LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SSAUpdater.cpp
Go to the documentation of this file.
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SSAUpdater class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "ssaupdater"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Support/AlignOf.h"
23 #include "llvm/Support/Allocator.h"
24 #include "llvm/Support/CFG.h"
25 #include "llvm/Support/Debug.h"
30 
31 using namespace llvm;
32 
34 static AvailableValsTy &getAvailableVals(void *AV) {
35  return *static_cast<AvailableValsTy*>(AV);
36 }
37 
39  : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
40 
42  delete static_cast<AvailableValsTy*>(AV);
43 }
44 
46  if (AV == 0)
47  AV = new AvailableValsTy();
48  else
49  getAvailableVals(AV).clear();
50  ProtoType = Ty;
51  ProtoName = Name;
52 }
53 
55  return getAvailableVals(AV).count(BB);
56 }
57 
59  assert(ProtoType != 0 && "Need to initialize SSAUpdater");
60  assert(ProtoType == V->getType() &&
61  "All rewritten values must have the same type");
62  getAvailableVals(AV)[BB] = V;
63 }
64 
67  unsigned PHINumValues = PHI->getNumIncomingValues();
68  if (PHINumValues != ValueMapping.size())
69  return false;
70 
71  // Scan the phi to see if it matches.
72  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
73  if (ValueMapping[PHI->getIncomingBlock(i)] !=
74  PHI->getIncomingValue(i)) {
75  return false;
76  }
77 
78  return true;
79 }
80 
82  Value *Res = GetValueAtEndOfBlockInternal(BB);
83  return Res;
84 }
85 
87  // If there is no definition of the renamed variable in this block, just use
88  // GetValueAtEndOfBlock to do our work.
89  if (!HasValueForBlock(BB))
90  return GetValueAtEndOfBlock(BB);
91 
92  // Otherwise, we have the hard case. Get the live-in values for each
93  // predecessor.
95  Value *SingularValue = 0;
96 
97  // We can get our predecessor info by walking the pred_iterator list, but it
98  // is relatively slow. If we already have PHI nodes in this block, walk one
99  // of them to get the predecessor list instead.
100  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
101  for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
102  BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
103  Value *PredVal = GetValueAtEndOfBlock(PredBB);
104  PredValues.push_back(std::make_pair(PredBB, PredVal));
105 
106  // Compute SingularValue.
107  if (i == 0)
108  SingularValue = PredVal;
109  else if (PredVal != SingularValue)
110  SingularValue = 0;
111  }
112  } else {
113  bool isFirstPred = true;
114  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
115  BasicBlock *PredBB = *PI;
116  Value *PredVal = GetValueAtEndOfBlock(PredBB);
117  PredValues.push_back(std::make_pair(PredBB, PredVal));
118 
119  // Compute SingularValue.
120  if (isFirstPred) {
121  SingularValue = PredVal;
122  isFirstPred = false;
123  } else if (PredVal != SingularValue)
124  SingularValue = 0;
125  }
126  }
127 
128  // If there are no predecessors, just return undef.
129  if (PredValues.empty())
130  return UndefValue::get(ProtoType);
131 
132  // Otherwise, if all the merged values are the same, just use it.
133  if (SingularValue != 0)
134  return SingularValue;
135 
136  // Otherwise, we do need a PHI: check to see if we already have one available
137  // in this block that produces the right value.
138  if (isa<PHINode>(BB->begin())) {
139  SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(),
140  PredValues.end());
141  PHINode *SomePHI;
142  for (BasicBlock::iterator It = BB->begin();
143  (SomePHI = dyn_cast<PHINode>(It)); ++It) {
144  if (IsEquivalentPHI(SomePHI, ValueMapping))
145  return SomePHI;
146  }
147  }
148 
149  // Ok, we have no way out, insert a new one now.
150  PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
151  ProtoName, &BB->front());
152 
153  // Fill in all the predecessors of the PHI.
154  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
155  InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
156 
157  // See if the PHI node can be merged to a single value. This can happen in
158  // loop cases when we get a PHI of itself and one other value.
159  if (Value *V = SimplifyInstruction(InsertedPHI)) {
160  InsertedPHI->eraseFromParent();
161  return V;
162  }
163 
164  // Set the DebugLoc of the inserted PHI, if available.
165  DebugLoc DL;
166  if (const Instruction *I = BB->getFirstNonPHI())
167  DL = I->getDebugLoc();
168  InsertedPHI->setDebugLoc(DL);
169 
170  // If the client wants to know about all new instructions, tell it.
171  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
172 
173  DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
174  return InsertedPHI;
175 }
176 
178  Instruction *User = cast<Instruction>(U.getUser());
179 
180  Value *V;
181  if (PHINode *UserPN = dyn_cast<PHINode>(User))
182  V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
183  else
184  V = GetValueInMiddleOfBlock(User->getParent());
185 
186  // Notify that users of the existing value that it is being replaced.
187  Value *OldVal = U.get();
188  if (OldVal != V && OldVal->hasValueHandle())
190 
191  U.set(V);
192 }
193 
195  Instruction *User = cast<Instruction>(U.getUser());
196 
197  Value *V;
198  if (PHINode *UserPN = dyn_cast<PHINode>(User))
199  V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
200  else
201  V = GetValueAtEndOfBlock(User->getParent());
202 
203  U.set(V);
204 }
205 
206 namespace llvm {
207 template<>
209 public:
210  typedef BasicBlock BlkT;
211  typedef Value *ValT;
212  typedef PHINode PhiT;
213 
215  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
216  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
217 
218  class PHI_iterator {
219  private:
220  PHINode *PHI;
221  unsigned idx;
222 
223  public:
224  explicit PHI_iterator(PHINode *P) // begin iterator
225  : PHI(P), idx(0) {}
226  PHI_iterator(PHINode *P, bool) // end iterator
227  : PHI(P), idx(PHI->getNumIncomingValues()) {}
228 
229  PHI_iterator &operator++() { ++idx; return *this; }
230  bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
231  bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
232  Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
233  BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
234  };
235 
236  static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
237  static PHI_iterator PHI_end(PhiT *PHI) {
238  return PHI_iterator(PHI, true);
239  }
240 
241  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
242  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
245  // We can get our predecessor info by walking the pred_iterator list,
246  // but it is relatively slow. If we already have PHI nodes in this
247  // block, walk one of them to get the predecessor list instead.
248  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
249  for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
250  Preds->push_back(SomePhi->getIncomingBlock(PI));
251  } else {
252  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
253  Preds->push_back(*PI);
254  }
255  }
256 
257  /// GetUndefVal - Get an undefined value of the same type as the value
258  /// being handled.
259  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
260  return UndefValue::get(Updater->ProtoType);
261  }
262 
263  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
264  /// Reserve space for the operands but do not fill them in yet.
265  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
266  SSAUpdater *Updater) {
267  PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
268  Updater->ProtoName, &BB->front());
269  return PHI;
270  }
271 
272  /// AddPHIOperand - Add the specified value as an operand of the PHI for
273  /// the specified predecessor block.
274  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
275  PHI->addIncoming(Val, Pred);
276  }
277 
278  /// InstrIsPHI - Check if an instruction is a PHI.
279  ///
281  return dyn_cast<PHINode>(I);
282  }
283 
284  /// ValueIsPHI - Check if a value is a PHI.
285  ///
286  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
287  return dyn_cast<PHINode>(Val);
288  }
289 
290  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
291  /// operands, i.e., it was just added.
292  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
293  PHINode *PHI = ValueIsPHI(Val, Updater);
294  if (PHI && PHI->getNumIncomingValues() == 0)
295  return PHI;
296  return 0;
297  }
298 
299  /// GetPHIValue - For the specified PHI instruction, return the value
300  /// that it defines.
302  return PHI;
303  }
304 };
305 
306 } // End llvm namespace
307 
308 /// Check to see if AvailableVals has an entry for the specified BB and if so,
309 /// return it. If not, construct SSA form by first calculating the required
310 /// placement of PHIs and then inserting new PHIs where needed.
311 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
312  AvailableValsTy &AvailableVals = getAvailableVals(AV);
313  if (Value *V = AvailableVals[BB])
314  return V;
315 
316  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
317  return Impl.GetValue(BB);
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // LoadAndStorePromoter Implementation
322 //===----------------------------------------------------------------------===//
323 
326  SSAUpdater &S, StringRef BaseName) : SSA(S) {
327  if (Insts.empty()) return;
328 
329  Value *SomeVal;
330  if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
331  SomeVal = LI;
332  else
333  SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
334 
335  if (BaseName.empty())
336  BaseName = SomeVal->getName();
337  SSA.Initialize(SomeVal->getType(), BaseName);
338 }
339 
340 
342 run(const SmallVectorImpl<Instruction*> &Insts) const {
343 
344  // First step: bucket up uses of the alloca by the block they occur in.
345  // This is important because we have to handle multiple defs/uses in a block
346  // ourselves: SSAUpdater is purely for cross-block references.
348 
349  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
350  Instruction *User = Insts[i];
351  UsesByBlock[User->getParent()].push_back(User);
352  }
353 
354  // Okay, now we can iterate over all the blocks in the function with uses,
355  // processing them. Keep track of which loads are loading a live-in value.
356  // Walk the uses in the use-list order to be determinstic.
357  SmallVector<LoadInst*, 32> LiveInLoads;
358  DenseMap<Value*, Value*> ReplacedLoads;
359 
360  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
361  Instruction *User = Insts[i];
362  BasicBlock *BB = User->getParent();
363  TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
364 
365  // If this block has already been processed, ignore this repeat use.
366  if (BlockUses.empty()) continue;
367 
368  // Okay, this is the first use in the block. If this block just has a
369  // single user in it, we can rewrite it trivially.
370  if (BlockUses.size() == 1) {
371  // If it is a store, it is a trivial def of the value in the block.
372  if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
373  updateDebugInfo(SI);
374  SSA.AddAvailableValue(BB, SI->getOperand(0));
375  } else
376  // Otherwise it is a load, queue it to rewrite as a live-in load.
377  LiveInLoads.push_back(cast<LoadInst>(User));
378  BlockUses.clear();
379  continue;
380  }
381 
382  // Otherwise, check to see if this block is all loads.
383  bool HasStore = false;
384  for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
385  if (isa<StoreInst>(BlockUses[i])) {
386  HasStore = true;
387  break;
388  }
389  }
390 
391  // If so, we can queue them all as live in loads. We don't have an
392  // efficient way to tell which on is first in the block and don't want to
393  // scan large blocks, so just add all loads as live ins.
394  if (!HasStore) {
395  for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
396  LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
397  BlockUses.clear();
398  continue;
399  }
400 
401  // Otherwise, we have mixed loads and stores (or just a bunch of stores).
402  // Since SSAUpdater is purely for cross-block values, we need to determine
403  // the order of these instructions in the block. If the first use in the
404  // block is a load, then it uses the live in value. The last store defines
405  // the live out value. We handle this by doing a linear scan of the block.
406  Value *StoredValue = 0;
407  for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
408  if (LoadInst *L = dyn_cast<LoadInst>(II)) {
409  // If this is a load from an unrelated pointer, ignore it.
410  if (!isInstInList(L, Insts)) continue;
411 
412  // If we haven't seen a store yet, this is a live in use, otherwise
413  // use the stored value.
414  if (StoredValue) {
415  replaceLoadWithValue(L, StoredValue);
416  L->replaceAllUsesWith(StoredValue);
417  ReplacedLoads[L] = StoredValue;
418  } else {
419  LiveInLoads.push_back(L);
420  }
421  continue;
422  }
423 
424  if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
425  // If this is a store to an unrelated pointer, ignore it.
426  if (!isInstInList(SI, Insts)) continue;
427  updateDebugInfo(SI);
428 
429  // Remember that this is the active value in the block.
430  StoredValue = SI->getOperand(0);
431  }
432  }
433 
434  // The last stored value that happened is the live-out for the block.
435  assert(StoredValue && "Already checked that there is a store in block");
436  SSA.AddAvailableValue(BB, StoredValue);
437  BlockUses.clear();
438  }
439 
440  // Okay, now we rewrite all loads that use live-in values in the loop,
441  // inserting PHI nodes as necessary.
442  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
443  LoadInst *ALoad = LiveInLoads[i];
444  Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
445  replaceLoadWithValue(ALoad, NewVal);
446 
447  // Avoid assertions in unreachable code.
448  if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
449  ALoad->replaceAllUsesWith(NewVal);
450  ReplacedLoads[ALoad] = NewVal;
451  }
452 
453  // Allow the client to do stuff before we start nuking things.
455 
456  // Now that everything is rewritten, delete the old instructions from the
457  // function. They should all be dead now.
458  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
459  Instruction *User = Insts[i];
460 
461  // If this is a load that still has uses, then the load must have been added
462  // as a live value in the SSAUpdate data structure for a block (e.g. because
463  // the loaded value was stored later). In this case, we need to recursively
464  // propagate the updates until we get to the real value.
465  if (!User->use_empty()) {
466  Value *NewVal = ReplacedLoads[User];
467  assert(NewVal && "not a replaced load?");
468 
469  // Propagate down to the ultimate replacee. The intermediately loads
470  // could theoretically already have been deleted, so we don't want to
471  // dereference the Value*'s.
472  DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
473  while (RLI != ReplacedLoads.end()) {
474  NewVal = RLI->second;
475  RLI = ReplacedLoads.find(NewVal);
476  }
477 
478  replaceLoadWithValue(cast<LoadInst>(User), NewVal);
479  User->replaceAllUsesWith(NewVal);
480  }
481 
482  instructionDeleted(User);
483  User->eraseFromParent();
484  }
485 }
486 
487 bool
489  const SmallVectorImpl<Instruction*> &Insts)
490  const {
491  return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
492 }
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:37
static BlkSucc_iterator BlkSucc_end(BlkT *BB)
Definition: SSAUpdater.cpp:216
void addIncoming(Value *V, BasicBlock *BB)
static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred)
Definition: SSAUpdater.cpp:274
void run(const SmallVectorImpl< Instruction * > &Insts) const
This does the promotion.
Definition: SSAUpdater.cpp:342
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Definition: SSAUpdater.cpp:45
static BlkSucc_iterator BlkSucc_begin(BlkT *BB)
Definition: SSAUpdater.cpp:215
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value...
Definition: SSAUpdater.cpp:58
static Value * CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, SSAUpdater *Updater)
Definition: SSAUpdater.cpp:265
virtual void updateDebugInfo(Instruction *I) const
Called to update debug info associated with the instruction.
Definition: SSAUpdater.h:171
const Instruction & front() const
Definition: BasicBlock.h:205
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
static PHINode * InstrIsPHI(Instruction *I)
Definition: SSAUpdater.cpp:280
Definition: Use.h:60
Instruction * getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:130
virtual void doExtraRewritesBeforeFinalDeletion() const
This hook is invoked after all the stores are found and inserted as available values.
Definition: SSAUpdater.h:158
static PHI_iterator PHI_begin(PhiT *PHI)
Definition: SSAUpdater.cpp:236
Interval::succ_iterator succ_begin(Interval *I)
Definition: Interval.h:107
bool operator==(const PHI_iterator &x) const
Definition: SSAUpdater.cpp:230
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
virtual void replaceLoadWithValue(LoadInst *LI, Value *V) const
Clients can choose to implement this to get notified right before a load is RAUW'd another value...
Definition: SSAUpdater.h:163
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
static void ValueIsRAUWd(Value *Old, Value *New)
Definition: Value.cpp:677
virtual void instructionDeleted(Instruction *I) const
Called before each instruction is deleted.
Definition: SSAUpdater.h:167
DenseMap< BasicBlock *, Value * > AvailableValsTy
Definition: SSAUpdater.cpp:33
static Value * GetUndefVal(BasicBlock *BB, SSAUpdater *Updater)
Definition: SSAUpdater.cpp:259
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:110
unsigned getNumIncomingValues() const
#define P(N)
Value * GetValueInMiddleOfBlock(BasicBlock *BB)
Construct SSA form, materializing a value that is live in the middle of the specified block...
Definition: SSAUpdater.cpp:86
void set(Value *Val)
Definition: Value.h:356
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
void RewriteUseAfterInsertions(Use &U)
Rewrite a use like RewriteUse but handling in-block definitions.
Definition: SSAUpdater.cpp:194
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
unsigned size() const
LoadAndStorePromoter(const SmallVectorImpl< Instruction * > &Insts, SSAUpdater &S, StringRef Name=StringRef())
Definition: SSAUpdater.cpp:325
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
BasicBlock * getIncomingBlock(unsigned i) const
SSAUpdater(SmallVectorImpl< PHINode * > *InsertedPHIs=0)
Definition: SSAUpdater.cpp:38
Value * get() const
Definition: Use.h:94
User * getUser() const
Definition: Use.cpp:137
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
bool HasValueForBlock(BasicBlock *BB) const
Return true if the SSAUpdater already has a value for the specified block.
Definition: SSAUpdater.cpp:54
bool count(const KeyT &Val) const
count - Return true if the specified key is in the map.
Definition: DenseMap.h:103
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
static AvailableValsTy & getAvailableVals(void *AV)
Definition: SSAUpdater.cpp:34
static PHINode * ValueIsPHI(Value *Val, SSAUpdater *Updater)
Definition: SSAUpdater.cpp:286
Value * getIncomingValue(unsigned i) const
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
bool empty() const
static void FindPredecessorBlocks(BasicBlock *BB, SmallVectorImpl< BasicBlock * > *Preds)
Definition: SSAUpdater.cpp:243
static bool IsEquivalentPHI(PHINode *PHI, SmallDenseMap< BasicBlock *, Value *, 8 > &ValueMapping)
Definition: SSAUpdater.cpp:65
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
virtual bool isInstInList(Instruction *I, const SmallVectorImpl< Instruction * > &Insts) const
Return true if the specified instruction is in the Inst list.
Definition: SSAUpdater.cpp:488
#define I(x, y, z)
Definition: MD5.cpp:54
bool use_empty() const
Definition: Value.h:149
LLVM Value Representation.
Definition: Value.h:66
static PHI_iterator PHI_end(PhiT *PHI)
Definition: SSAUpdater.cpp:237
#define DEBUG(X)
Definition: Debug.h:97
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1684
Value * GetValueAtEndOfBlock(BasicBlock *BB)
Construct SSA form, materializing a value that is live at the end of the specified block...
Definition: SSAUpdater.cpp:81
bool operator!=(const PHI_iterator &x) const
Definition: SSAUpdater.cpp:231
void RewriteUse(Use &U)
Rewrite a use of the symbolic value.
Definition: SSAUpdater.cpp:177
static Value * GetPHIValue(PHINode *PHI)
Definition: SSAUpdater.cpp:301
static PHINode * ValueIsNewPHI(Value *Val, SSAUpdater *Updater)
Definition: SSAUpdater.cpp:292
const BasicBlock * getParent() const
Definition: Instruction.h:52
bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:110