LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SparsePropagation.cpp
Go to the documentation of this file.
1 //===- SparsePropagation.cpp - Sparse Conditional Property Propagation ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an abstract sparse conditional propagation algorithm,
11 // modeled after SCCP, but with a customizable lattice function.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "sparseprop"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Support/Debug.h"
22 using namespace llvm;
23 
24 //===----------------------------------------------------------------------===//
25 // AbstractLatticeFunction Implementation
26 //===----------------------------------------------------------------------===//
27 
29 
30 /// PrintValue - Render the specified lattice value to the specified stream.
32  if (V == UndefVal)
33  OS << "undefined";
34  else if (V == OverdefinedVal)
35  OS << "overdefined";
36  else if (V == UntrackedVal)
37  OS << "untracked";
38  else
39  OS << "unknown lattice value";
40 }
41 
42 //===----------------------------------------------------------------------===//
43 // SparseSolver Implementation
44 //===----------------------------------------------------------------------===//
45 
46 /// getOrInitValueState - Return the LatticeVal object that corresponds to the
47 /// value, initializing the value's state if it hasn't been entered into the
48 /// map yet. This function is necessary because not all values should start
49 /// out in the underdefined state... Arguments should be overdefined, and
50 /// constants should be marked as constants.
51 ///
52 SparseSolver::LatticeVal SparseSolver::getOrInitValueState(Value *V) {
53  DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(V);
54  if (I != ValueState.end()) return I->second; // Common case, in the map
55 
56  LatticeVal LV;
57  if (LatticeFunc->IsUntrackedValue(V))
58  return LatticeFunc->getUntrackedVal();
59  else if (Constant *C = dyn_cast<Constant>(V))
60  LV = LatticeFunc->ComputeConstant(C);
61  else if (Argument *A = dyn_cast<Argument>(V))
62  LV = LatticeFunc->ComputeArgument(A);
63  else if (!isa<Instruction>(V))
64  // All other non-instructions are overdefined.
65  LV = LatticeFunc->getOverdefinedVal();
66  else
67  // All instructions are underdefined by default.
68  LV = LatticeFunc->getUndefVal();
69 
70  // If this value is untracked, don't add it to the map.
71  if (LV == LatticeFunc->getUntrackedVal())
72  return LV;
73  return ValueState[V] = LV;
74 }
75 
76 /// UpdateState - When the state for some instruction is potentially updated,
77 /// this function notices and adds I to the worklist if needed.
78 void SparseSolver::UpdateState(Instruction &Inst, LatticeVal V) {
79  DenseMap<Value*, LatticeVal>::iterator I = ValueState.find(&Inst);
80  if (I != ValueState.end() && I->second == V)
81  return; // No change.
82 
83  // An update. Visit uses of I.
84  ValueState[&Inst] = V;
85  InstWorkList.push_back(&Inst);
86 }
87 
88 /// MarkBlockExecutable - This method can be used by clients to mark all of
89 /// the blocks that are known to be intrinsically live in the processed unit.
90 void SparseSolver::MarkBlockExecutable(BasicBlock *BB) {
91  DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
92  BBExecutable.insert(BB); // Basic block is executable!
93  BBWorkList.push_back(BB); // Add the block to the work list!
94 }
95 
96 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
97 /// work list if it is not already executable...
98 void SparseSolver::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
99  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
100  return; // This edge is already known to be executable!
101 
102  DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
103  << " -> " << Dest->getName() << "\n");
104 
105  if (BBExecutable.count(Dest)) {
106  // The destination is already executable, but we just made an edge
107  // feasible that wasn't before. Revisit the PHI nodes in the block
108  // because they have potentially new operands.
109  for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
110  visitPHINode(*cast<PHINode>(I));
111 
112  } else {
113  MarkBlockExecutable(Dest);
114  }
115 }
116 
117 
118 /// getFeasibleSuccessors - Return a vector of booleans to indicate which
119 /// successors are reachable from a given terminator instruction.
120 void SparseSolver::getFeasibleSuccessors(TerminatorInst &TI,
121  SmallVectorImpl<bool> &Succs,
122  bool AggressiveUndef) {
123  Succs.resize(TI.getNumSuccessors());
124  if (TI.getNumSuccessors() == 0) return;
125 
126  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
127  if (BI->isUnconditional()) {
128  Succs[0] = true;
129  return;
130  }
131 
132  LatticeVal BCValue;
133  if (AggressiveUndef)
134  BCValue = getOrInitValueState(BI->getCondition());
135  else
136  BCValue = getLatticeState(BI->getCondition());
137 
138  if (BCValue == LatticeFunc->getOverdefinedVal() ||
139  BCValue == LatticeFunc->getUntrackedVal()) {
140  // Overdefined condition variables can branch either way.
141  Succs[0] = Succs[1] = true;
142  return;
143  }
144 
145  // If undefined, neither is feasible yet.
146  if (BCValue == LatticeFunc->getUndefVal())
147  return;
148 
149  Constant *C = LatticeFunc->GetConstant(BCValue, BI->getCondition(), *this);
150  if (C == 0 || !isa<ConstantInt>(C)) {
151  // Non-constant values can go either way.
152  Succs[0] = Succs[1] = true;
153  return;
154  }
155 
156  // Constant condition variables mean the branch can only go a single way
157  Succs[C->isNullValue()] = true;
158  return;
159  }
160 
161  if (isa<InvokeInst>(TI)) {
162  // Invoke instructions successors are always executable.
163  // TODO: Could ask the lattice function if the value can throw.
164  Succs[0] = Succs[1] = true;
165  return;
166  }
167 
168  if (isa<IndirectBrInst>(TI)) {
169  Succs.assign(Succs.size(), true);
170  return;
171  }
172 
173  SwitchInst &SI = cast<SwitchInst>(TI);
174  LatticeVal SCValue;
175  if (AggressiveUndef)
176  SCValue = getOrInitValueState(SI.getCondition());
177  else
178  SCValue = getLatticeState(SI.getCondition());
179 
180  if (SCValue == LatticeFunc->getOverdefinedVal() ||
181  SCValue == LatticeFunc->getUntrackedVal()) {
182  // All destinations are executable!
183  Succs.assign(TI.getNumSuccessors(), true);
184  return;
185  }
186 
187  // If undefined, neither is feasible yet.
188  if (SCValue == LatticeFunc->getUndefVal())
189  return;
190 
191  Constant *C = LatticeFunc->GetConstant(SCValue, SI.getCondition(), *this);
192  if (C == 0 || !isa<ConstantInt>(C)) {
193  // All destinations are executable!
194  Succs.assign(TI.getNumSuccessors(), true);
195  return;
196  }
197  SwitchInst::CaseIt Case = SI.findCaseValue(cast<ConstantInt>(C));
198  Succs[Case.getSuccessorIndex()] = true;
199 }
200 
201 
202 /// isEdgeFeasible - Return true if the control flow edge from the 'From'
203 /// basic block to the 'To' basic block is currently feasible...
205  bool AggressiveUndef) {
206  SmallVector<bool, 16> SuccFeasible;
207  TerminatorInst *TI = From->getTerminator();
208  getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
209 
210  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
211  if (TI->getSuccessor(i) == To && SuccFeasible[i])
212  return true;
213 
214  return false;
215 }
216 
217 void SparseSolver::visitTerminatorInst(TerminatorInst &TI) {
218  SmallVector<bool, 16> SuccFeasible;
219  getFeasibleSuccessors(TI, SuccFeasible, true);
220 
221  BasicBlock *BB = TI.getParent();
222 
223  // Mark all feasible successors executable...
224  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
225  if (SuccFeasible[i])
226  markEdgeExecutable(BB, TI.getSuccessor(i));
227 }
228 
229 void SparseSolver::visitPHINode(PHINode &PN) {
230  // The lattice function may store more information on a PHINode than could be
231  // computed from its incoming values. For example, SSI form stores its sigma
232  // functions as PHINodes with a single incoming value.
233  if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
234  LatticeVal IV = LatticeFunc->ComputeInstructionState(PN, *this);
235  if (IV != LatticeFunc->getUntrackedVal())
236  UpdateState(PN, IV);
237  return;
238  }
239 
240  LatticeVal PNIV = getOrInitValueState(&PN);
241  LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
242 
243  // If this value is already overdefined (common) just return.
244  if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
245  return; // Quick exit
246 
247  // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
248  // and slow us down a lot. Just mark them overdefined.
249  if (PN.getNumIncomingValues() > 64) {
250  UpdateState(PN, Overdefined);
251  return;
252  }
253 
254  // Look at all of the executable operands of the PHI node. If any of them
255  // are overdefined, the PHI becomes overdefined as well. Otherwise, ask the
256  // transfer function to give us the merge of the incoming values.
257  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
258  // If the edge is not yet known to be feasible, it doesn't impact the PHI.
259  if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
260  continue;
261 
262  // Merge in this value.
263  LatticeVal OpVal = getOrInitValueState(PN.getIncomingValue(i));
264  if (OpVal != PNIV)
265  PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
266 
267  if (PNIV == Overdefined)
268  break; // Rest of input values don't matter.
269  }
270 
271  // Update the PHI with the compute value, which is the merge of the inputs.
272  UpdateState(PN, PNIV);
273 }
274 
275 
276 void SparseSolver::visitInst(Instruction &I) {
277  // PHIs are handled by the propagation logic, they are never passed into the
278  // transfer functions.
279  if (PHINode *PN = dyn_cast<PHINode>(&I))
280  return visitPHINode(*PN);
281 
282  // Otherwise, ask the transfer function what the result is. If this is
283  // something that we care about, remember it.
284  LatticeVal IV = LatticeFunc->ComputeInstructionState(I, *this);
285  if (IV != LatticeFunc->getUntrackedVal())
286  UpdateState(I, IV);
287 
288  if (TerminatorInst *TI = dyn_cast<TerminatorInst>(&I))
289  visitTerminatorInst(*TI);
290 }
291 
293  MarkBlockExecutable(&F.getEntryBlock());
294 
295  // Process the work lists until they are empty!
296  while (!BBWorkList.empty() || !InstWorkList.empty()) {
297  // Process the instruction work list.
298  while (!InstWorkList.empty()) {
299  Instruction *I = InstWorkList.back();
300  InstWorkList.pop_back();
301 
302  DEBUG(dbgs() << "\nPopped off I-WL: " << *I << "\n");
303 
304  // "I" got into the work list because it made a transition. See if any
305  // users are both live and in need of updating.
306  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
307  UI != E; ++UI) {
308  Instruction *U = cast<Instruction>(*UI);
309  if (BBExecutable.count(U->getParent())) // Inst is executable?
310  visitInst(*U);
311  }
312  }
313 
314  // Process the basic block work list.
315  while (!BBWorkList.empty()) {
316  BasicBlock *BB = BBWorkList.back();
317  BBWorkList.pop_back();
318 
319  DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
320 
321  // Notify all instructions in this basic block that they are newly
322  // executable.
323  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
324  visitInst(*I);
325  }
326  }
327 }
328 
330  OS << "\nFUNCTION: " << F.getName() << "\n";
331  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
332  if (!BBExecutable.count(BB))
333  OS << "INFEASIBLE: ";
334  OS << "\t";
335  if (BB->hasName())
336  OS << BB->getName() << ":\n";
337  else
338  OS << "; anon bb\n";
339  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
340  LatticeFunc->PrintValue(getLatticeState(I), OS);
341  OS << *I << "\n";
342  }
343 
344  OS << "\n";
345  }
346 }
347 
use_iterator use_end()
Definition: Value.h:152
LatticeVal getOrInitValueState(Value *V)
LLVM Argument representation.
Definition: Argument.h:35
void Solve(Function &F)
LatticeVal getUndefVal() const
bool hasName() const
Definition: Value.h:117
virtual LatticeVal ComputeInstructionState(Instruction &I, SparseSolver &SS)
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To, bool AggressiveUndef=false)
iterator end()
Definition: Function.h:397
unsigned getSuccessorIndex() const
Returns TerminatorInst's successor index for current case successor.
F(f)
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
virtual bool IsSpecialCasedPHI(PHINode *PN)
virtual bool IsUntrackedValue(Value *V)
void assign(unsigned NumElts, const T &Elt)
Definition: SmallVector.h:470
virtual LatticeVal ComputeConstant(Constant *C)
iterator begin()
Definition: Function.h:395
unsigned getNumIncomingValues() const
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
LatticeVal getUntrackedVal() const
* if(!EatIfPresent(lltok::kw_thread_local)) return false
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
LLVM Constant Representation.
Definition: Constant.h:41
LatticeVal getLatticeState(Value *V) const
virtual Constant * GetConstant(LatticeVal LV, Value *Val, SparseSolver &SS)
BasicBlock * getIncomingBlock(unsigned i) const
virtual LatticeVal ComputeArgument(Argument *I)
void Print(Function &F, raw_ostream &OS) const
Value * getIncomingValue(unsigned i) const
iterator end()
Definition: BasicBlock.h:195
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
bool isNullValue() const
Definition: Constants.cpp:75
CaseIt findCaseValue(const ConstantInt *C)
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
virtual void PrintValue(LatticeVal V, raw_ostream &OS)
PrintValue - Render the specified lattice value to the specified stream.
Value * getCondition() const
use_iterator use_begin()
Definition: Value.h:150
virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y)
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
void resize(unsigned N)
Definition: SmallVector.h:401
LLVM Value Representation.
Definition: Value.h:66
#define DEBUG(X)
Definition: Debug.h:97
LatticeVal getOverdefinedVal() const
const BasicBlock * getParent() const
Definition: Instruction.h:52