LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MergeFunctions.cpp
Go to the documentation of this file.
1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for equivalent functions that are mergable and folds them.
11 //
12 // A hash is computed from the function, based on its type and number of
13 // basic blocks.
14 //
15 // Once all hashes are computed, we perform an expensive equality comparison
16 // on each function pair. This takes n^2/2 comparisons per bucket, so it's
17 // important that the hash function be high quality. The equality comparison
18 // iterates through each instruction in each basic block.
19 //
20 // When a match is found the functions are folded. If both functions are
21 // overridable, we move the functionality into a new internal function and
22 // leave two overridable thunks to it.
23 //
24 //===----------------------------------------------------------------------===//
25 //
26 // Future work:
27 //
28 // * virtual functions.
29 //
30 // Many functions have their address taken by the virtual function table for
31 // the object they belong to. However, as long as it's only used for a lookup
32 // and call, this is irrelevant, and we'd like to fold such functions.
33 //
34 // * switch from n^2 pair-wise comparisons to an n-way comparison for each
35 // bucket.
36 //
37 // * be smarter about bitcasts.
38 //
39 // In order to fold functions, we will sometimes add either bitcast instructions
40 // or bitcast constant expressions. Unfortunately, this can confound further
41 // analysis since the two functions differ where one has a bitcast and the
42 // other doesn't. We should learn to look through bitcasts.
43 //
44 //===----------------------------------------------------------------------===//
45 
46 #define DEBUG_TYPE "mergefunc"
47 #include "llvm/Transforms/IPO.h"
48 #include "llvm/ADT/DenseSet.h"
49 #include "llvm/ADT/FoldingSet.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/SmallSet.h"
52 #include "llvm/ADT/Statistic.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InlineAsm.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/CallSite.h"
63 #include "llvm/Support/Debug.h"
67 #include <vector>
68 using namespace llvm;
69 
70 STATISTIC(NumFunctionsMerged, "Number of functions merged");
71 STATISTIC(NumThunksWritten, "Number of thunks generated");
72 STATISTIC(NumAliasesWritten, "Number of aliases generated");
73 STATISTIC(NumDoubleWeak, "Number of new functions created");
74 
75 /// Returns the type id for a type to be hashed. We turn pointer types into
76 /// integers here because the actual compare logic below considers pointers and
77 /// integers of the same size as equal.
79  if (Ty->isPointerTy())
80  return Type::IntegerTyID;
81  return Ty->getTypeID();
82 }
83 
84 /// Creates a hash-code for the function which is the same for any two
85 /// functions that will compare equal, without looking at the instructions
86 /// inside the function.
87 static unsigned profileFunction(const Function *F) {
88  FunctionType *FTy = F->getFunctionType();
89 
91  ID.AddInteger(F->size());
92  ID.AddInteger(F->getCallingConv());
93  ID.AddBoolean(F->hasGC());
94  ID.AddBoolean(FTy->isVarArg());
96  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
98  return ID.ComputeHash();
99 }
100 
101 namespace {
102 
103 /// ComparableFunction - A struct that pairs together functions with a
104 /// DataLayout so that we can keep them together as elements in the DenseSet.
105 class ComparableFunction {
106 public:
107  static const ComparableFunction EmptyKey;
108  static const ComparableFunction TombstoneKey;
109  static DataLayout * const LookupOnly;
110 
111  ComparableFunction(Function *Func, DataLayout *TD)
112  : Func(Func), Hash(profileFunction(Func)), TD(TD) {}
113 
114  Function *getFunc() const { return Func; }
115  unsigned getHash() const { return Hash; }
116  DataLayout *getTD() const { return TD; }
117 
118  // Drops AssertingVH reference to the function. Outside of debug mode, this
119  // does nothing.
120  void release() {
121  assert(Func &&
122  "Attempted to release function twice, or release empty/tombstone!");
123  Func = NULL;
124  }
125 
126 private:
127  explicit ComparableFunction(unsigned Hash)
128  : Func(NULL), Hash(Hash), TD(NULL) {}
129 
131  unsigned Hash;
132  DataLayout *TD;
133 };
134 
135 const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
136 const ComparableFunction ComparableFunction::TombstoneKey =
137  ComparableFunction(1);
138 DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
139 
140 }
141 
142 namespace llvm {
143  template <>
144  struct DenseMapInfo<ComparableFunction> {
145  static ComparableFunction getEmptyKey() {
146  return ComparableFunction::EmptyKey;
147  }
148  static ComparableFunction getTombstoneKey() {
149  return ComparableFunction::TombstoneKey;
150  }
151  static unsigned getHashValue(const ComparableFunction &CF) {
152  return CF.getHash();
153  }
154  static bool isEqual(const ComparableFunction &LHS,
155  const ComparableFunction &RHS);
156  };
157 }
158 
159 namespace {
160 
161 /// FunctionComparator - Compares two functions to determine whether or not
162 /// they will generate machine code with the same behaviour. DataLayout is
163 /// used if available. The comparator always fails conservatively (erring on the
164 /// side of claiming that two functions are different).
165 class FunctionComparator {
166 public:
167  FunctionComparator(const DataLayout *TD, const Function *F1,
168  const Function *F2)
169  : F1(F1), F2(F2), TD(TD) {}
170 
171  /// Test whether the two functions have equivalent behaviour.
172  bool compare();
173 
174 private:
175  /// Test whether two basic blocks have equivalent behaviour.
176  bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
177 
178  /// Assign or look up previously assigned numbers for the two values, and
179  /// return whether the numbers are equal. Numbers are assigned in the order
180  /// visited.
181  bool enumerate(const Value *V1, const Value *V2);
182 
183  /// Compare two Instructions for equivalence, similar to
184  /// Instruction::isSameOperationAs but with modifications to the type
185  /// comparison.
186  bool isEquivalentOperation(const Instruction *I1,
187  const Instruction *I2) const;
188 
189  /// Compare two GEPs for equivalent pointer arithmetic.
190  bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2);
191  bool isEquivalentGEP(const GetElementPtrInst *GEP1,
192  const GetElementPtrInst *GEP2) {
193  return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
194  }
195 
196  /// Compare two Types, treating all pointer types as equal.
197  bool isEquivalentType(Type *Ty1, Type *Ty2) const;
198 
199  // The two functions undergoing comparison.
200  const Function *F1, *F2;
201 
202  const DataLayout *TD;
203 
205  DenseSet<const Value *> seen_values;
206 };
207 
208 }
209 
210 // Any two pointers in the same address space are equivalent, intptr_t and
211 // pointers are equivalent. Otherwise, standard type equivalence rules apply.
212 bool FunctionComparator::isEquivalentType(Type *Ty1, Type *Ty2) const {
213  if (Ty1 == Ty2)
214  return true;
215  if (Ty1->getTypeID() != Ty2->getTypeID()) {
216  if (TD) {
217 
218  if (isa<PointerType>(Ty1) && Ty2 == TD->getIntPtrType(Ty1))
219  return true;
220 
221  if (isa<PointerType>(Ty2) && Ty1 == TD->getIntPtrType(Ty2))
222  return true;
223  }
224  return false;
225  }
226 
227  switch (Ty1->getTypeID()) {
228  default:
229  llvm_unreachable("Unknown type!");
230  // Fall through in Release mode.
231  case Type::IntegerTyID:
232  case Type::VectorTyID:
233  // Ty1 == Ty2 would have returned true earlier.
234  return false;
235 
236  case Type::VoidTyID:
237  case Type::FloatTyID:
238  case Type::DoubleTyID:
239  case Type::X86_FP80TyID:
240  case Type::FP128TyID:
241  case Type::PPC_FP128TyID:
242  case Type::LabelTyID:
243  case Type::MetadataTyID:
244  return true;
245 
246  case Type::PointerTyID: {
247  PointerType *PTy1 = cast<PointerType>(Ty1);
248  PointerType *PTy2 = cast<PointerType>(Ty2);
249  return PTy1->getAddressSpace() == PTy2->getAddressSpace();
250  }
251 
252  case Type::StructTyID: {
253  StructType *STy1 = cast<StructType>(Ty1);
254  StructType *STy2 = cast<StructType>(Ty2);
255  if (STy1->getNumElements() != STy2->getNumElements())
256  return false;
257 
258  if (STy1->isPacked() != STy2->isPacked())
259  return false;
260 
261  for (unsigned i = 0, e = STy1->getNumElements(); i != e; ++i) {
262  if (!isEquivalentType(STy1->getElementType(i), STy2->getElementType(i)))
263  return false;
264  }
265  return true;
266  }
267 
268  case Type::FunctionTyID: {
269  FunctionType *FTy1 = cast<FunctionType>(Ty1);
270  FunctionType *FTy2 = cast<FunctionType>(Ty2);
271  if (FTy1->getNumParams() != FTy2->getNumParams() ||
272  FTy1->isVarArg() != FTy2->isVarArg())
273  return false;
274 
275  if (!isEquivalentType(FTy1->getReturnType(), FTy2->getReturnType()))
276  return false;
277 
278  for (unsigned i = 0, e = FTy1->getNumParams(); i != e; ++i) {
279  if (!isEquivalentType(FTy1->getParamType(i), FTy2->getParamType(i)))
280  return false;
281  }
282  return true;
283  }
284 
285  case Type::ArrayTyID: {
286  ArrayType *ATy1 = cast<ArrayType>(Ty1);
287  ArrayType *ATy2 = cast<ArrayType>(Ty2);
288  return ATy1->getNumElements() == ATy2->getNumElements() &&
289  isEquivalentType(ATy1->getElementType(), ATy2->getElementType());
290  }
291  }
292 }
293 
294 // Determine whether the two operations are the same except that pointer-to-A
295 // and pointer-to-B are equivalent. This should be kept in sync with
296 // Instruction::isSameOperationAs.
297 bool FunctionComparator::isEquivalentOperation(const Instruction *I1,
298  const Instruction *I2) const {
299  // Differences from Instruction::isSameOperationAs:
300  // * replace type comparison with calls to isEquivalentType.
301  // * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
302  // * because of the above, we don't test for the tail bit on calls later on
303  if (I1->getOpcode() != I2->getOpcode() ||
304  I1->getNumOperands() != I2->getNumOperands() ||
305  !isEquivalentType(I1->getType(), I2->getType()) ||
307  return false;
308 
309  // We have two instructions of identical opcode and #operands. Check to see
310  // if all operands are the same type
311  for (unsigned i = 0, e = I1->getNumOperands(); i != e; ++i)
312  if (!isEquivalentType(I1->getOperand(i)->getType(),
313  I2->getOperand(i)->getType()))
314  return false;
315 
316  // Check special state that is a part of some instructions.
317  if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
318  return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
319  LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() &&
320  LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
321  LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
322  if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
323  return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
324  SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() &&
325  SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
326  SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
327  if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
328  return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
329  if (const CallInst *CI = dyn_cast<CallInst>(I1))
330  return CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
331  CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
332  if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
333  return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
334  CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes();
335  if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
336  return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
337  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
338  return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
339  if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
340  return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
341  FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
342  if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
343  return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
344  CXI->getOrdering() == cast<AtomicCmpXchgInst>(I2)->getOrdering() &&
345  CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
346  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
347  return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
348  RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
349  RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
350  RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
351 
352  return true;
353 }
354 
355 // Determine whether two GEP operations perform the same underlying arithmetic.
356 bool FunctionComparator::isEquivalentGEP(const GEPOperator *GEP1,
357  const GEPOperator *GEP2) {
358  unsigned AS = GEP1->getPointerAddressSpace();
359  if (AS != GEP2->getPointerAddressSpace())
360  return false;
361 
362  if (TD) {
363  // When we have target data, we can reduce the GEP down to the value in bytes
364  // added to the address.
365  unsigned BitWidth = TD ? TD->getPointerSizeInBits(AS) : 1;
366  APInt Offset1(BitWidth, 0), Offset2(BitWidth, 0);
367  if (GEP1->accumulateConstantOffset(*TD, Offset1) &&
368  GEP2->accumulateConstantOffset(*TD, Offset2)) {
369  return Offset1 == Offset2;
370  }
371  }
372 
373  if (GEP1->getPointerOperand()->getType() !=
374  GEP2->getPointerOperand()->getType())
375  return false;
376 
377  if (GEP1->getNumOperands() != GEP2->getNumOperands())
378  return false;
379 
380  for (unsigned i = 0, e = GEP1->getNumOperands(); i != e; ++i) {
381  if (!enumerate(GEP1->getOperand(i), GEP2->getOperand(i)))
382  return false;
383  }
384 
385  return true;
386 }
387 
388 // Compare two values used by the two functions under pair-wise comparison. If
389 // this is the first time the values are seen, they're added to the mapping so
390 // that we will detect mismatches on next use.
391 bool FunctionComparator::enumerate(const Value *V1, const Value *V2) {
392  // Check for function @f1 referring to itself and function @f2 referring to
393  // itself, or referring to each other, or both referring to either of them.
394  // They're all equivalent if the two functions are otherwise equivalent.
395  if (V1 == F1 && V2 == F2)
396  return true;
397  if (V1 == F2 && V2 == F1)
398  return true;
399 
400  if (const Constant *C1 = dyn_cast<Constant>(V1)) {
401  if (V1 == V2) return true;
402  const Constant *C2 = dyn_cast<Constant>(V2);
403  if (!C2) return false;
404  // TODO: constant expressions with GEP or references to F1 or F2.
405  if (C1->isNullValue() && C2->isNullValue() &&
406  isEquivalentType(C1->getType(), C2->getType()))
407  return true;
408  // Try bitcasting C2 to C1's type. If the bitcast is legal and returns C1
409  // then they must have equal bit patterns.
410  return C1->getType()->canLosslesslyBitCastTo(C2->getType()) &&
411  C1 == ConstantExpr::getBitCast(const_cast<Constant*>(C2), C1->getType());
412  }
413 
414  if (isa<InlineAsm>(V1) || isa<InlineAsm>(V2))
415  return V1 == V2;
416 
417  // Check that V1 maps to V2. If we find a value that V1 maps to then we simply
418  // check whether it's equal to V2. When there is no mapping then we need to
419  // ensure that V2 isn't already equivalent to something else. For this
420  // purpose, we track the V2 values in a set.
421 
422  const Value *&map_elem = id_map[V1];
423  if (map_elem)
424  return map_elem == V2;
425  if (!seen_values.insert(V2).second)
426  return false;
427  map_elem = V2;
428  return true;
429 }
430 
431 // Test whether two basic blocks have equivalent behaviour.
432 bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
433  BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
434  BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
435 
436  do {
437  if (!enumerate(F1I, F2I))
438  return false;
439 
440  if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
441  const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
442  if (!GEP2)
443  return false;
444 
445  if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
446  return false;
447 
448  if (!isEquivalentGEP(GEP1, GEP2))
449  return false;
450  } else {
451  if (!isEquivalentOperation(F1I, F2I))
452  return false;
453 
454  assert(F1I->getNumOperands() == F2I->getNumOperands());
455  for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
456  Value *OpF1 = F1I->getOperand(i);
457  Value *OpF2 = F2I->getOperand(i);
458 
459  if (!enumerate(OpF1, OpF2))
460  return false;
461 
462  if (OpF1->getValueID() != OpF2->getValueID() ||
463  !isEquivalentType(OpF1->getType(), OpF2->getType()))
464  return false;
465  }
466  }
467 
468  ++F1I, ++F2I;
469  } while (F1I != F1E && F2I != F2E);
470 
471  return F1I == F1E && F2I == F2E;
472 }
473 
474 // Test whether the two functions have equivalent behaviour.
475 bool FunctionComparator::compare() {
476  // We need to recheck everything, but check the things that weren't included
477  // in the hash first.
478 
479  if (F1->getAttributes() != F2->getAttributes())
480  return false;
481 
482  if (F1->hasGC() != F2->hasGC())
483  return false;
484 
485  if (F1->hasGC() && F1->getGC() != F2->getGC())
486  return false;
487 
488  if (F1->hasSection() != F2->hasSection())
489  return false;
490 
491  if (F1->hasSection() && F1->getSection() != F2->getSection())
492  return false;
493 
494  if (F1->isVarArg() != F2->isVarArg())
495  return false;
496 
497  // TODO: if it's internal and only used in direct calls, we could handle this
498  // case too.
499  if (F1->getCallingConv() != F2->getCallingConv())
500  return false;
501 
502  if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
503  return false;
504 
505  assert(F1->arg_size() == F2->arg_size() &&
506  "Identically typed functions have different numbers of args!");
507 
508  // Visit the arguments so that they get enumerated in the order they're
509  // passed in.
510  for (Function::const_arg_iterator f1i = F1->arg_begin(),
511  f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
512  if (!enumerate(f1i, f2i))
513  llvm_unreachable("Arguments repeat!");
514  }
515 
516  // We do a CFG-ordered walk since the actual ordering of the blocks in the
517  // linked list is immaterial. Our walk starts at the entry block for both
518  // functions, then takes each block from each terminator in order. As an
519  // artifact, this also means that unreachable blocks are ignored.
521  SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
522 
523  F1BBs.push_back(&F1->getEntryBlock());
524  F2BBs.push_back(&F2->getEntryBlock());
525 
526  VisitedBBs.insert(F1BBs[0]);
527  while (!F1BBs.empty()) {
528  const BasicBlock *F1BB = F1BBs.pop_back_val();
529  const BasicBlock *F2BB = F2BBs.pop_back_val();
530 
531  if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
532  return false;
533 
534  const TerminatorInst *F1TI = F1BB->getTerminator();
535  const TerminatorInst *F2TI = F2BB->getTerminator();
536 
537  assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
538  for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
539  if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
540  continue;
541 
542  F1BBs.push_back(F1TI->getSuccessor(i));
543  F2BBs.push_back(F2TI->getSuccessor(i));
544  }
545  }
546  return true;
547 }
548 
549 namespace {
550 
551 /// MergeFunctions finds functions which will generate identical machine code,
552 /// by considering all pointer types to be equivalent. Once identified,
553 /// MergeFunctions will fold them by replacing a call to one to a call to a
554 /// bitcast of the other.
555 ///
556 class MergeFunctions : public ModulePass {
557 public:
558  static char ID;
559  MergeFunctions()
560  : ModulePass(ID), HasGlobalAliases(false) {
562  }
563 
564  bool runOnModule(Module &M);
565 
566 private:
567  typedef DenseSet<ComparableFunction> FnSetType;
568 
569  /// A work queue of functions that may have been modified and should be
570  /// analyzed again.
571  std::vector<WeakVH> Deferred;
572 
573  /// Insert a ComparableFunction into the FnSet, or merge it away if it's
574  /// equal to one that's already present.
575  bool insert(ComparableFunction &NewF);
576 
577  /// Remove a Function from the FnSet and queue it up for a second sweep of
578  /// analysis.
579  void remove(Function *F);
580 
581  /// Find the functions that use this Value and remove them from FnSet and
582  /// queue the functions.
583  void removeUsers(Value *V);
584 
585  /// Replace all direct calls of Old with calls of New. Will bitcast New if
586  /// necessary to make types match.
587  void replaceDirectCallers(Function *Old, Function *New);
588 
589  /// Merge two equivalent functions. Upon completion, G may be deleted, or may
590  /// be converted into a thunk. In either case, it should never be visited
591  /// again.
592  void mergeTwoFunctions(Function *F, Function *G);
593 
594  /// Replace G with a thunk or an alias to F. Deletes G.
595  void writeThunkOrAlias(Function *F, Function *G);
596 
597  /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
598  /// of G with bitcast(F). Deletes G.
599  void writeThunk(Function *F, Function *G);
600 
601  /// Replace G with an alias to F. Deletes G.
602  void writeAlias(Function *F, Function *G);
603 
604  /// The set of all distinct functions. Use the insert() and remove() methods
605  /// to modify it.
606  FnSetType FnSet;
607 
608  /// DataLayout for more accurate GEP comparisons. May be NULL.
609  DataLayout *TD;
610 
611  /// Whether or not the target supports global aliases.
612  bool HasGlobalAliases;
613 };
614 
615 } // end anonymous namespace
616 
617 char MergeFunctions::ID = 0;
618 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
619 
621  return new MergeFunctions();
622 }
623 
624 bool MergeFunctions::runOnModule(Module &M) {
625  bool Changed = false;
626  TD = getAnalysisIfAvailable<DataLayout>();
627 
628  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
629  if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
630  Deferred.push_back(WeakVH(I));
631  }
632  FnSet.resize(Deferred.size());
633 
634  do {
635  std::vector<WeakVH> Worklist;
636  Deferred.swap(Worklist);
637 
638  DEBUG(dbgs() << "size of module: " << M.size() << '\n');
639  DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
640 
641  // Insert only strong functions and merge them. Strong function merging
642  // always deletes one of them.
643  for (std::vector<WeakVH>::iterator I = Worklist.begin(),
644  E = Worklist.end(); I != E; ++I) {
645  if (!*I) continue;
646  Function *F = cast<Function>(*I);
647  if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
648  !F->mayBeOverridden()) {
649  ComparableFunction CF = ComparableFunction(F, TD);
650  Changed |= insert(CF);
651  }
652  }
653 
654  // Insert only weak functions and merge them. By doing these second we
655  // create thunks to the strong function when possible. When two weak
656  // functions are identical, we create a new strong function with two weak
657  // weak thunks to it which are identical but not mergable.
658  for (std::vector<WeakVH>::iterator I = Worklist.begin(),
659  E = Worklist.end(); I != E; ++I) {
660  if (!*I) continue;
661  Function *F = cast<Function>(*I);
662  if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
663  F->mayBeOverridden()) {
664  ComparableFunction CF = ComparableFunction(F, TD);
665  Changed |= insert(CF);
666  }
667  }
668  DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
669  } while (!Deferred.empty());
670 
671  FnSet.clear();
672 
673  return Changed;
674 }
675 
676 bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
677  const ComparableFunction &RHS) {
678  if (LHS.getFunc() == RHS.getFunc() &&
679  LHS.getHash() == RHS.getHash())
680  return true;
681  if (!LHS.getFunc() || !RHS.getFunc())
682  return false;
683 
684  // One of these is a special "underlying pointer comparison only" object.
685  if (LHS.getTD() == ComparableFunction::LookupOnly ||
686  RHS.getTD() == ComparableFunction::LookupOnly)
687  return false;
688 
689  assert(LHS.getTD() == RHS.getTD() &&
690  "Comparing functions for different targets");
691 
692  return FunctionComparator(LHS.getTD(), LHS.getFunc(),
693  RHS.getFunc()).compare();
694 }
695 
696 // Replace direct callers of Old with New.
697 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
698  Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
699  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
700  UI != UE;) {
701  Value::use_iterator TheIter = UI;
702  ++UI;
703  CallSite CS(*TheIter);
704  if (CS && CS.isCallee(TheIter)) {
705  remove(CS.getInstruction()->getParent()->getParent());
706  TheIter.getUse().set(BitcastNew);
707  }
708  }
709 }
710 
711 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
712 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
713  if (HasGlobalAliases && G->hasUnnamedAddr()) {
714  if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
715  G->hasWeakLinkage()) {
716  writeAlias(F, G);
717  return;
718  }
719  }
720 
721  writeThunk(F, G);
722 }
723 
724 // Helper for writeThunk,
725 // Selects proper bitcast operation,
726 // but a bit simplier then CastInst::getCastOpcode.
727 static Value* createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
728  Type *SrcTy = V->getType();
729  if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
730  return Builder.CreateIntToPtr(V, DestTy);
731  else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
732  return Builder.CreatePtrToInt(V, DestTy);
733  else
734  return Builder.CreateBitCast(V, DestTy);
735 }
736 
737 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
738 // of G with bitcast(F). Deletes G.
739 void MergeFunctions::writeThunk(Function *F, Function *G) {
740  if (!G->mayBeOverridden()) {
741  // Redirect direct callers of G to F.
742  replaceDirectCallers(G, F);
743  }
744 
745  // If G was internal then we may have replaced all uses of G with F. If so,
746  // stop here and delete G. There's no need for a thunk.
747  if (G->hasLocalLinkage() && G->use_empty()) {
748  G->eraseFromParent();
749  return;
750  }
751 
752  Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
753  G->getParent());
754  BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
755  IRBuilder<false> Builder(BB);
756 
758  unsigned i = 0;
759  FunctionType *FFTy = F->getFunctionType();
760  for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
761  AI != AE; ++AI) {
762  Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
763  ++i;
764  }
765 
766  CallInst *CI = Builder.CreateCall(F, Args);
767  CI->setTailCall();
768  CI->setCallingConv(F->getCallingConv());
769  if (NewG->getReturnType()->isVoidTy()) {
770  Builder.CreateRetVoid();
771  } else {
772  Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
773  }
774 
775  NewG->copyAttributesFrom(G);
776  NewG->takeName(G);
777  removeUsers(G);
778  G->replaceAllUsesWith(NewG);
779  G->eraseFromParent();
780 
781  DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
782  ++NumThunksWritten;
783 }
784 
785 // Replace G with an alias to F and delete G.
786 void MergeFunctions::writeAlias(Function *F, Function *G) {
787  Constant *BitcastF = ConstantExpr::getBitCast(F, G->getType());
788  GlobalAlias *GA = new GlobalAlias(G->getType(), G->getLinkage(), "",
789  BitcastF, G->getParent());
790  F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
791  GA->takeName(G);
792  GA->setVisibility(G->getVisibility());
793  removeUsers(G);
794  G->replaceAllUsesWith(GA);
795  G->eraseFromParent();
796 
797  DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
798  ++NumAliasesWritten;
799 }
800 
801 // Merge two equivalent functions. Upon completion, Function G is deleted.
802 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
803  if (F->mayBeOverridden()) {
804  assert(G->mayBeOverridden());
805 
806  if (HasGlobalAliases) {
807  // Make them both thunks to the same internal function.
809  F->getParent());
810  H->copyAttributesFrom(F);
811  H->takeName(F);
812  removeUsers(F);
813  F->replaceAllUsesWith(H);
814 
815  unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
816 
817  writeAlias(F, G);
818  writeAlias(F, H);
819 
820  F->setAlignment(MaxAlignment);
822  } else {
823  // We can't merge them. Instead, pick one and update all direct callers
824  // to call it and hope that we improve the instruction cache hit rate.
825  replaceDirectCallers(G, F);
826  }
827 
828  ++NumDoubleWeak;
829  } else {
830  writeThunkOrAlias(F, G);
831  }
832 
833  ++NumFunctionsMerged;
834 }
835 
836 // Insert a ComparableFunction into the FnSet, or merge it away if equal to one
837 // that was already inserted.
838 bool MergeFunctions::insert(ComparableFunction &NewF) {
839  std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
840  if (Result.second) {
841  DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
842  return false;
843  }
844 
845  const ComparableFunction &OldF = *Result.first;
846 
847  // Don't merge tiny functions, since it can just end up making the function
848  // larger.
849  // FIXME: Should still merge them if they are unnamed_addr and produce an
850  // alias.
851  if (NewF.getFunc()->size() == 1) {
852  if (NewF.getFunc()->front().size() <= 2) {
853  DEBUG(dbgs() << NewF.getFunc()->getName()
854  << " is to small to bother merging\n");
855  return false;
856  }
857  }
858 
859  // Never thunk a strong function to a weak function.
860  assert(!OldF.getFunc()->mayBeOverridden() ||
861  NewF.getFunc()->mayBeOverridden());
862 
863  DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == "
864  << NewF.getFunc()->getName() << '\n');
865 
866  Function *DeleteF = NewF.getFunc();
867  NewF.release();
868  mergeTwoFunctions(OldF.getFunc(), DeleteF);
869  return true;
870 }
871 
872 // Remove a function from FnSet. If it was already in FnSet, add it to Deferred
873 // so that we'll look at it in the next round.
875  // We need to make sure we remove F, not a function "equal" to F per the
876  // function equality comparator.
877  //
878  // The special "lookup only" ComparableFunction bypasses the expensive
879  // function comparison in favour of a pointer comparison on the underlying
880  // Function*'s.
881  ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
882  if (FnSet.erase(CF)) {
883  DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
884  Deferred.push_back(F);
885  }
886 }
887 
888 // For each instruction used by the value, remove() the function that contains
889 // the instruction. This should happen right before a call to RAUW.
890 void MergeFunctions::removeUsers(Value *V) {
891  std::vector<Value *> Worklist;
892  Worklist.push_back(V);
893  while (!Worklist.empty()) {
894  Value *V = Worklist.back();
895  Worklist.pop_back();
896 
897  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
898  UI != UE; ++UI) {
899  Use &U = UI.getUse();
900  if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
901  remove(I->getParent()->getParent());
902  } else if (isa<GlobalValue>(U.getUser())) {
903  // do nothing
904  } else if (Constant *C = dyn_cast<Constant>(U.getUser())) {
905  for (Value::use_iterator CUI = C->use_begin(), CUE = C->use_end();
906  CUI != CUE; ++CUI)
907  Worklist.push_back(*CUI);
908  }
909  }
910  }
911 }
use_iterator use_end()
Definition: Value.h:152
7: Labels
Definition: Type.h:62
LinkageTypes getLinkage() const
Definition: GlobalValue.h:218
static Value * createCast(IRBuilder< false > &Builder, Value *V, Type *DestTy)
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
static PassRegistry * getPassRegistry()
LLVMContext & getContext() const
Definition: Function.cpp:167
VisibilityTypes getVisibility() const
Definition: GlobalValue.h:87
int remove(const char *path);
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
unsigned getNumParams() const
Definition: DerivedTypes.h:133
static unsigned getHashValue(const ComparableFunction &CF)
2: 32-bit floating point type
Definition: Type.h:57
unsigned getAlignment() const
Definition: GlobalValue.h:79
ModulePass * createMergeFunctionsPass()
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
STATISTIC(NumFunctionsMerged,"Number of functions merged")
Like Internal, but omit from symbol table.
Definition: GlobalValue.h:42
bool hasAvailableExternallyLinkage() const
Definition: GlobalValue.h:195
Type * getReturnType() const
Definition: Function.cpp:179
arg_iterator arg_end()
Definition: Function.h:418
12: Structures
Definition: Type.h:70
F(f)
4: 80-bit floating point type (X87)
Definition: Type.h:59
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:445
14: Pointers
Definition: Type.h:72
11: Functions
Definition: Type.h:69
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
CallingConv::ID getCallingConv() const
Definition: Function.h:161
static ComparableFunction getEmptyKey()
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
static unsigned profileFunction(const Function *F)
void setCallingConv(CallingConv::ID CC)
bool isPacked() const
Definition: DerivedTypes.h:241
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define llvm_unreachable(msg)
Value * CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1128
Definition: Use.h:60
bool canLosslesslyBitCastTo(Type *Ty) const
Determine if this type could be losslessly bitcast to Ty.
Definition: Type.cpp:65
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
TypeID
Definition: Type.h:53
void AddInteger(signed I)
Definition: FoldingSet.cpp:60
void copyAttributesFrom(const GlobalValue *Src)
Definition: Function.cpp:347
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define false
Definition: ConvertUTF.c:64
#define G(x, y, z)
Definition: MD5.cpp:52
bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const
Accumulate the constant address offset of this GEP if possible.
Definition: Operator.h:444
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
static Type::TypeID getTypeIDForHash(Type *Ty)
TypeID getTypeID() const
Definition: Type.h:137
bool insert(const T &V)
Definition: SmallSet.h:59
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
void takeName(Value *V)
Definition: Value.cpp:239
void initializeMergeFunctionsPass(PassRegistry &)
Type * getElementType() const
Definition: DerivedTypes.h:319
10: Arbitrary bit width integers
Definition: Type.h:68
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
0: type with no size
Definition: Type.h:55
Type * getParamType(unsigned i) const
Parameter type accessors.
Definition: DerivedTypes.h:128
void set(Value *Val)
Definition: Value.h:356
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
static bool mayBeOverridden(LinkageTypes Linkage)
Definition: GlobalValue.h:171
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:287
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1124
LLVM Constant Representation.
Definition: Constant.h:41
#define H(x, y, z)
Definition: MD5.cpp:53
void AddBoolean(bool B)
Definition: FoldingSet.h:314
uint64_t getNumElements() const
Definition: DerivedTypes.h:348
unsigned getValueID() const
Definition: Value.h:233
Value * getPointerOperand()
Definition: Operator.h:382
size_t size() const
Definition: Function.h:400
User * getUser() const
Definition: Use.cpp:137
6: 128-bit floating point type (two 64-bits, PowerPC)
Definition: Type.h:61
Value * getOperand(unsigned i) const
Definition: User.h:88
arg_iterator arg_begin()
Definition: Function.h:410
static unsigned getHash(const void *V)
Definition: EarlyCSE.cpp:38
void setTailCall(bool isTC=true)
bool isPointerTy() const
Definition: Type.h:220
bool hasWeakLinkage() const
Definition: GlobalValue.h:201
bool hasSameSubclassOptionalData(const Value *V) const
Definition: Value.h:252
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:153
13: Arrays
Definition: Type.h:71
bool hasExternalLinkage() const
Definition: GlobalValue.h:194
static Constant * getBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1661
15: SIMD 'packed' format, or other vector type
Definition: Type.h:73
iterator end()
Definition: BasicBlock.h:195
void setAlignment(unsigned Align)
Definition: Globals.cpp:58
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1132
Type * getType() const
Definition: Value.h:111
bool isNullValue() const
Definition: Constants.cpp:75
void setLinkage(LinkageTypes LT)
Definition: GlobalValue.h:217
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
8: Metadata
Definition: Type.h:63
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isIntegerTy() const
Definition: Type.h:196
size_t size() const
Definition: Module.h:535
bool hasGC() const
Definition: Function.cpp:310
Use & getUse() const
Definition: Use.h:210
use_iterator use_begin()
Definition: Value.h:150
PointerType * getType() const
getType - Global values are always pointers.
Definition: GlobalValue.h:107
iterator end()
Definition: Module.h:533
bool isDeclaration() const
Definition: Globals.cpp:66
unsigned ComputeHash() const
Definition: FoldingSet.cpp:145
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
FunctionType * getFunctionType() const
Definition: Function.cpp:171
iterator begin()
Definition: Module.h:531
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=0, BasicBlock *InsertBefore=0)
Creates a new BasicBlock.
Definition: BasicBlock.h:109
unsigned getPointerAddressSpace() const
Definition: Operator.h:400
virtual void eraseFromParent()
Definition: Function.cpp:187
AttributeSet getAttributes(LLVMContext &C, ID id)
static ComparableFunction getTombstoneKey()
bool hasLocalLinkage() const
Definition: GlobalValue.h:211
bool isVarArg() const
Definition: DerivedTypes.h:120
3: 64-bit floating point type
Definition: Type.h:58
bool use_empty() const
Definition: Value.h:149
Type * getReturnType() const
Definition: DerivedTypes.h:121
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
bool hasUnnamedAddr() const
Definition: GlobalValue.h:84
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
#define DEBUG(X)
Definition: Debug.h:97
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:286
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, const Twine &N="", Module *M=0)
Definition: Function.h:128
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140
5: 128-bit floating point type (112-bit mantissa)
Definition: Type.h:60