LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Loads.cpp
Go to the documentation of this file.
1 //===- Loads.cpp - Local load analysis ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines simple local analyses for load instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/Loads.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GlobalAlias.h"
19 #include "llvm/IR/GlobalVariable.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Operator.h"
23 using namespace llvm;
24 
25 /// AreEquivalentAddressValues - Test if A and B will obviously have the same
26 /// value. This includes recognizing that %t0 and %t1 will have the same
27 /// value in code like this:
28 /// %t0 = getelementptr \@a, 0, 3
29 /// store i32 0, i32* %t0
30 /// %t1 = getelementptr \@a, 0, 3
31 /// %t2 = load i32* %t1
32 ///
33 static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
34  // Test if the values are trivially equivalent.
35  if (A == B) return true;
36 
37  // Test if the values come from identical arithmetic instructions.
38  // Use isIdenticalToWhenDefined instead of isIdenticalTo because
39  // this function is only used when one address use dominates the
40  // other, which means that they'll always either have the same
41  // value or one of them will have an undefined value.
42  if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
43  isa<PHINode>(A) || isa<GetElementPtrInst>(A))
44  if (const Instruction *BI = dyn_cast<Instruction>(B))
45  if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
46  return true;
47 
48  // Otherwise they may not be equivalent.
49  return false;
50 }
51 
52 /// isSafeToLoadUnconditionally - Return true if we know that executing a load
53 /// from this value cannot trap. If it is not obviously safe to load from the
54 /// specified pointer, we do a quick local scan of the basic block containing
55 /// ScanFrom, to determine if the address is already accessed.
57  unsigned Align, const DataLayout *TD) {
58  int64_t ByteOffset = 0;
59  Value *Base = V;
60  Base = GetPointerBaseWithConstantOffset(V, ByteOffset, TD);
61 
62  if (ByteOffset < 0) // out of bounds
63  return false;
64 
65  Type *BaseType = 0;
66  unsigned BaseAlign = 0;
67  if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
68  // An alloca is safe to load from as load as it is suitably aligned.
69  BaseType = AI->getAllocatedType();
70  BaseAlign = AI->getAlignment();
71  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
72  // Global variables are safe to load from but their size cannot be
73  // guaranteed if they are overridden.
74  if (!GV->mayBeOverridden()) {
75  BaseType = GV->getType()->getElementType();
76  BaseAlign = GV->getAlignment();
77  }
78  }
79 
80  if (BaseType && BaseType->isSized()) {
81  if (TD && BaseAlign == 0)
82  BaseAlign = TD->getPrefTypeAlignment(BaseType);
83 
84  if (Align <= BaseAlign) {
85  if (!TD)
86  return true; // Loading directly from an alloca or global is OK.
87 
88  // Check if the load is within the bounds of the underlying object.
89  PointerType *AddrTy = cast<PointerType>(V->getType());
90  uint64_t LoadSize = TD->getTypeStoreSize(AddrTy->getElementType());
91  if (ByteOffset + LoadSize <= TD->getTypeAllocSize(BaseType) &&
92  (Align == 0 || (ByteOffset % Align) == 0))
93  return true;
94  }
95  }
96 
97  // Otherwise, be a little bit aggressive by scanning the local block where we
98  // want to check to see if the pointer is already being loaded or stored
99  // from/to. If so, the previous load or store would have already trapped,
100  // so there is no harm doing an extra load (also, CSE will later eliminate
101  // the load entirely).
102  BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
103 
104  while (BBI != E) {
105  --BBI;
106 
107  // If we see a free or a call which may write to memory (i.e. which might do
108  // a free) the pointer could be marked invalid.
109  if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
110  !isa<DbgInfoIntrinsic>(BBI))
111  return false;
112 
113  if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
114  if (AreEquivalentAddressValues(LI->getOperand(0), V)) return true;
115  } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
116  if (AreEquivalentAddressValues(SI->getOperand(1), V)) return true;
117  }
118  }
119  return false;
120 }
121 
122 /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
123 /// instruction before ScanFrom) checking to see if we have the value at the
124 /// memory address *Ptr locally available within a small number of instructions.
125 /// If the value is available, return it.
126 ///
127 /// If not, return the iterator for the last validated instruction that the
128 /// value would be live through. If we scanned the entire block and didn't find
129 /// something that invalidates *Ptr or provides it, ScanFrom would be left at
130 /// begin() and this returns null. ScanFrom could also be left
131 ///
132 /// MaxInstsToScan specifies the maximum instructions to scan in the block. If
133 /// it is set to 0, it will scan the whole block. You can also optionally
134 /// specify an alias analysis implementation, which makes this more precise.
135 ///
136 /// If TBAATag is non-null and a load or store is found, the TBAA tag from the
137 /// load or store is recorded there. If there is no TBAA tag or if no access
138 /// is found, it is left unmodified.
140  BasicBlock::iterator &ScanFrom,
141  unsigned MaxInstsToScan,
142  AliasAnalysis *AA,
143  MDNode **TBAATag) {
144  if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
145 
146  // If we're using alias analysis to disambiguate get the size of *Ptr.
147  uint64_t AccessSize = 0;
148  if (AA) {
149  Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
150  AccessSize = AA->getTypeStoreSize(AccessTy);
151  }
152 
153  while (ScanFrom != ScanBB->begin()) {
154  // We must ignore debug info directives when counting (otherwise they
155  // would affect codegen).
156  Instruction *Inst = --ScanFrom;
157  if (isa<DbgInfoIntrinsic>(Inst))
158  continue;
159 
160  // Restore ScanFrom to expected value in case next test succeeds
161  ScanFrom++;
162 
163  // Don't scan huge blocks.
164  if (MaxInstsToScan-- == 0) return 0;
165 
166  --ScanFrom;
167  // If this is a load of Ptr, the loaded value is available.
168  // (This is true even if the load is volatile or atomic, although
169  // those cases are unlikely.)
170  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
171  if (AreEquivalentAddressValues(LI->getOperand(0), Ptr)) {
172  if (TBAATag) *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
173  return LI;
174  }
175 
176  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
177  // If this is a store through Ptr, the value is available!
178  // (This is true even if the store is volatile or atomic, although
179  // those cases are unlikely.)
180  if (AreEquivalentAddressValues(SI->getOperand(1), Ptr)) {
181  if (TBAATag) *TBAATag = SI->getMetadata(LLVMContext::MD_tbaa);
182  return SI->getOperand(0);
183  }
184 
185  // If Ptr is an alloca and this is a store to a different alloca, ignore
186  // the store. This is a trivial form of alias analysis that is important
187  // for reg2mem'd code.
188  if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
189  (isa<AllocaInst>(SI->getOperand(1)) ||
190  isa<GlobalVariable>(SI->getOperand(1))))
191  continue;
192 
193  // If we have alias analysis and it says the store won't modify the loaded
194  // value, ignore the store.
195  if (AA &&
196  (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
197  continue;
198 
199  // Otherwise the store that may or may not alias the pointer, bail out.
200  ++ScanFrom;
201  return 0;
202  }
203 
204  // If this is some other instruction that may clobber Ptr, bail out.
205  if (Inst->mayWriteToMemory()) {
206  // If alias analysis claims that it really won't modify the load,
207  // ignore it.
208  if (AA &&
209  (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
210  continue;
211 
212  // May modify the pointer, bail out.
213  ++ScanFrom;
214  return 0;
215  }
216  }
217 
218  // Got to the start of the block, we didn't find it, but are done for this
219  // block.
220  return 0;
221 }
ModRefResult getModRefInfo(const Instruction *I, const Location &Loc)
unsigned getPrefTypeAlignment(Type *Ty) const
Definition: DataLayout.cpp:600
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout *TD)
MDNode - a tuple of other values.
Definition: Metadata.h:69
bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom, unsigned Align, const DataLayout *TD=0)
Definition: Loads.cpp:56
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
iterator begin()
Definition: BasicBlock.h:193
Value * getOperand(unsigned i) const LLVM_READONLY
getOperand - Return specified operand.
Definition: Metadata.cpp:307
uint64_t getTypeStoreSize(Type *Ty)
Type * getElementType() const
Definition: DerivedTypes.h:319
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool mayWriteToMemory() const
Value * FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=6, AliasAnalysis *AA=0, MDNode **TBAATag=0)
Definition: Loads.cpp:139
Type * getType() const
Definition: Value.h:111
static bool AreEquivalentAddressValues(const Value *A, const Value *B)
Definition: Loads.cpp:33
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
uint64_t getTypeStoreSize(Type *Ty) const
Definition: DataLayout.h:311
LLVM Value Representation.
Definition: Value.h:66
bool isSized() const
Definition: Type.h:278
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD