LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
InstCombinePHI.cpp
Go to the documentation of this file.
1 //===- InstCombinePHI.cpp -------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitPHINode function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/IR/DataLayout.h"
19 using namespace llvm;
20 
21 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)]
22 /// and if a/b/c and the add's all have a single use, turn this into a phi
23 /// and a single binop.
24 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
25  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
26  assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst));
27  unsigned Opc = FirstInst->getOpcode();
28  Value *LHSVal = FirstInst->getOperand(0);
29  Value *RHSVal = FirstInst->getOperand(1);
30 
31  Type *LHSType = LHSVal->getType();
32  Type *RHSType = RHSVal->getType();
33 
34  bool isNUW = false, isNSW = false, isExact = false;
36  dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
37  isNUW = BO->hasNoUnsignedWrap();
38  isNSW = BO->hasNoSignedWrap();
39  } else if (PossiblyExactOperator *PEO =
40  dyn_cast<PossiblyExactOperator>(FirstInst))
41  isExact = PEO->isExact();
42 
43  // Scan to see if all operands are the same opcode, and all have one use.
44  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
46  if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
47  // Verify type of the LHS matches so we don't fold cmp's of different
48  // types.
49  I->getOperand(0)->getType() != LHSType ||
50  I->getOperand(1)->getType() != RHSType)
51  return 0;
52 
53  // If they are CmpInst instructions, check their predicates
54  if (CmpInst *CI = dyn_cast<CmpInst>(I))
55  if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate())
56  return 0;
57 
58  if (isNUW)
59  isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
60  if (isNSW)
61  isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
62  if (isExact)
63  isExact = cast<PossiblyExactOperator>(I)->isExact();
64 
65  // Keep track of which operand needs a phi node.
66  if (I->getOperand(0) != LHSVal) LHSVal = 0;
67  if (I->getOperand(1) != RHSVal) RHSVal = 0;
68  }
69 
70  // If both LHS and RHS would need a PHI, don't do this transformation,
71  // because it would increase the number of PHIs entering the block,
72  // which leads to higher register pressure. This is especially
73  // bad when the PHIs are in the header of a loop.
74  if (!LHSVal && !RHSVal)
75  return 0;
76 
77  // Otherwise, this is safe to transform!
78 
79  Value *InLHS = FirstInst->getOperand(0);
80  Value *InRHS = FirstInst->getOperand(1);
81  PHINode *NewLHS = 0, *NewRHS = 0;
82  if (LHSVal == 0) {
83  NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(),
84  FirstInst->getOperand(0)->getName() + ".pn");
85  NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
86  InsertNewInstBefore(NewLHS, PN);
87  LHSVal = NewLHS;
88  }
89 
90  if (RHSVal == 0) {
91  NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(),
92  FirstInst->getOperand(1)->getName() + ".pn");
93  NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
94  InsertNewInstBefore(NewRHS, PN);
95  RHSVal = NewRHS;
96  }
97 
98  // Add all operands to the new PHIs.
99  if (NewLHS || NewRHS) {
100  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
101  Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i));
102  if (NewLHS) {
103  Value *NewInLHS = InInst->getOperand(0);
104  NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
105  }
106  if (NewRHS) {
107  Value *NewInRHS = InInst->getOperand(1);
108  NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
109  }
110  }
111  }
112 
113  if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) {
114  CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
115  LHSVal, RHSVal);
116  NewCI->setDebugLoc(FirstInst->getDebugLoc());
117  return NewCI;
118  }
119 
120  BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst);
121  BinaryOperator *NewBinOp =
122  BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal);
123  if (isNUW) NewBinOp->setHasNoUnsignedWrap();
124  if (isNSW) NewBinOp->setHasNoSignedWrap();
125  if (isExact) NewBinOp->setIsExact();
126  NewBinOp->setDebugLoc(FirstInst->getDebugLoc());
127  return NewBinOp;
128 }
129 
130 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) {
131  GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0));
132 
133  SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(),
134  FirstInst->op_end());
135  // This is true if all GEP bases are allocas and if all indices into them are
136  // constants.
137  bool AllBasePointersAreAllocas = true;
138 
139  // We don't want to replace this phi if the replacement would require
140  // more than one phi, which leads to higher register pressure. This is
141  // especially bad when the PHIs are in the header of a loop.
142  bool NeededPhi = false;
143 
144  bool AllInBounds = true;
145 
146  // Scan to see if all operands are the same opcode, and all have one use.
147  for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) {
149  if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() ||
150  GEP->getNumOperands() != FirstInst->getNumOperands())
151  return 0;
152 
153  AllInBounds &= GEP->isInBounds();
154 
155  // Keep track of whether or not all GEPs are of alloca pointers.
156  if (AllBasePointersAreAllocas &&
157  (!isa<AllocaInst>(GEP->getOperand(0)) ||
158  !GEP->hasAllConstantIndices()))
159  AllBasePointersAreAllocas = false;
160 
161  // Compare the operand lists.
162  for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) {
163  if (FirstInst->getOperand(op) == GEP->getOperand(op))
164  continue;
165 
166  // Don't merge two GEPs when two operands differ (introducing phi nodes)
167  // if one of the PHIs has a constant for the index. The index may be
168  // substantially cheaper to compute for the constants, so making it a
169  // variable index could pessimize the path. This also handles the case
170  // for struct indices, which must always be constant.
171  if (isa<ConstantInt>(FirstInst->getOperand(op)) ||
172  isa<ConstantInt>(GEP->getOperand(op)))
173  return 0;
174 
175  if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType())
176  return 0;
177 
178  // If we already needed a PHI for an earlier operand, and another operand
179  // also requires a PHI, we'd be introducing more PHIs than we're
180  // eliminating, which increases register pressure on entry to the PHI's
181  // block.
182  if (NeededPhi)
183  return 0;
184 
185  FixedOperands[op] = 0; // Needs a PHI.
186  NeededPhi = true;
187  }
188  }
189 
190  // If all of the base pointers of the PHI'd GEPs are from allocas, don't
191  // bother doing this transformation. At best, this will just save a bit of
192  // offset calculation, but all the predecessors will have to materialize the
193  // stack address into a register anyway. We'd actually rather *clone* the
194  // load up into the predecessors so that we have a load of a gep of an alloca,
195  // which can usually all be folded into the load.
196  if (AllBasePointersAreAllocas)
197  return 0;
198 
199  // Otherwise, this is safe to transform. Insert PHI nodes for each operand
200  // that is variable.
201  SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size());
202 
203  bool HasAnyPHIs = false;
204  for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) {
205  if (FixedOperands[i]) continue; // operand doesn't need a phi.
206  Value *FirstOp = FirstInst->getOperand(i);
207  PHINode *NewPN = PHINode::Create(FirstOp->getType(), e,
208  FirstOp->getName()+".pn");
209  InsertNewInstBefore(NewPN, PN);
210 
211  NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0));
212  OperandPhis[i] = NewPN;
213  FixedOperands[i] = NewPN;
214  HasAnyPHIs = true;
215  }
216 
217 
218  // Add all operands to the new PHIs.
219  if (HasAnyPHIs) {
220  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
221  GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i));
222  BasicBlock *InBB = PN.getIncomingBlock(i);
223 
224  for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op)
225  if (PHINode *OpPhi = OperandPhis[op])
226  OpPhi->addIncoming(InGEP->getOperand(op), InBB);
227  }
228  }
229 
230  Value *Base = FixedOperands[0];
231  GetElementPtrInst *NewGEP =
232  GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1));
233  if (AllInBounds) NewGEP->setIsInBounds();
234  NewGEP->setDebugLoc(FirstInst->getDebugLoc());
235  return NewGEP;
236 }
237 
238 
239 /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to
240 /// sink the load out of the block that defines it. This means that it must be
241 /// obvious the value of the load is not changed from the point of the load to
242 /// the end of the block it is in.
243 ///
244 /// Finally, it is safe, but not profitable, to sink a load targeting a
245 /// non-address-taken alloca. Doing so will cause us to not promote the alloca
246 /// to a register.
248  BasicBlock::iterator BBI = L, E = L->getParent()->end();
249 
250  for (++BBI; BBI != E; ++BBI)
251  if (BBI->mayWriteToMemory())
252  return false;
253 
254  // Check for non-address taken alloca. If not address-taken already, it isn't
255  // profitable to do this xform.
256  if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
257  bool isAddressTaken = false;
258  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
259  UI != E; ++UI) {
260  User *U = *UI;
261  if (isa<LoadInst>(U)) continue;
262  if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
263  // If storing TO the alloca, then the address isn't taken.
264  if (SI->getOperand(1) == AI) continue;
265  }
266  isAddressTaken = true;
267  break;
268  }
269 
270  if (!isAddressTaken && AI->isStaticAlloca())
271  return false;
272  }
273 
274  // If this load is a load from a GEP with a constant offset from an alloca,
275  // then we don't want to sink it. In its present form, it will be
276  // load [constant stack offset]. Sinking it will cause us to have to
277  // materialize the stack addresses in each predecessor in a register only to
278  // do a shared load from register in the successor.
279  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0)))
280  if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0)))
281  if (AI->isStaticAlloca() && GEP->hasAllConstantIndices())
282  return false;
283 
284  return true;
285 }
286 
287 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) {
288  LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0));
289 
290  // FIXME: This is overconservative; this transform is allowed in some cases
291  // for atomic operations.
292  if (FirstLI->isAtomic())
293  return 0;
294 
295  // When processing loads, we need to propagate two bits of information to the
296  // sunk load: whether it is volatile, and what its alignment is. We currently
297  // don't sink loads when some have their alignment specified and some don't.
298  // visitLoadInst will propagate an alignment onto the load when TD is around,
299  // and if TD isn't around, we can't handle the mixed case.
300  bool isVolatile = FirstLI->isVolatile();
301  unsigned LoadAlignment = FirstLI->getAlignment();
302  unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace();
303 
304  // We can't sink the load if the loaded value could be modified between the
305  // load and the PHI.
306  if (FirstLI->getParent() != PN.getIncomingBlock(0) ||
308  return 0;
309 
310  // If the PHI is of volatile loads and the load block has multiple
311  // successors, sinking it would remove a load of the volatile value from
312  // the path through the other successor.
313  if (isVolatile &&
314  FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1)
315  return 0;
316 
317  // Check to see if all arguments are the same operation.
318  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
320  if (!LI || !LI->hasOneUse())
321  return 0;
322 
323  // We can't sink the load if the loaded value could be modified between
324  // the load and the PHI.
325  if (LI->isVolatile() != isVolatile ||
326  LI->getParent() != PN.getIncomingBlock(i) ||
327  LI->getPointerAddressSpace() != LoadAddrSpace ||
329  return 0;
330 
331  // If some of the loads have an alignment specified but not all of them,
332  // we can't do the transformation.
333  if ((LoadAlignment != 0) != (LI->getAlignment() != 0))
334  return 0;
335 
336  LoadAlignment = std::min(LoadAlignment, LI->getAlignment());
337 
338  // If the PHI is of volatile loads and the load block has multiple
339  // successors, sinking it would remove a load of the volatile value from
340  // the path through the other successor.
341  if (isVolatile &&
342  LI->getParent()->getTerminator()->getNumSuccessors() != 1)
343  return 0;
344  }
345 
346  // Okay, they are all the same operation. Create a new PHI node of the
347  // correct type, and PHI together all of the LHS's of the instructions.
348  PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(),
350  PN.getName()+".in");
351 
352  Value *InVal = FirstLI->getOperand(0);
353  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
354 
355  // Add all operands to the new PHI.
356  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
357  Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0);
358  if (NewInVal != InVal)
359  InVal = 0;
360  NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
361  }
362 
363  Value *PhiVal;
364  if (InVal) {
365  // The new PHI unions all of the same values together. This is really
366  // common, so we handle it intelligently here for compile-time speed.
367  PhiVal = InVal;
368  delete NewPN;
369  } else {
370  InsertNewInstBefore(NewPN, PN);
371  PhiVal = NewPN;
372  }
373 
374  // If this was a volatile load that we are merging, make sure to loop through
375  // and mark all the input loads as non-volatile. If we don't do this, we will
376  // insert a new volatile load and the old ones will not be deletable.
377  if (isVolatile)
378  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
379  cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false);
380 
381  LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment);
382  NewLI->setDebugLoc(FirstLI->getDebugLoc());
383  return NewLI;
384 }
385 
386 
387 
388 /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
389 /// operator and they all are only used by the PHI, PHI together their
390 /// inputs, and do the operation once, to the result of the PHI.
391 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
392  Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
393 
394  if (isa<GetElementPtrInst>(FirstInst))
395  return FoldPHIArgGEPIntoPHI(PN);
396  if (isa<LoadInst>(FirstInst))
397  return FoldPHIArgLoadIntoPHI(PN);
398 
399  // Scan the instruction, looking for input operations that can be folded away.
400  // If all input operands to the phi are the same instruction (e.g. a cast from
401  // the same type or "+42") we can pull the operation through the PHI, reducing
402  // code size and simplifying code.
403  Constant *ConstantOp = 0;
404  Type *CastSrcTy = 0;
405  bool isNUW = false, isNSW = false, isExact = false;
406 
407  if (isa<CastInst>(FirstInst)) {
408  CastSrcTy = FirstInst->getOperand(0)->getType();
409 
410  // Be careful about transforming integer PHIs. We don't want to pessimize
411  // the code by turning an i32 into an i1293.
412  if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) {
413  if (!ShouldChangeType(PN.getType(), CastSrcTy))
414  return 0;
415  }
416  } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
417  // Can fold binop, compare or shift here if the RHS is a constant,
418  // otherwise call FoldPHIArgBinOpIntoPHI.
419  ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
420  if (ConstantOp == 0)
421  return FoldPHIArgBinOpIntoPHI(PN);
422 
423  if (OverflowingBinaryOperator *BO =
424  dyn_cast<OverflowingBinaryOperator>(FirstInst)) {
425  isNUW = BO->hasNoUnsignedWrap();
426  isNSW = BO->hasNoSignedWrap();
427  } else if (PossiblyExactOperator *PEO =
428  dyn_cast<PossiblyExactOperator>(FirstInst))
429  isExact = PEO->isExact();
430  } else {
431  return 0; // Cannot fold this operation.
432  }
433 
434  // Check to see if all arguments are the same operation.
435  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
437  if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst))
438  return 0;
439  if (CastSrcTy) {
440  if (I->getOperand(0)->getType() != CastSrcTy)
441  return 0; // Cast operation must match.
442  } else if (I->getOperand(1) != ConstantOp) {
443  return 0;
444  }
445 
446  if (isNUW)
447  isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap();
448  if (isNSW)
449  isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
450  if (isExact)
451  isExact = cast<PossiblyExactOperator>(I)->isExact();
452  }
453 
454  // Okay, they are all the same operation. Create a new PHI node of the
455  // correct type, and PHI together all of the LHS's of the instructions.
456  PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(),
458  PN.getName()+".in");
459 
460  Value *InVal = FirstInst->getOperand(0);
461  NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
462 
463  // Add all operands to the new PHI.
464  for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
465  Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
466  if (NewInVal != InVal)
467  InVal = 0;
468  NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
469  }
470 
471  Value *PhiVal;
472  if (InVal) {
473  // The new PHI unions all of the same values together. This is really
474  // common, so we handle it intelligently here for compile-time speed.
475  PhiVal = InVal;
476  delete NewPN;
477  } else {
478  InsertNewInstBefore(NewPN, PN);
479  PhiVal = NewPN;
480  }
481 
482  // Insert and return the new operation.
483  if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) {
484  CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal,
485  PN.getType());
486  NewCI->setDebugLoc(FirstInst->getDebugLoc());
487  return NewCI;
488  }
489 
490  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) {
491  BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp);
492  if (isNUW) BinOp->setHasNoUnsignedWrap();
493  if (isNSW) BinOp->setHasNoSignedWrap();
494  if (isExact) BinOp->setIsExact();
495  BinOp->setDebugLoc(FirstInst->getDebugLoc());
496  return BinOp;
497  }
498 
499  CmpInst *CIOp = cast<CmpInst>(FirstInst);
500  CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(),
501  PhiVal, ConstantOp);
502  NewCI->setDebugLoc(FirstInst->getDebugLoc());
503  return NewCI;
504 }
505 
506 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
507 /// that is dead.
508 static bool DeadPHICycle(PHINode *PN,
509  SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
510  if (PN->use_empty()) return true;
511  if (!PN->hasOneUse()) return false;
512 
513  // Remember this node, and if we find the cycle, return.
514  if (!PotentiallyDeadPHIs.insert(PN))
515  return true;
516 
517  // Don't scan crazily complex things.
518  if (PotentiallyDeadPHIs.size() == 16)
519  return false;
520 
521  if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
522  return DeadPHICycle(PU, PotentiallyDeadPHIs);
523 
524  return false;
525 }
526 
527 /// PHIsEqualValue - Return true if this phi node is always equal to
528 /// NonPhiInVal. This happens with mutually cyclic phi nodes like:
529 /// z = some value; x = phi (y, z); y = phi (x, z)
530 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
531  SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
532  // See if we already saw this PHI node.
533  if (!ValueEqualPHIs.insert(PN))
534  return true;
535 
536  // Don't scan crazily complex things.
537  if (ValueEqualPHIs.size() == 16)
538  return false;
539 
540  // Scan the operands to see if they are either phi nodes or are equal to
541  // the value.
542  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
543  Value *Op = PN->getIncomingValue(i);
544  if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
545  if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
546  return false;
547  } else if (Op != NonPhiInVal)
548  return false;
549  }
550 
551  return true;
552 }
553 
554 
555 namespace {
556 struct PHIUsageRecord {
557  unsigned PHIId; // The ID # of the PHI (something determinstic to sort on)
558  unsigned Shift; // The amount shifted.
559  Instruction *Inst; // The trunc instruction.
560 
561  PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User)
562  : PHIId(pn), Shift(Sh), Inst(User) {}
563 
564  bool operator<(const PHIUsageRecord &RHS) const {
565  if (PHIId < RHS.PHIId) return true;
566  if (PHIId > RHS.PHIId) return false;
567  if (Shift < RHS.Shift) return true;
568  if (Shift > RHS.Shift) return false;
569  return Inst->getType()->getPrimitiveSizeInBits() <
570  RHS.Inst->getType()->getPrimitiveSizeInBits();
571  }
572 };
573 
574 struct LoweredPHIRecord {
575  PHINode *PN; // The PHI that was lowered.
576  unsigned Shift; // The amount shifted.
577  unsigned Width; // The width extracted.
578 
579  LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty)
580  : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {}
581 
582  // Ctor form used by DenseMap.
583  LoweredPHIRecord(PHINode *pn, unsigned Sh)
584  : PN(pn), Shift(Sh), Width(0) {}
585 };
586 }
587 
588 namespace llvm {
589  template<>
590  struct DenseMapInfo<LoweredPHIRecord> {
591  static inline LoweredPHIRecord getEmptyKey() {
592  return LoweredPHIRecord(0, 0);
593  }
594  static inline LoweredPHIRecord getTombstoneKey() {
595  return LoweredPHIRecord(0, 1);
596  }
597  static unsigned getHashValue(const LoweredPHIRecord &Val) {
598  return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^
599  (Val.Width>>3);
600  }
601  static bool isEqual(const LoweredPHIRecord &LHS,
602  const LoweredPHIRecord &RHS) {
603  return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift &&
604  LHS.Width == RHS.Width;
605  }
606  };
607 }
608 
609 
610 /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an
611 /// illegal type: see if it is only used by trunc or trunc(lshr) operations. If
612 /// so, we split the PHI into the various pieces being extracted. This sort of
613 /// thing is introduced when SROA promotes an aggregate to large integer values.
614 ///
615 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an
616 /// inttoptr. We should produce new PHIs in the right type.
617 ///
619  // PHIUsers - Keep track of all of the truncated values extracted from a set
620  // of PHIs, along with their offset. These are the things we want to rewrite.
622 
623  // PHIs are often mutually cyclic, so we keep track of a whole set of PHI
624  // nodes which are extracted from. PHIsToSlice is a set we use to avoid
625  // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to
626  // check the uses of (to ensure they are all extracts).
627  SmallVector<PHINode*, 8> PHIsToSlice;
628  SmallPtrSet<PHINode*, 8> PHIsInspected;
629 
630  PHIsToSlice.push_back(&FirstPhi);
631  PHIsInspected.insert(&FirstPhi);
632 
633  for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) {
634  PHINode *PN = PHIsToSlice[PHIId];
635 
636  // Scan the input list of the PHI. If any input is an invoke, and if the
637  // input is defined in the predecessor, then we won't be split the critical
638  // edge which is required to insert a truncate. Because of this, we have to
639  // bail out.
640  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
642  if (II == 0) continue;
643  if (II->getParent() != PN->getIncomingBlock(i))
644  continue;
645 
646  // If we have a phi, and if it's directly in the predecessor, then we have
647  // a critical edge where we need to put the truncate. Since we can't
648  // split the edge in instcombine, we have to bail out.
649  return 0;
650  }
651 
652 
653  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
654  UI != E; ++UI) {
655  Instruction *User = cast<Instruction>(*UI);
656 
657  // If the user is a PHI, inspect its uses recursively.
658  if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
659  if (PHIsInspected.insert(UserPN))
660  PHIsToSlice.push_back(UserPN);
661  continue;
662  }
663 
664  // Truncates are always ok.
665  if (isa<TruncInst>(User)) {
666  PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User));
667  continue;
668  }
669 
670  // Otherwise it must be a lshr which can only be used by one trunc.
671  if (User->getOpcode() != Instruction::LShr ||
672  !User->hasOneUse() || !isa<TruncInst>(User->use_back()) ||
673  !isa<ConstantInt>(User->getOperand(1)))
674  return 0;
675 
676  unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue();
677  PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back()));
678  }
679  }
680 
681  // If we have no users, they must be all self uses, just nuke the PHI.
682  if (PHIUsers.empty())
683  return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType()));
684 
685  // If this phi node is transformable, create new PHIs for all the pieces
686  // extracted out of it. First, sort the users by their offset and size.
687  array_pod_sort(PHIUsers.begin(), PHIUsers.end());
688 
689  DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n';
690  for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
691  dbgs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] << '\n';
692  );
693 
694  // PredValues - This is a temporary used when rewriting PHI nodes. It is
695  // hoisted out here to avoid construction/destruction thrashing.
697 
698  // ExtractedVals - Each new PHI we introduce is saved here so we don't
699  // introduce redundant PHIs.
701 
702  for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) {
703  unsigned PHIId = PHIUsers[UserI].PHIId;
704  PHINode *PN = PHIsToSlice[PHIId];
705  unsigned Offset = PHIUsers[UserI].Shift;
706  Type *Ty = PHIUsers[UserI].Inst->getType();
707 
708  PHINode *EltPHI;
709 
710  // If we've already lowered a user like this, reuse the previously lowered
711  // value.
712  if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) {
713 
714  // Otherwise, Create the new PHI node for this user.
715  EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(),
716  PN->getName()+".off"+Twine(Offset), PN);
717  assert(EltPHI->getType() != PN->getType() &&
718  "Truncate didn't shrink phi?");
719 
720  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
721  BasicBlock *Pred = PN->getIncomingBlock(i);
722  Value *&PredVal = PredValues[Pred];
723 
724  // If we already have a value for this predecessor, reuse it.
725  if (PredVal) {
726  EltPHI->addIncoming(PredVal, Pred);
727  continue;
728  }
729 
730  // Handle the PHI self-reuse case.
731  Value *InVal = PN->getIncomingValue(i);
732  if (InVal == PN) {
733  PredVal = EltPHI;
734  EltPHI->addIncoming(PredVal, Pred);
735  continue;
736  }
737 
738  if (PHINode *InPHI = dyn_cast<PHINode>(PN)) {
739  // If the incoming value was a PHI, and if it was one of the PHIs we
740  // already rewrote it, just use the lowered value.
741  if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) {
742  PredVal = Res;
743  EltPHI->addIncoming(PredVal, Pred);
744  continue;
745  }
746  }
747 
748  // Otherwise, do an extract in the predecessor.
749  Builder->SetInsertPoint(Pred, Pred->getTerminator());
750  Value *Res = InVal;
751  if (Offset)
752  Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(),
753  Offset), "extract");
754  Res = Builder->CreateTrunc(Res, Ty, "extract.t");
755  PredVal = Res;
756  EltPHI->addIncoming(Res, Pred);
757 
758  // If the incoming value was a PHI, and if it was one of the PHIs we are
759  // rewriting, we will ultimately delete the code we inserted. This
760  // means we need to revisit that PHI to make sure we extract out the
761  // needed piece.
762  if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i)))
763  if (PHIsInspected.count(OldInVal)) {
764  unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(),
765  OldInVal)-PHIsToSlice.begin();
766  PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset,
767  cast<Instruction>(Res)));
768  ++UserE;
769  }
770  }
771  PredValues.clear();
772 
773  DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": "
774  << *EltPHI << '\n');
775  ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI;
776  }
777 
778  // Replace the use of this piece with the PHI node.
779  ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI);
780  }
781 
782  // Replace all the remaining uses of the PHI nodes (self uses and the lshrs)
783  // with undefs.
784  Value *Undef = UndefValue::get(FirstPhi.getType());
785  for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i)
786  ReplaceInstUsesWith(*PHIsToSlice[i], Undef);
787  return ReplaceInstUsesWith(FirstPhi, Undef);
788 }
789 
790 // PHINode simplification
791 //
793  if (Value *V = SimplifyInstruction(&PN, TD, TLI))
794  return ReplaceInstUsesWith(PN, V);
795 
796  // If all PHI operands are the same operation, pull them through the PHI,
797  // reducing code size.
798  if (isa<Instruction>(PN.getIncomingValue(0)) &&
799  isa<Instruction>(PN.getIncomingValue(1)) &&
800  cast<Instruction>(PN.getIncomingValue(0))->getOpcode() ==
801  cast<Instruction>(PN.getIncomingValue(1))->getOpcode() &&
802  // FIXME: The hasOneUse check will fail for PHIs that use the value more
803  // than themselves more than once.
804  PN.getIncomingValue(0)->hasOneUse())
805  if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
806  return Result;
807 
808  // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
809  // this PHI only has a single use (a PHI), and if that PHI only has one use (a
810  // PHI)... break the cycle.
811  if (PN.hasOneUse()) {
812  Instruction *PHIUser = cast<Instruction>(PN.use_back());
813  if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
814  SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
815  PotentiallyDeadPHIs.insert(&PN);
816  if (DeadPHICycle(PU, PotentiallyDeadPHIs))
817  return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
818  }
819 
820  // If this phi has a single use, and if that use just computes a value for
821  // the next iteration of a loop, delete the phi. This occurs with unused
822  // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
823  // common case here is good because the only other things that catch this
824  // are induction variable analysis (sometimes) and ADCE, which is only run
825  // late.
826  if (PHIUser->hasOneUse() &&
827  (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
828  PHIUser->use_back() == &PN) {
829  return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
830  }
831  }
832 
833  // We sometimes end up with phi cycles that non-obviously end up being the
834  // same value, for example:
835  // z = some value; x = phi (y, z); y = phi (x, z)
836  // where the phi nodes don't necessarily need to be in the same block. Do a
837  // quick check to see if the PHI node only contains a single non-phi value, if
838  // so, scan to see if the phi cycle is actually equal to that value.
839  {
840  unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues();
841  // Scan for the first non-phi operand.
842  while (InValNo != NumIncomingVals &&
843  isa<PHINode>(PN.getIncomingValue(InValNo)))
844  ++InValNo;
845 
846  if (InValNo != NumIncomingVals) {
847  Value *NonPhiInVal = PN.getIncomingValue(InValNo);
848 
849  // Scan the rest of the operands to see if there are any conflicts, if so
850  // there is no need to recursively scan other phis.
851  for (++InValNo; InValNo != NumIncomingVals; ++InValNo) {
852  Value *OpVal = PN.getIncomingValue(InValNo);
853  if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
854  break;
855  }
856 
857  // If we scanned over all operands, then we have one unique value plus
858  // phi values. Scan PHI nodes to see if they all merge in each other or
859  // the value.
860  if (InValNo == NumIncomingVals) {
861  SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
862  if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
863  return ReplaceInstUsesWith(PN, NonPhiInVal);
864  }
865  }
866  }
867 
868  // If there are multiple PHIs, sort their operands so that they all list
869  // the blocks in the same order. This will help identical PHIs be eliminated
870  // by other passes. Other passes shouldn't depend on this for correctness
871  // however.
872  PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin());
873  if (&PN != FirstPN)
874  for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) {
875  BasicBlock *BBA = PN.getIncomingBlock(i);
876  BasicBlock *BBB = FirstPN->getIncomingBlock(i);
877  if (BBA != BBB) {
878  Value *VA = PN.getIncomingValue(i);
879  unsigned j = PN.getBasicBlockIndex(BBB);
880  Value *VB = PN.getIncomingValue(j);
881  PN.setIncomingBlock(i, BBB);
882  PN.setIncomingValue(i, VB);
883  PN.setIncomingBlock(j, BBA);
884  PN.setIncomingValue(j, VA);
885  // NOTE: Instcombine normally would want us to "return &PN" if we
886  // modified any of the operands of an instruction. However, since we
887  // aren't adding or removing uses (just rearranging them) we don't do
888  // this in this case.
889  }
890  }
891 
892  // If this is an integer PHI and we know that it has an illegal type, see if
893  // it is only used by trunc or trunc(lshr) operations. If so, we split the
894  // PHI into the various pieces being extracted. This sort of thing is
895  // introduced when SROA promotes an aggregate to a single large integer type.
896  if (PN.getType()->isIntegerTy() && TD &&
898  if (Instruction *Res = SliceUpIllegalIntegerPHI(PN))
899  return Res;
900 
901  return 0;
902 }
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:753
use_iterator use_end()
Definition: Value.h:152
void setHasNoSignedWrap(bool b=true)
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
void addIncoming(Value *V, BasicBlock *BB)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
static LoweredPHIRecord getEmptyKey()
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
void operator<(const Optional< T > &X, const Optional< U > &Y)
Poison comparison between two Optional objects. Clients needs to explicitly compare the underlying va...
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
op_iterator op_begin()
Definition: User.h:116
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
static bool isSafeAndProfitableToSinkLoad(LoadInst *L)
StringRef getName() const
Definition: Value.cpp:167
static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, SmallPtrSet< PHINode *, 16 > &ValueEqualPHIs)
iterator begin()
Definition: BasicBlock.h:193
Base class of casting instructions.
Definition: InstrTypes.h:387
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:261
void setHasNoUnsignedWrap(bool b=true)
void setIsInBounds(bool b=true)
Instruction * SliceUpIllegalIntegerPHI(PHINode &PN)
static bool isEqual(const LoweredPHIRecord &LHS, const LoweredPHIRecord &RHS)
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:83
bool isInBounds() const
isInBounds - Determine whether the GEP has the inbounds flag.
unsigned getNumIncomingValues() const
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=0)
Construct any of the CastInst subclasses.
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
void array_pod_sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:289
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
LLVM Constant Representation.
Definition: Constant.h:41
Instruction * ReplaceInstUsesWith(Instruction &I, Value *V)
Definition: InstCombine.h:267
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
op_iterator op_end()
Definition: User.h:118
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
BasicBlock * getIncomingBlock(unsigned i) const
Value * getOperand(unsigned i) const
Definition: User.h:88
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
BuilderTy * Builder
Definition: InstCombine.h:87
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
bool hasAllConstantIndices() const
Instruction * visitPHINode(PHINode &PN)
bool isAtomic() const
Definition: Instructions.h:211
void setIsExact(bool b=true)
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
static bool DeadPHICycle(PHINode *PN, SmallPtrSet< PHINode *, 16 > &PotentiallyDeadPHIs)
void setIncomingBlock(unsigned i, BasicBlock *BB)
Value * getIncomingValue(unsigned i) const
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
bool isVolatile() const
Definition: Instructions.h:170
SequentialType * getType() const
Definition: Instructions.h:764
static LoweredPHIRecord getTombstoneKey()
unsigned size() const
Definition: SmallPtrSet.h:75
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
static GetElementPtrInst * Create(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", Instruction *InsertBefore=0)
Definition: Instructions.h:726
unsigned getPointerAddressSpace() const
Returns the address space of the pointer operand.
Definition: Instructions.h:228
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
bool isIntegerTy() const
Definition: Type.h:196
Instruction * use_back()
Definition: Instruction.h:49
use_iterator use_begin()
Definition: Value.h:150
static CmpInst * Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const Twine &Name="", Instruction *InsertBefore=0)
Create a CmpInst.
bool isLegalInteger(unsigned Width) const
Definition: DataLayout.h:210
unsigned getAlignment() const
Definition: Instructions.h:181
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool hasOneUse() const
Definition: Value.h:161
Instruction * InsertNewInstBefore(Instruction *New, Instruction &Old)
Definition: InstCombine.h:244
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=0)
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
OtherOps getOpcode() const
Get the opcode casted to the right type.
Definition: InstrTypes.h:709
bool use_empty() const
Definition: Value.h:149
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1068
LLVM Value Representation.
Definition: Value.h:66
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
static unsigned getHashValue(const LoweredPHIRecord &Val)
#define DEBUG(X)
Definition: Debug.h:97
bool isSameOperationAs(const Instruction *I, unsigned flags=0) const
Determine if one instruction is the same operation as another.
void setIncomingValue(unsigned i, Value *V)
int getBasicBlockIndex(const BasicBlock *BB) const
const BasicBlock * getParent() const
Definition: Instruction.h:52