1211  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1212 
1213  // Compute element distribution among new nodes.
1214  unsigned Size[Nodes];
1215  IdxPair NewOffset(0, Position);
1216 
1217  // Is is very common for the root node to be smaller than external nodes.
1218  if (Nodes == 1)
1219  Size[0] = rootSize;
1220  else
1221  NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, NULL, Size,
1222  Position, true);
1223 
1224  // Allocate new nodes.
1225  unsigned Pos = 0;
1226  NodeRef Node[Nodes];
1227  for (unsigned n = 0; n != Nodes; ++n) {
1228  Branch *B = newNode<Branch>();
1229  B->copy(rootBranch(), Pos, 0, Size[n]);
1230  Node[n] = NodeRef(B, Size[n]);
1231  Pos += Size[n];
1232  }
1233 
1234  for (unsigned n = 0; n != Nodes; ++n) {
1235  rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1236  rootBranch().subtree(n) = Node[n];
1237  }
1238  rootSize = Nodes;
1239  ++height;
1240  return NewOffset;
1241 }
1242 
1243 /// visitNodes - Visit each external node.
1244 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1245 void IntervalMap<KeyT, ValT, N, Traits>::
1246 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1247  if (!branched())
1248  return;
1249  SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1250 
1251  // Collect level 0 nodes from the root.
1252  for (unsigned i = 0; i != rootSize; ++i)
1253  Refs.push_back(rootBranch().subtree(i));
1254 
1255  // Visit all branch nodes.
1256  for (unsigned h = height - 1; h; --h) {
1257  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1258  for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1259  NextRefs.push_back(Refs[i].subtree(j));
1260  (this->*f)(Refs[i], h);
1261  }
1262  Refs.clear();
1263  Refs.swap(NextRefs);
1264  }
1265 
1266  // Visit all leaf nodes.
1267  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1268  (this->*f)(Refs[i], 0);
1269 }
1270 
1271 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1272 void IntervalMap<KeyT, ValT, N, Traits>::
1273 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1274  if (Level)
1275  deleteNode(&Node.get<Branch>());
1276  else
1277  deleteNode(&Node.get<Leaf>());
1278 }
1279 
1280 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1283  if (branched()) {
1284  visitNodes(&IntervalMap::deleteNode);
1285  switchRootToLeaf();
1286  }
1287  rootSize = 0;
1288 }
1289 
1290 //===----------------------------------------------------------------------===//
1291 //--- IntervalMap::const_iterator ----//
1292 //===----------------------------------------------------------------------===//
1293 
1294 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1295 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1296  public std::iterator<std::bidirectional_iterator_tag, ValT> {
1297 protected:
1298  friend class IntervalMap;
1299 
1300  // The map referred to.
1302 
1303  // We store a full path from the root to the current position.
1304  // The path may be partially filled, but never between iterator calls.
1306 
1307  explicit const_iterator(const IntervalMap &map) :
1308  map(const_cast<IntervalMap*>(&map)) {}
1309 
1310  bool branched() const {
1311  assert(map && "Invalid iterator");
1312  return map->branched();
1313  }
1314 
1315  void setRoot(unsigned Offset) {
1316  if (branched())
1317  path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1318  else
1319  path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1320  }
1321 
1322  void pathFillFind(KeyT x);
1323  void treeFind(KeyT x);
1324  void treeAdvanceTo(KeyT x);
1325 
1326  /// unsafeStart - Writable access to start() for iterator.
1327  KeyT &unsafeStart() const {
1328  assert(valid() && "Cannot access invalid iterator");
1329  return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1330  path.leaf<RootLeaf>().start(path.leafOffset());
1331  }
1332 
1333  /// unsafeStop - Writable access to stop() for iterator.
1334  KeyT &unsafeStop() const {
1335  assert(valid() && "Cannot access invalid iterator");
1336  return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1337  path.leaf<RootLeaf>().stop(path.leafOffset());
1338  }
1339 
1340  /// unsafeValue - Writable access to value() for iterator.
1341  ValT &unsafeValue() const {
1342  assert(valid() && "Cannot access invalid iterator");
1343  return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1344  path.leaf<RootLeaf>().value(path.leafOffset());
1345  }
1346 
1347 public:
1348  /// const_iterator - Create an iterator that isn't pointing anywhere.
1349  const_iterator() : map(0) {}
1350 
1351  /// setMap - Change the map iterated over. This call must be followed by a
1352  /// call to goToBegin(), goToEnd(), or find()
1353  void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1354 
1355  /// valid - Return true if the current position is valid, false for end().
1356  bool valid() const { return path.valid(); }
1357 
1358  /// atBegin - Return true if the current position is the first map entry.
1359  bool atBegin() const { return path.atBegin(); }
1360 
1361  /// start - Return the beginning of the current interval.
1362  const KeyT &start() const { return unsafeStart(); }
1363 
1364  /// stop - Return the end of the current interval.
1365  const KeyT &stop() const { return unsafeStop(); }
1366 
1367  /// value - Return the mapped value at the current interval.
1368  const ValT &value() const { return unsafeValue(); }
1369 
1370  const ValT &operator*() const { return value(); }
1371 
1372  bool operator==(const const_iterator &RHS) const {
1373  assert(map == RHS.map && "Cannot compare iterators from different maps");
1374  if (!valid())
1375  return !RHS.valid();
1376  if (path.leafOffset() != RHS.path.leafOffset())
1377  return false;
1378  return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1379  }
1380 
1381  bool operator!=(const const_iterator &RHS) const {
1382  return !operator==(RHS);
1383  }
1384 
1385  /// goToBegin - Move to the first interval in map.
1386  void goToBegin() {
1387  setRoot(0);
1388  if (branched())
1389  path.fillLeft(map->height);
1390  }
1391 
1392  /// goToEnd - Move beyond the last interval in map.
1393  void goToEnd() {
1394  setRoot(map->rootSize);
1395  }
1396 
1397  /// preincrement - move to the next interval.
1399  assert(valid() && "Cannot increment end()");
1400  if (++path.leafOffset() == path.leafSize() && branched())
1401  path.moveRight(map->height);
1402  return *this;
1403  }
1404 
1405  /// postincrement - Dont do that!
1407  const_iterator tmp = *this;
1408  operator++();
1409  return tmp;
1410  }
1411 
1412  /// predecrement - move to the previous interval.
1414  if (path.leafOffset() && (valid() || !branched()))
1415  --path.leafOffset();
1416  else
1417  path.moveLeft(map->height);
1418  return *this;
1419  }
1420 
1421  /// postdecrement - Dont do that!
1423  const_iterator tmp = *this;
1424  operator--();
1425  return tmp;
1426  }
1427 
1428  /// find - Move to the first interval with stop >= x, or end().
1429  /// This is a full search from the root, the current position is ignored.
1430  void find(KeyT x) {
1431  if (branched())
1432  treeFind(x);
1433  else
1434  setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1435  }
1436 
1437  /// advanceTo - Move to the first interval with stop >= x, or end().
1438  /// The search is started from the current position, and no earlier positions
1439  /// can be found. This is much faster than find() for small moves.
1440  void advanceTo(KeyT x) {
1441  if (!valid())
1442  return;
1443  if (branched())
1444  treeAdvanceTo(x);
1445  else
1446  path.leafOffset() =
1447  map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1448  }
1449 
1450 };
1451 
1452 /// pathFillFind - Complete path by searching for x.
1453 /// @param x Key to search for.
1454 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1457  IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1458  for (unsigned i = map->height - path.height() - 1; i; --i) {
1459  unsigned p = NR.get<Branch>().safeFind(0, x);
1460  path.push(NR, p);
1461  NR = NR.subtree(p);
1462  }
1463  path.push(NR, NR.get<Leaf>().safeFind(0, x));
1464 }
1465 
1466 /// treeFind - Find in a branched tree.
1467 /// @param x Key to search for.
1468 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1471  setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1472  if (valid())
1473  pathFillFind(x);
1474 }
1475 
1476 /// treeAdvanceTo - Find position after the current one.
1477 /// @param x Key to search for.
1478 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1481  // Can we stay on the same leaf node?
1482  if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1483  path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1484  return;
1485  }
1486 
1487  // Drop the current leaf.
1488  path.pop();
1489 
1490  // Search towards the root for a usable subtree.
1491  if (path.height()) {
1492  for (unsigned l = path.height() - 1; l; --l) {
1493  if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1494  // The branch node at l+1 is usable
1495  path.offset(l + 1) =
1496  path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1497  return pathFillFind(x);
1498  }
1499  path.pop();
1500  }
1501  // Is the level-1 Branch usable?
1502  if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1503  path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1504  return pathFillFind(x);
1505  }
1506  }
1507 
1508  // We reached the root.
1509  setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1510  if (valid())
1511  pathFillFind(x);
1512 }
1513 
1514 //===----------------------------------------------------------------------===//
1515 //--- IntervalMap::iterator ----//
1516 //===----------------------------------------------------------------------===//
1517 
1518 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1519 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1520  friend class IntervalMap;
1522 
1523  explicit iterator(IntervalMap &map) : const_iterator(map) {}
1524 
1525  void setNodeStop(unsigned Level, KeyT Stop);
1526  bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1527  template <typename NodeT> bool overflow(unsigned Level);
1528  void treeInsert(KeyT a, KeyT b, ValT y);
1529  void eraseNode(unsigned Level);
1530  void treeErase(bool UpdateRoot = true);
1531  bool canCoalesceLeft(KeyT Start, ValT x);
1532  bool canCoalesceRight(KeyT Stop, ValT x);
1533 
1534 public:
1535  /// iterator - Create null iterator.
1537 
1538  /// setStart - Move the start of the current interval.
1539  /// This may cause coalescing with the previous interval.
1540  /// @param a New start key, must not overlap the previous interval.
1541  void setStart(KeyT a);
1542 
1543  /// setStop - Move the end of the current interval.
1544  /// This may cause coalescing with the following interval.
1545  /// @param b New stop key, must not overlap the following interval.
1546  void setStop(KeyT b);
1547 
1548  /// setValue - Change the mapped value of the current interval.
1549  /// This may cause coalescing with the previous and following intervals.
1550  /// @param x New value.
1551  void setValue(ValT x);
1552 
1553  /// setStartUnchecked - Move the start of the current interval without
1554  /// checking for coalescing or overlaps.
1555  /// This should only be used when it is known that coalescing is not required.
1556  /// @param a New start key.
1557  void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1558 
1559  /// setStopUnchecked - Move the end of the current interval without checking
1560  /// for coalescing or overlaps.
1561  /// This should only be used when it is known that coalescing is not required.
1562  /// @param b New stop key.
1564  this->unsafeStop() = b;
1565  // Update keys in branch nodes as well.
1566  if (this->path.atLastEntry(this->path.height()))
1567  setNodeStop(this->path.height(), b);
1568  }
1569 
1570  /// setValueUnchecked - Change the mapped value of the current interval
1571  /// without checking for coalescing.
1572  /// @param x New value.
1573  void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1574 
1575  /// insert - Insert mapping [a;b] -> y before the current position.
1576  void insert(KeyT a, KeyT b, ValT y);
1577 
1578  /// erase - Erase the current interval.
1579  void erase();
1580 
1582  const_iterator::operator++();
1583  return *this;
1584  }
1585 
1587  iterator tmp = *this;
1588  operator++();
1589  return tmp;
1590  }
1591 
1593  const_iterator::operator--();
1594  return *this;
1595  }
1596 
1598  iterator tmp = *this;
1599  operator--();
1600  return tmp;
1601  }
1602 
1603 };
1604 
1605 /// canCoalesceLeft - Can the current interval coalesce to the left after
1606 /// changing start or value?
1607 /// @param Start New start of current interval.
1608 /// @param Value New value for current interval.
1609 /// @return True when updating the current interval would enable coalescing.
1610 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1612 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1613  using namespace IntervalMapImpl;
1614  Path &P = this->path;
1615  if (!this->branched()) {
1616  unsigned i = P.leafOffset();
1617  RootLeaf &Node = P.leaf<RootLeaf>();
1618  return i && Node.value(i-1) == Value &&
1619  Traits::adjacent(Node.stop(i-1), Start);
1620  }
1621  // Branched.
1622  if (unsigned i = P.leafOffset()) {
1623  Leaf &Node = P.leaf<Leaf>();
1624  return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1625  } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1626  unsigned i = NR.size() - 1;
1627  Leaf &Node = NR.get<Leaf>();
1628  return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1629  }
1630  return false;
1631 }
1632 
1633 /// canCoalesceRight - Can the current interval coalesce to the right after
1634 /// changing stop or value?
1635 /// @param Stop New stop of current interval.
1636 /// @param Value New value for current interval.
1637 /// @return True when updating the current interval would enable coalescing.
1638 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1639 bool IntervalMap<KeyT, ValT, N, Traits>::
1640 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1641  using namespace IntervalMapImpl;
1642  Path &P = this->path;
1643  unsigned i = P.leafOffset() + 1;
1644  if (!this->branched()) {
1645  if (i >= P.leafSize())
1646  return false;
1647  RootLeaf &Node = P.leaf<RootLeaf>();
1648  return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1649  }
1650  // Branched.
1651  if (i < P.leafSize()) {
1652  Leaf &Node = P.leaf<Leaf>();
1653  return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1654  } else if (NodeRef NR = P.getRightSibling(P.height())) {
1655  Leaf &Node = NR.get<Leaf>();
1656  return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1657  }
1658  return false;
1659 }
1660 
1661 /// setNodeStop - Update the stop key of the current node at level and above.
1662 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1663 void IntervalMap<KeyT, ValT, N, Traits>::
1664 iterator::setNodeStop(unsigned Level, KeyT Stop) {
1665  // There are no references to the root node, so nothing to update.
1666  if (!Level)
1667  return;
1668  IntervalMapImpl::Path &P = this->path;
1669  // Update nodes pointing to the current node.
1670  while (--Level) {
1671  P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1672  if (!P.atLastEntry(Level))
1673  return;
1674  }
1675  // Update root separately since it has a different layout.
1676  P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1677 }
1678 
1679 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1682  assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
1683  KeyT &CurStart = this->unsafeStart();
1684  if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1685  CurStart = a;
1686  return;
1687  }
1688  // Coalesce with the interval to the left.
1689  --*this;
1690  a = this->start();
1691  erase();
1692  setStartUnchecked(a);
1693 }
1694 
1695 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1698  assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
1699  if (Traits::startLess(b, this->stop()) ||
1700  !canCoalesceRight(b, this->value())) {
1701  setStopUnchecked(b);
1702  return;
1703  }
1704  // Coalesce with interval to the right.
1705  KeyT a = this->start();
1706  erase();
1707  setStartUnchecked(a);
1708 }
1709 
1710 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1713  setValueUnchecked(x);
1714  if (canCoalesceRight(this->stop(), x)) {
1715  KeyT a = this->start();
1716  erase();
1717  setStartUnchecked(a);
1718  }
1719  if (canCoalesceLeft(this->start(), x)) {
1720  --*this;
1721  KeyT a = this->start();
1722  erase();
1723  setStartUnchecked(a);
1724  }
1725 }
1726 
1727 /// insertNode - insert a node before the current path at level.
1728 /// Leave the current path pointing at the new node.
1729 /// @param Level path index of the node to be inserted.
1730 /// @param Node The node to be inserted.
1731 /// @param Stop The last index in the new node.
1732 /// @return True if the tree height was increased.
1733 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1735 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1736  assert(Level && "Cannot insert next to the root");
1737  bool SplitRoot = false;
1738  IntervalMap &IM = *this->map;
1739  IntervalMapImpl::Path &P = this->path;
1740 
1741  if (Level == 1) {
1742  // Insert into the root branch node.
1743  if (IM.rootSize < RootBranch::Capacity) {
1744  IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1745  P.setSize(0, ++IM.rootSize);
1746  P.reset(Level);
1747  return SplitRoot;
1748  }
1749 
1750  // We need to split the root while keeping our position.
1751  SplitRoot = true;
1752  IdxPair Offset = IM.splitRoot(P.offset(0));
1753  P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1754 
1755  // Fall through to insert at the new higher level.
1756  ++Level;
1757  }
1758 
1759  // When inserting before end(), make sure we have a valid path.
1760  P.legalizeForInsert(--Level);
1761 
1762  // Insert into the branch node at Level-1.
1763  if (P.size(Level) == Branch::Capacity) {
1764  // Branch node is full, handle handle the overflow.
1765  assert(!SplitRoot && "Cannot overflow after splitting the root");
1766  SplitRoot = overflow<Branch>(Level);
1767  Level += SplitRoot;
1768  }
1769  P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1770  P.setSize(Level, P.size(Level) + 1);
1771  if (P.atLastEntry(Level))
1772  setNodeStop(Level, Stop);
1773  P.reset(Level + 1);
1774  return SplitRoot;
1775 }
1776 
1777 // insert
1778 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1780 iterator::insert(KeyT a, KeyT b, ValT y) {
1781  if (this->branched())
1782  return treeInsert(a, b, y);
1783  IntervalMap &IM = *this->map;
1784  IntervalMapImpl::Path &P = this->path;
1785 
1786  // Try simple root leaf insert.
1787  unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1788 
1789  // Was the root node insert successful?
1790  if (Size <= RootLeaf::Capacity) {
1791  P.setSize(0, IM.rootSize = Size);
1792  return;
1793  }
1794 
1795  // Root leaf node is full, we must branch.
1796  IdxPair Offset = IM.branchRoot(P.leafOffset());
1797  P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1798 
1799  // Now it fits in the new leaf.
1800  treeInsert(a, b, y);
1801 }
1802 
1803 
1804 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1806 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1807  using namespace IntervalMapImpl;
1808  Path &P = this->path;
1809 
1810  if (!P.valid())
1811  P.legalizeForInsert(this->map->height);
1812 
1813  // Check if this insertion will extend the node to the left.
1814  if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1815  // Node is growing to the left, will it affect a left sibling node?
1816  if (NodeRef Sib = P.getLeftSibling(P.height())) {
1817  Leaf &SibLeaf = Sib.get<Leaf>();
1818  unsigned SibOfs = Sib.size() - 1;
1819  if (SibLeaf.value(SibOfs) == y &&
1820  Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1821  // This insertion will coalesce with the last entry in SibLeaf. We can
1822  // handle it in two ways:
1823  // 1. Extend SibLeaf.stop to b and be done, or
1824  // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1825  // We prefer 1., but need 2 when coalescing to the right as well.
1826  Leaf &CurLeaf = P.leaf<Leaf>();
1827  P.moveLeft(P.height());
1828  if (Traits::stopLess(b, CurLeaf.start(0)) &&
1829  (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1830  // Easy, just extend SibLeaf and we're done.
1831  setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1832  return;
1833  } else {
1834  // We have both left and right coalescing. Erase the old SibLeaf entry
1835  // and continue inserting the larger interval.
1836  a = SibLeaf.start(SibOfs);
1837  treeErase(/* UpdateRoot= */false);
1838  }
1839  }
1840  } else {
1841  // No left sibling means we are at begin(). Update cached bound.
1842  this->map->rootBranchStart() = a;
1843  }
1844  }
1845 
1846  // When we are inserting at the end of a leaf node, we must update stops.
1847  unsigned Size = P.leafSize();
1848  bool Grow = P.leafOffset() == Size;
1849  Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1850 
1851  // Leaf insertion unsuccessful? Overflow and try again.
1852  if (Size > Leaf::Capacity) {
1853  overflow<Leaf>(P.height());
1854  Grow = P.leafOffset() == P.leafSize();
1855  Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1856  assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1857  }
1858 
1859  // Inserted, update offset and leaf size.
1860  P.setSize(P.height(), Size);
1861 
1862  // Insert was the last node entry, update stops.
1863  if (Grow)
1864  setNodeStop(P.height(), b);
1865 }
1866 
1867 /// erase - erase the current interval and move to the next position.
1868 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1871  IntervalMap &IM = *this->map;
1872  IntervalMapImpl::Path &P = this->path;
1873  assert(P.valid() && "Cannot erase end()");
1874  if (this->branched())
1875  return treeErase();
1876  IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1877  P.setSize(0, --IM.rootSize);
1878 }
1879 
1880 /// treeErase - erase() for a branched tree.
1881 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1883 iterator::treeErase(bool UpdateRoot) {
1884  IntervalMap &IM = *this->map;
1885  IntervalMapImpl::Path &P = this->path;
1886  Leaf &Node = P.leaf<Leaf>();
1887 
1888  // Nodes are not allowed to become empty.
1889  if (P.leafSize() == 1) {
1890  IM.deleteNode(&Node);
1891  eraseNode(IM.height);
1892  // Update rootBranchStart if we erased begin().
1893  if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1894  IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1895  return;
1896  }
1897 
1898  // Erase current entry.
1899  Node.erase(P.leafOffset(), P.leafSize());
1900  unsigned NewSize = P.leafSize() - 1;
1901  P.setSize(IM.height, NewSize);
1902  // When we erase the last entry, update stop and move to a legal position.
1903  if (P.leafOffset() == NewSize) {
1904  setNodeStop(IM.height, Node.stop(NewSize - 1));
1905  P.moveRight(IM.height);
1906  } else if (UpdateRoot && P.atBegin())
1907  IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1908 }
1909 
1910 /// eraseNode - Erase the current node at Level from its parent and move path to
1911 /// the first entry of the next sibling node.
1912 /// The node must be deallocated by the caller.
1913 /// @param Level 1..height, the root node cannot be erased.
1914 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1915 void IntervalMap<KeyT, ValT, N, Traits>::
1916 iterator::eraseNode(unsigned Level) {
1917  assert(Level && "Cannot erase root node");
1918  IntervalMap &IM = *this->map;
1919  IntervalMapImpl::Path &P = this->path;
1920 
1921  if (--Level == 0) {
1922  IM.rootBranch().erase(P.offset(0), IM.rootSize);
1923  P.setSize(0, --IM.rootSize);
1924  // If this cleared the root, switch to height=0.
1925  if (IM.empty()) {
1926  IM.switchRootToLeaf();
1927  this->setRoot(0);
1928  return;
1929  }
1930  } else {
1931  // Remove node ref from branch node at Level.
1932  Branch &Parent = P.node<Branch>(Level);
1933  if (P.size(Level) == 1) {
1934  // Branch node became empty, remove it recursively.
1935  IM.deleteNode(&Parent);
1936  eraseNode(Level);
1937  } else {
1938  // Branch node won't become empty.
1939  Parent.erase(P.offset(Level), P.size(Level));
1940  unsigned NewSize = P.size(Level) - 1;
1941  P.setSize(Level, NewSize);
1942  // If we removed the last branch, update stop and move to a legal pos.
1943  if (P.offset(Level) == NewSize) {
1944  setNodeStop(Level, Parent.stop(NewSize - 1));
1945  P.moveRight(Level);
1946  }
1947  }
1948  }
1949  // Update path cache for the new right sibling position.
1950  if (P.valid()) {
1951  P.reset(Level + 1);
1952  P.offset(Level + 1) = 0;
1953  }
1954 }
1955 
1956 /// overflow - Distribute entries of the current node evenly among
1957 /// its siblings and ensure that the current node is not full.
1958 /// This may require allocating a new node.
1959 /// @tparam NodeT The type of node at Level (Leaf or Branch).
1960 /// @param Level path index of the overflowing node.
1961 /// @return True when the tree height was changed.
1962 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1963 template <typename NodeT>
1964 bool IntervalMap<KeyT, ValT, N, Traits>::
1965 iterator::overflow(unsigned Level) {
1966  using namespace IntervalMapImpl;
1967  Path &P = this->path;
1968  unsigned CurSize[4];
1969  NodeT *Node[4];
1970  unsigned Nodes = 0;
1971  unsigned Elements = 0;
1972  unsigned Offset = P.offset(Level);
1973 
1974  // Do we have a left sibling?
1975  NodeRef LeftSib = P.getLeftSibling(Level);
1976  if (LeftSib) {
1977  Offset += Elements = CurSize[Nodes] = LeftSib.size();
1978  Node[Nodes++] = &LeftSib.get<NodeT>();
1979  }
1980 
1981  // Current node.
1982  Elements += CurSize[Nodes] = P.size(Level);
1983  Node[Nodes++] = &P.node<NodeT>(Level);
1984 
1985  // Do we have a right sibling?
1986  NodeRef RightSib = P.getRightSibling(Level);
1987  if (RightSib) {
1988  Elements += CurSize[Nodes] = RightSib.size();
1989  Node[Nodes++] = &RightSib.get<NodeT>();
1990  }
1991 
1992  // Do we need to allocate a new node?
1993  unsigned NewNode = 0;
1994  if (Elements + 1 > Nodes * NodeT::Capacity) {
1995  // Insert NewNode at the penultimate position, or after a single node.
1996  NewNode = Nodes == 1 ? 1 : Nodes - 1;
1997  CurSize[Nodes] = CurSize[NewNode];
1998  Node[Nodes] = Node[NewNode];
1999  CurSize[NewNode] = 0;
2000  Node[NewNode] = this->map->template newNode<NodeT>();
2001  ++Nodes;
2002  }
2003 
2004  // Compute the new element distribution.
2005  unsigned NewSize[4];
2006  IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
2007  CurSize, NewSize, Offset, true);
2008  adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
2009 
2010  // Move current location to the leftmost node.
2011  if (LeftSib)
2012  P.moveLeft(Level);
2013 
2014  // Elements have been rearranged, now update node sizes and stops.
2015  bool SplitRoot = false;
2016  unsigned Pos = 0;
2017  for (;;) {
2018  KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2019  if (NewNode && Pos == NewNode) {
2020  SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2021  Level += SplitRoot;
2022  } else {
2023  P.setSize(Level, NewSize[Pos]);
2024  setNodeStop(Level, Stop);
2025  }
2026  if (Pos + 1 == Nodes)
2027  break;
2028  P.moveRight(Level);
2029  ++Pos;
2030  }
2031 
2032  // Where was I? Find NewOffset.
2033  while(Pos != NewOffset.first) {
2034  P.moveLeft(Level);
2035  --Pos;
2036  }
2037  P.offset(Level) = NewOffset.second;
2038  return SplitRoot;
2039 }
2040 
2041 //===----------------------------------------------------------------------===//
2042 //--- IntervalMapOverlaps ----//
2043 //===----------------------------------------------------------------------===//
2044 
2045 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2046 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
2047 /// should be the same.
2048 ///
2049 /// Typical uses:
2050 ///
2051 /// 1. Test for overlap:
2052 /// bool overlap = IntervalMapOverlaps(a, b).valid();
2053 ///
2054 /// 2. Enumerate overlaps:
2055 /// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2056 ///
2057 template <typename MapA, typename MapB>
2059  typedef typename MapA::KeyType KeyType;
2060  typedef typename MapA::KeyTraits Traits;
2061  typename MapA::const_iterator posA;
2062  typename MapB::const_iterator posB;
2063 
2064  /// advance - Move posA and posB forward until reaching an overlap, or until
2065  /// either meets end.
2066  /// Don't move the iterators if they are already overlapping.
2067  void advance() {
2068  if (!valid())
2069  return;
2070 
2071  if (Traits::stopLess(posA.stop(), posB.start())) {
2072  // A ends before B begins. Catch up.
2073  posA.advanceTo(posB.start());
2074  if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2075  return;
2076  } else if (Traits::stopLess(posB.stop(), posA.start())) {
2077  // B ends before A begins. Catch up.
2078  posB.advanceTo(posA.start());
2079  if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2080  return;
2081  } else
2082  // Already overlapping.
2083  return;
2084 
2085  for (;;) {
2086  // Make a.end > b.start.
2087  posA.advanceTo(posB.start());
2088  if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2089  return;
2090  // Make b.end > a.start.
2091  posB.advanceTo(posA.start());
2092  if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2093  return;
2094  }
2095  }
2096 
2097 public:
2098  /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
2099  IntervalMapOverlaps(const MapA &a, const MapB &b)
2100  : posA(b.empty() ? a.end() : a.find(b.start())),
2101  posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2102 
2103  /// valid - Return true if iterator is at an overlap.
2104  bool valid() const {
2105  return posA.valid() && posB.valid();
2106  }
2107 
2108  /// a - access the left hand side in the overlap.
2109  const typename MapA::const_iterator &a() const { return posA; }
2110 
2111  /// b - access the right hand side in the overlap.
2112  const typename MapB::const_iterator &b() const { return posB; }
2113 
2114  /// start - Beginning of the overlapping interval.
2115  KeyType start() const {
2116  KeyType ak = a().start();
2117  KeyType bk = b().start();
2118  return Traits::startLess(ak, bk) ? bk : ak;
2119  }
2120 
2121  /// stop - End of the overlapping interval.
2122  KeyType stop() const {
2123  KeyType ak = a().stop();
2124  KeyType bk = b().stop();
2125  return Traits::startLess(ak, bk) ? ak : bk;
2126  }
2127 
2128  /// skipA - Move to the next overlap that doesn't involve a().
2129  void skipA() {
2130  ++posA;
2131  advance();
2132  }
2133 
2134  /// skipB - Move to the next overlap that doesn't involve b().
2135  void skipB() {
2136  ++posB;
2137  advance();
2138  }
2139 
2140  /// Preincrement - Move to the next overlap.
2142  // Bump the iterator that ends first. The other one may have more overlaps.
2143  if (Traits::startLess(posB.stop(), posA.stop()))
2144  skipB();
2145  else
2146  skipA();
2147  return *this;
2148  }
2149 
2150  /// advanceTo - Move to the first overlapping interval with
2151  /// stopLess(x, stop()).
2152  void advanceTo(KeyType x) {
2153  if (!valid())
2154  return;
2155  // Make sure advanceTo sees monotonic keys.
2156  if (Traits::stopLess(posA.stop(), x))
2157  posA.advanceTo(x);
2158  if (Traits::stopLess(posB.stop(), x))
2159  posB.advanceTo(x);
2160  advance();
2161  }
2162 };
2163 
2164 } // namespace llvm
2165 
2166 #endif
KeyT & unsafeStop() const
unsafeStop - Writable access to stop() for iterator.
Definition: IntervalMap.h:1334
ValT lookup(KeyT x, ValT NotFound=ValT()) const
lookup - Return the mapped value at x or NotFound.
Definition: IntervalMap.h:1083
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count)
Definition: IntervalMap.h:285
iterator find(KeyT x)
Definition: IntervalMap.h:1142
void copy(const NodeBase< T1, T2, M > &Other, unsigned i, unsigned j, unsigned Count)
Definition: IntervalMap.h:226
NodeRef getLeftSibling(unsigned Level) const
Definition: IntervalMap.cpp:25
const_iterator begin() const
Definition: IntervalMap.h:1110
void adjustSiblingSizes(NodeT *Node[], unsigned Nodes, unsigned CurSize[], const unsigned NewSize[])
Definition: IntervalMap.h:330
unsigned safeFind(unsigned i, KeyT x) const
Definition: IntervalMap.h:590
void legalizeForInsert(unsigned Level)
Definition: IntervalMap.h:913
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const
Definition: IntervalMap.h:711
KeyT & unsafeStart() const
unsafeStart - Writable access to start() for iterator.
Definition: IntervalMap.h:1327
bool atBegin() const
atBegin - Return true if the current position is the first map entry.
Definition: IntervalMap.h:1359
IntervalMapOverlaps & operator++()
Preincrement - Move to the next overlap.
Definition: IntervalMap.h:2141
void skipA()
skipA - Move to the next overlap that doesn't involve a().
Definition: IntervalMap.h:2129
const_iterator(const IntervalMap &map)
Definition: IntervalMap.h:1307
void moveLeft(unsigned Level)
Definition: IntervalMap.cpp:48
const_iterator find(KeyT x) const
Definition: IntervalMap.h:1136
KeyT stop() const
stop - Return the largest mapped key in a non-empty map.
Definition: IntervalMap.h:1076
void pop()
pop - Remove the last path entry.
Definition: IntervalMap.h:836
KeyType stop() const
stop - End of the overlapping interval.
Definition: IntervalMap.h:2122
NodeRef()
NodeRef - Create a null ref.
Definition: IntervalMap.h:496
int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add)
Definition: IntervalMap.h:309
unsigned & offset(unsigned Level)
Definition: IntervalMap.h:796
void setMap(const IntervalMap &m)
Definition: IntervalMap.h:1353
const_iterator end() const
Definition: IntervalMap.h:1122
void fillLeft(unsigned Height)
Definition: IntervalMap.h:878
iterator()
iterator - Create null iterator.
Definition: IntervalMap.h:1536
static bool adjacent(const T &a, const T &b)
adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
Definition: IntervalMap.h:168
const KeyT & stop(unsigned i) const
Definition: IntervalMap.h:699
void setRoot(unsigned Offset)
Definition: IntervalMap.h:1315
static error_code advance(T &it, size_t Val)
static bool stopLess(const T &b, const T &x)
Definition: IntervalMap.h:142
const_iterator & operator++()
preincrement - move to the next interval.
Definition: IntervalMap.h:1398
NodeRef safeLookup(KeyT x) const
Definition: IntervalMap.h:737
const KeyT & start(unsigned i) const
Definition: IntervalMap.h:561
ValT & unsafeValue() const
unsafeValue - Writable access to value() for iterator.
Definition: IntervalMap.h:1341
bool valid() const
valid - Return true if iterator is at an overlap.
Definition: IntervalMap.h:2104
bool operator==(const NodeRef &RHS) const
Definition: IntervalMap.h:526
bool operator!=(const NodeRef &RHS) const
Definition: IntervalMap.h:533
bool empty() const
empty - Return true when no intervals are mapped.
Definition: IntervalMap.h:1065
static bool startLess(const T &x, const T &a)
startLess - Return true if x is not in [a;b).
Definition: IntervalMap.h:158
const KeyT & stop(unsigned i) const
Definition: IntervalMap.h:562
const MapA::const_iterator & a() const
a - access the left hand side in the overlap.
Definition: IntervalMap.h:2109
void erase()
erase - Erase the current interval.
Definition: IntervalMap.h:1870
NodeBase< std::pair< KeyT, KeyT >, ValT, LeafSize > LeafBase
Definition: IntervalMap.h:443
void clear()
clear - Remove all entries.
Definition: IntervalMap.h:1282
IntervalMap(Allocator &a)
Definition: IntervalMap.h:1053
NodeRef & subtree(unsigned i) const
Definition: IntervalMap.h:516
KeyType start() const
start - Beginning of the overlapping interval.
Definition: IntervalMap.h:2115
void erase(unsigned i, unsigned j, unsigned Size)
Definition: IntervalMap.h:262
void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count)
Definition: IntervalMap.h:296
#define P(N)
unsigned size() const
size - Return the number of elements in the referenced node.
Definition: IntervalMap.h:508
const KeyT & start() const
start - Return the beginning of the current interval.
Definition: IntervalMap.h:1362
unsigned findFrom(unsigned i, unsigned Size, KeyT x) const
Definition: IntervalMap.h:575
IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity, const unsigned *CurSize, unsigned NewSize[], unsigned Position, bool Grow)
void replaceRoot(void *Root, unsigned Size, IdxPair Offsets)
Definition: IntervalMap.cpp:19
unsigned size(unsigned Level) const
Definition: IntervalMap.h:794
void moveRight(unsigned i, unsigned j, unsigned Count)
Definition: IntervalMap.h:249
const_iterator & operator--()
predecrement - move to the previous interval.
Definition: IntervalMap.h:1413
void goToBegin()
goToBegin - Move to the first interval in map.
Definition: IntervalMap.h:1386
bool operator!=(const const_iterator &RHS) const
Definition: IntervalMap.h:1381
const MapB::const_iterator & b() const
b - access the right hand side in the overlap.
Definition: IntervalMap.h:2112
static bool startLess(const T &x, const T &a)
Definition: IntervalMap.h:136
IntervalMapOverlaps(const MapA &a, const MapB &b)
IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
Definition: IntervalMap.h:2099
unsigned leafOffset() const
Definition: IntervalMap.h:803
const_iterator operator++(int)
postincrement - Dont do that!
Definition: IntervalMap.h:1406
NodeRef & subtree(unsigned Level) const
Definition: IntervalMap.h:818
const NodeRef & subtree(unsigned i) const
Definition: IntervalMap.h:700
static bool stopLess(const T &b, const T &x)
stopLess - Return true if x is not in [a;b).
Definition: IntervalMap.h:163
void skipB()
skipB - Move to the next overlap that doesn't involve b().
Definition: IntervalMap.h:2135
unsigned height() const
Definition: IntervalMap.h:813
void insert(KeyT a, KeyT b, ValT y)
Definition: IntervalMap.h:1093
unsigned safeFind(unsigned i, KeyT x) const
Definition: IntervalMap.h:725
PointerTy getPointer() const
const_iterator()
const_iterator - Create an iterator that isn't pointing anywhere.
Definition: IntervalMap.h:1349
KeyT start() const
start - Return the smallest mapped key in a non-empty map.
Definition: IntervalMap.h:1070
void moveLeft(unsigned i, unsigned j, unsigned Count)
Definition: IntervalMap.h:240
iterator begin()
Definition: IntervalMap.h:1116
NodeT & node(unsigned Level) const
Definition: IntervalMap.h:791
void goToEnd()
goToEnd - Move beyond the last interval in map.
Definition: IntervalMap.h:1393
RecyclingAllocator< BumpPtrAllocator, char, AllocBytes, CacheLineBytes > Allocator
Definition: IntervalMap.h:460
bool valid() const
valid - Return true if path is at a valid node, not at end().
Definition: IntervalMap.h:807
bool valid() const
valid - Return true if the current position is valid, false for end().
Definition: IntervalMap.h:1356
void advanceTo(KeyType x)
Definition: IntervalMap.h:2152
void reset(unsigned Level)
Definition: IntervalMap.h:824
void erase(unsigned i, unsigned Size)
Definition: IntervalMap.h:269
const KeyT & stop() const
stop - Return the end of the current interval.
Definition: IntervalMap.h:1365
void push(NodeRef Node, unsigned Offset)
Definition: IntervalMap.h:831
void moveRight(unsigned Level)
Definition: IntervalMap.cpp:98
void insert(KeyT a, KeyT b, ValT y)
insert - Insert mapping [a;b] -> y before the current position.
Definition: IntervalMap.h:1780
#define LLVM_EXPLICIT
Expands to explicit on compilers which support explicit conversion operators. Otherwise expands to no...
Definition: Compiler.h:381
IntervalMapImpl::Path path
Definition: IntervalMap.h:1305
unsigned leafSize() const
Definition: IntervalMap.h:802
unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y)
Definition: IntervalMap.h:623
Sizer::Allocator Allocator
Definition: IntervalMap.h:962
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
std::pair< unsigned, unsigned > IdxPair
Definition: IntervalMap.h:180
NodeT & get() const
get - Dereference as a NodeT reference.
Definition: IntervalMap.h:522
void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop)
Definition: IntervalMap.h:746
const_iterator operator--(int)
postdecrement - Dont do that!
Definition: IntervalMap.h:1422
bool atBegin() const
atBegin - Return true if path is at begin().
Definition: IntervalMap.h:894
unsigned offset(unsigned Level) const
Definition: IntervalMap.h:795
ValT safeLookup(KeyT x, ValT NotFound) const
Definition: IntervalMap.h:604
void setRoot(void *Node, unsigned Size, unsigned Offset)
Definition: IntervalMap.h:854
void setSize(unsigned n)
setSize - Update the node size.
Definition: IntervalMap.h:511
static bool adjacent(const T &a, const T &b)
Definition: IntervalMap.h:148
LLVM Value Representation.
Definition: Value.h:66
void shift(unsigned i, unsigned Size)
Definition: IntervalMap.h:276
NodeRef & subtree(unsigned i)
Definition: IntervalMap.h:703
bool operator==(const const_iterator &RHS) const
Definition: IntervalMap.h:1372
const ValT & operator*() const
Definition: IntervalMap.h:1370
const ValT & value(unsigned i) const
Definition: IntervalMap.h:563
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1684
const ValT & value() const
value - Return the mapped value at the current interval.
Definition: IntervalMap.h:1368
void setSize(unsigned Level, unsigned Size)
Definition: IntervalMap.h:844
#define T1
NodeRef(NodeT *p, unsigned n)
NodeRef - Create a reference to the node p with n elements.
Definition: IntervalMap.h:503
bool atLastEntry(unsigned Level) const
Definition: IntervalMap.h:904