LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SSAUpdaterImpl.h
Go to the documentation of this file.
1 //===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a template that implements the core algorithm for the
11 // SSAUpdater and MachineSSAUpdater.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
16 #define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Support/Allocator.h"
21 #include "llvm/Support/Debug.h"
23 
24 namespace llvm {
25 
26 class CastInst;
27 class PHINode;
28 template<typename T> class SSAUpdaterTraits;
29 
30 template<typename UpdaterT>
32 private:
33  UpdaterT *Updater;
34 
36  typedef typename Traits::BlkT BlkT;
37  typedef typename Traits::ValT ValT;
38  typedef typename Traits::PhiT PhiT;
39 
40  /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
41  /// The predecessors of each block are cached here since pred_iterator is
42  /// slow and we need to iterate over the blocks at least a few times.
43  class BBInfo {
44  public:
45  BlkT *BB; // Back-pointer to the corresponding block.
46  ValT AvailableVal; // Value to use in this block.
47  BBInfo *DefBB; // Block that defines the available value.
48  int BlkNum; // Postorder number.
49  BBInfo *IDom; // Immediate dominator.
50  unsigned NumPreds; // Number of predecessor blocks.
51  BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
52  PhiT *PHITag; // Marker for existing PHIs that match.
53 
54  BBInfo(BlkT *ThisBB, ValT V)
55  : BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
56  NumPreds(0), Preds(0), PHITag(0) { }
57  };
58 
60  AvailableValsTy *AvailableVals;
61 
62  SmallVectorImpl<PhiT*> *InsertedPHIs;
63 
66  BBMapTy BBMap;
67  BumpPtrAllocator Allocator;
68 
69 public:
70  explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
72  Updater(U), AvailableVals(A), InsertedPHIs(Ins) { }
73 
74  /// GetValue - Check to see if AvailableVals has an entry for the specified
75  /// BB and if so, return it. If not, construct SSA form by first
76  /// calculating the required placement of PHIs and then inserting new PHIs
77  /// where needed.
78  ValT GetValue(BlkT *BB) {
79  SmallVector<BBInfo*, 100> BlockList;
80  BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
81 
82  // Special case: bail out if BB is unreachable.
83  if (BlockList.size() == 0) {
84  ValT V = Traits::GetUndefVal(BB, Updater);
85  (*AvailableVals)[BB] = V;
86  return V;
87  }
88 
89  FindDominators(&BlockList, PseudoEntry);
90  FindPHIPlacement(&BlockList);
91  FindAvailableVals(&BlockList);
92 
93  return BBMap[BB]->DefBB->AvailableVal;
94  }
95 
96  /// BuildBlockList - Starting from the specified basic block, traverse back
97  /// through its predecessors until reaching blocks with known values.
98  /// Create BBInfo structures for the blocks and append them to the block
99  /// list.
100  BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
101  SmallVector<BBInfo*, 10> RootList;
102  SmallVector<BBInfo*, 64> WorkList;
103 
104  BBInfo *Info = new (Allocator) BBInfo(BB, 0);
105  BBMap[BB] = Info;
106  WorkList.push_back(Info);
107 
108  // Search backward from BB, creating BBInfos along the way and stopping
109  // when reaching blocks that define the value. Record those defining
110  // blocks on the RootList.
112  while (!WorkList.empty()) {
113  Info = WorkList.pop_back_val();
114  Preds.clear();
115  Traits::FindPredecessorBlocks(Info->BB, &Preds);
116  Info->NumPreds = Preds.size();
117  if (Info->NumPreds == 0)
118  Info->Preds = 0;
119  else
120  Info->Preds = static_cast<BBInfo**>
121  (Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*),
123 
124  for (unsigned p = 0; p != Info->NumPreds; ++p) {
125  BlkT *Pred = Preds[p];
126  // Check if BBMap already has a BBInfo for the predecessor block.
127  typename BBMapTy::value_type &BBMapBucket =
128  BBMap.FindAndConstruct(Pred);
129  if (BBMapBucket.second) {
130  Info->Preds[p] = BBMapBucket.second;
131  continue;
132  }
133 
134  // Create a new BBInfo for the predecessor.
135  ValT PredVal = AvailableVals->lookup(Pred);
136  BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
137  BBMapBucket.second = PredInfo;
138  Info->Preds[p] = PredInfo;
139 
140  if (PredInfo->AvailableVal) {
141  RootList.push_back(PredInfo);
142  continue;
143  }
144  WorkList.push_back(PredInfo);
145  }
146  }
147 
148  // Now that we know what blocks are backwards-reachable from the starting
149  // block, do a forward depth-first traversal to assign postorder numbers
150  // to those blocks.
151  BBInfo *PseudoEntry = new (Allocator) BBInfo(0, 0);
152  unsigned BlkNum = 1;
153 
154  // Initialize the worklist with the roots from the backward traversal.
155  while (!RootList.empty()) {
156  Info = RootList.pop_back_val();
157  Info->IDom = PseudoEntry;
158  Info->BlkNum = -1;
159  WorkList.push_back(Info);
160  }
161 
162  while (!WorkList.empty()) {
163  Info = WorkList.back();
164 
165  if (Info->BlkNum == -2) {
166  // All the successors have been handled; assign the postorder number.
167  Info->BlkNum = BlkNum++;
168  // If not a root, put it on the BlockList.
169  if (!Info->AvailableVal)
170  BlockList->push_back(Info);
171  WorkList.pop_back();
172  continue;
173  }
174 
175  // Leave this entry on the worklist, but set its BlkNum to mark that its
176  // successors have been put on the worklist. When it returns to the top
177  // the list, after handling its successors, it will be assigned a
178  // number.
179  Info->BlkNum = -2;
180 
181  // Add unvisited successors to the work list.
182  for (typename Traits::BlkSucc_iterator SI =
183  Traits::BlkSucc_begin(Info->BB),
184  E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
185  BBInfo *SuccInfo = BBMap[*SI];
186  if (!SuccInfo || SuccInfo->BlkNum)
187  continue;
188  SuccInfo->BlkNum = -1;
189  WorkList.push_back(SuccInfo);
190  }
191  }
192  PseudoEntry->BlkNum = BlkNum;
193  return PseudoEntry;
194  }
195 
196  /// IntersectDominators - This is the dataflow lattice "meet" operation for
197  /// finding dominators. Given two basic blocks, it walks up the dominator
198  /// tree until it finds a common dominator of both. It uses the postorder
199  /// number of the blocks to determine how to do that.
200  BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
201  while (Blk1 != Blk2) {
202  while (Blk1->BlkNum < Blk2->BlkNum) {
203  Blk1 = Blk1->IDom;
204  if (!Blk1)
205  return Blk2;
206  }
207  while (Blk2->BlkNum < Blk1->BlkNum) {
208  Blk2 = Blk2->IDom;
209  if (!Blk2)
210  return Blk1;
211  }
212  }
213  return Blk1;
214  }
215 
216  /// FindDominators - Calculate the dominator tree for the subset of the CFG
217  /// corresponding to the basic blocks on the BlockList. This uses the
218  /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
219  /// and Kennedy, published in Software--Practice and Experience, 2001,
220  /// 4:1-10. Because the CFG subset does not include any edges leading into
221  /// blocks that define the value, the results are not the usual dominator
222  /// tree. The CFG subset has a single pseudo-entry node with edges to a set
223  /// of root nodes for blocks that define the value. The dominators for this
224  /// subset CFG are not the standard dominators but they are adequate for
225  /// placing PHIs within the subset CFG.
226  void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
227  bool Changed;
228  do {
229  Changed = false;
230  // Iterate over the list in reverse order, i.e., forward on CFG edges.
231  for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
232  E = BlockList->rend(); I != E; ++I) {
233  BBInfo *Info = *I;
234  BBInfo *NewIDom = 0;
235 
236  // Iterate through the block's predecessors.
237  for (unsigned p = 0; p != Info->NumPreds; ++p) {
238  BBInfo *Pred = Info->Preds[p];
239 
240  // Treat an unreachable predecessor as a definition with 'undef'.
241  if (Pred->BlkNum == 0) {
242  Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
243  (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
244  Pred->DefBB = Pred;
245  Pred->BlkNum = PseudoEntry->BlkNum;
246  PseudoEntry->BlkNum++;
247  }
248 
249  if (!NewIDom)
250  NewIDom = Pred;
251  else
252  NewIDom = IntersectDominators(NewIDom, Pred);
253  }
254 
255  // Check if the IDom value has changed.
256  if (NewIDom && NewIDom != Info->IDom) {
257  Info->IDom = NewIDom;
258  Changed = true;
259  }
260  }
261  } while (Changed);
262  }
263 
264  /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
265  /// any blocks containing definitions of the value. If one is found, then
266  /// the successor of Pred is in the dominance frontier for the definition,
267  /// and this function returns true.
268  bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
269  for (; Pred != IDom; Pred = Pred->IDom) {
270  if (Pred->DefBB == Pred)
271  return true;
272  }
273  return false;
274  }
275 
276  /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
277  /// of the known definitions. Iteratively add PHIs in the dom frontiers
278  /// until nothing changes. Along the way, keep track of the nearest
279  /// dominating definitions for non-PHI blocks.
280  void FindPHIPlacement(BlockListTy *BlockList) {
281  bool Changed;
282  do {
283  Changed = false;
284  // Iterate over the list in reverse order, i.e., forward on CFG edges.
285  for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
286  E = BlockList->rend(); I != E; ++I) {
287  BBInfo *Info = *I;
288 
289  // If this block already needs a PHI, there is nothing to do here.
290  if (Info->DefBB == Info)
291  continue;
292 
293  // Default to use the same def as the immediate dominator.
294  BBInfo *NewDefBB = Info->IDom->DefBB;
295  for (unsigned p = 0; p != Info->NumPreds; ++p) {
296  if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
297  // Need a PHI here.
298  NewDefBB = Info;
299  break;
300  }
301  }
302 
303  // Check if anything changed.
304  if (NewDefBB != Info->DefBB) {
305  Info->DefBB = NewDefBB;
306  Changed = true;
307  }
308  }
309  } while (Changed);
310  }
311 
312  /// FindAvailableVal - If this block requires a PHI, first check if an
313  /// existing PHI matches the PHI placement and reaching definitions computed
314  /// earlier, and if not, create a new PHI. Visit all the block's
315  /// predecessors to calculate the available value for each one and fill in
316  /// the incoming values for a new PHI.
317  void FindAvailableVals(BlockListTy *BlockList) {
318  // Go through the worklist in forward order (i.e., backward through the CFG)
319  // and check if existing PHIs can be used. If not, create empty PHIs where
320  // they are needed.
321  for (typename BlockListTy::iterator I = BlockList->begin(),
322  E = BlockList->end(); I != E; ++I) {
323  BBInfo *Info = *I;
324  // Check if there needs to be a PHI in BB.
325  if (Info->DefBB != Info)
326  continue;
327 
328  // Look for an existing PHI.
329  FindExistingPHI(Info->BB, BlockList);
330  if (Info->AvailableVal)
331  continue;
332 
333  ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
334  Info->AvailableVal = PHI;
335  (*AvailableVals)[Info->BB] = PHI;
336  }
337 
338  // Now go back through the worklist in reverse order to fill in the
339  // arguments for any new PHIs added in the forward traversal.
340  for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
341  E = BlockList->rend(); I != E; ++I) {
342  BBInfo *Info = *I;
343 
344  if (Info->DefBB != Info) {
345  // Record the available value at join nodes to speed up subsequent
346  // uses of this SSAUpdater for the same value.
347  if (Info->NumPreds > 1)
348  (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
349  continue;
350  }
351 
352  // Check if this block contains a newly added PHI.
353  PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
354  if (!PHI)
355  continue;
356 
357  // Iterate through the block's predecessors.
358  for (unsigned p = 0; p != Info->NumPreds; ++p) {
359  BBInfo *PredInfo = Info->Preds[p];
360  BlkT *Pred = PredInfo->BB;
361  // Skip to the nearest preceding definition.
362  if (PredInfo->DefBB != PredInfo)
363  PredInfo = PredInfo->DefBB;
364  Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
365  }
366 
367  DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
368 
369  // If the client wants to know about all new instructions, tell it.
370  if (InsertedPHIs) InsertedPHIs->push_back(PHI);
371  }
372  }
373 
374  /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
375  /// them match what is needed.
376  void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
377  for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
378  BBI != BBE; ++BBI) {
379  PhiT *SomePHI = Traits::InstrIsPHI(BBI);
380  if (!SomePHI)
381  break;
382  if (CheckIfPHIMatches(SomePHI)) {
383  RecordMatchingPHIs(BlockList);
384  break;
385  }
386  // Match failed: clear all the PHITag values.
387  for (typename BlockListTy::iterator I = BlockList->begin(),
388  E = BlockList->end(); I != E; ++I)
389  (*I)->PHITag = 0;
390  }
391  }
392 
393  /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
394  /// in the BBMap.
395  bool CheckIfPHIMatches(PhiT *PHI) {
396  SmallVector<PhiT*, 20> WorkList;
397  WorkList.push_back(PHI);
398 
399  // Mark that the block containing this PHI has been visited.
400  BBMap[PHI->getParent()]->PHITag = PHI;
401 
402  while (!WorkList.empty()) {
403  PHI = WorkList.pop_back_val();
404 
405  // Iterate through the PHI's incoming values.
406  for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
407  E = Traits::PHI_end(PHI); I != E; ++I) {
408  ValT IncomingVal = I.getIncomingValue();
409  BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
410  // Skip to the nearest preceding definition.
411  if (PredInfo->DefBB != PredInfo)
412  PredInfo = PredInfo->DefBB;
413 
414  // Check if it matches the expected value.
415  if (PredInfo->AvailableVal) {
416  if (IncomingVal == PredInfo->AvailableVal)
417  continue;
418  return false;
419  }
420 
421  // Check if the value is a PHI in the correct block.
422  PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
423  if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
424  return false;
425 
426  // If this block has already been visited, check if this PHI matches.
427  if (PredInfo->PHITag) {
428  if (IncomingPHIVal == PredInfo->PHITag)
429  continue;
430  return false;
431  }
432  PredInfo->PHITag = IncomingPHIVal;
433 
434  WorkList.push_back(IncomingPHIVal);
435  }
436  }
437  return true;
438  }
439 
440  /// RecordMatchingPHIs - For each PHI node that matches, record it in both
441  /// the BBMap and the AvailableVals mapping.
442  void RecordMatchingPHIs(BlockListTy *BlockList) {
443  for (typename BlockListTy::iterator I = BlockList->begin(),
444  E = BlockList->end(); I != E; ++I)
445  if (PhiT *PHI = (*I)->PHITag) {
446  BlkT *BB = PHI->getParent();
447  ValT PHIVal = Traits::GetPHIValue(PHI);
448  (*AvailableVals)[BB] = PHIVal;
449  BBMap[BB]->AvailableVal = PHIVal;
450  }
451  }
452 };
453 
454 } // End llvm namespace
455 
456 #endif
std::reverse_iterator< iterator > reverse_iterator
Definition: SmallVector.h:104
ValT GetValue(BlkT *BB)
void FindPHIPlacement(BlockListTy *BlockList)
void FindExistingPHI(BlkT *BB, BlockListTy *BlockList)
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
bool CheckIfPHIMatches(PhiT *PHI)
void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry)
bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom)
BucketT value_type
Definition: DenseMap.h:48
void RecordMatchingPHIs(BlockListTy *BlockList)
SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A, SmallVectorImpl< PhiT * > *Ins)
void FindAvailableVals(BlockListTy *BlockList)
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void * Allocate(size_t Size, size_t Alignment)
Definition: Allocator.cpp:95
BBInfo * IntersectDominators(BBInfo *Blk1, BBInfo *Blk2)
value_type & FindAndConstruct(const KeyT &Key)
Definition: DenseMap.h:209
#define I(x, y, z)
Definition: MD5.cpp:54
BBInfo * BuildBlockList(BlkT *BB, BlockListTy *BlockList)
ValueT lookup(const KeyT &Val) const
Definition: DenseMap.h:143
#define DEBUG(X)
Definition: Debug.h:97