LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
RuntimeDyldELF.cpp
Go to the documentation of this file.
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "dyld"
15 #include "RuntimeDyldELF.h"
16 #include "JITRegistrar.h"
17 #include "ObjectImageCommon.h"
18 #include "llvm/ADT/IntervalMap.h"
19 #include "llvm/ADT/OwningPtr.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
26 #include "llvm/Object/ObjectFile.h"
27 #include "llvm/Support/ELF.h"
28 using namespace llvm;
29 using namespace llvm::object;
30 
31 namespace {
32 
33 static inline
34 error_code check(error_code Err) {
35  if (Err) {
37  }
38  return Err;
39 }
40 
41 template<class ELFT>
42 class DyldELFObject
43  : public ELFObjectFile<ELFT> {
45 
46  typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
47  typedef Elf_Sym_Impl<ELFT> Elf_Sym;
48  typedef
50  typedef
51  Elf_Rel_Impl<ELFT, true> Elf_Rela;
52 
53  typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
54 
55  typedef typename ELFDataTypeTypedefHelper<
56  ELFT>::value_type addr_type;
57 
58 public:
59  DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
60 
61  void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
62  void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
63 
64  // Methods for type inquiry through isa, cast and dyn_cast
65  static inline bool classof(const Binary *v) {
66  return (isa<ELFObjectFile<ELFT> >(v)
67  && classof(cast<ELFObjectFile
68  <ELFT> >(v)));
69  }
70  static inline bool classof(
71  const ELFObjectFile<ELFT> *v) {
72  return v->isDyldType();
73  }
74 };
75 
76 template<class ELFT>
77 class ELFObjectImage : public ObjectImageCommon {
78  protected:
79  DyldELFObject<ELFT> *DyldObj;
80  bool Registered;
81 
82  public:
83  ELFObjectImage(ObjectBuffer *Input,
84  DyldELFObject<ELFT> *Obj)
85  : ObjectImageCommon(Input, Obj),
86  DyldObj(Obj),
87  Registered(false) {}
88 
89  virtual ~ELFObjectImage() {
90  if (Registered)
91  deregisterWithDebugger();
92  }
93 
94  // Subclasses can override these methods to update the image with loaded
95  // addresses for sections and common symbols
96  virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
97  {
98  DyldObj->updateSectionAddress(Sec, Addr);
99  }
100 
101  virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
102  {
103  DyldObj->updateSymbolAddress(Sym, Addr);
104  }
105 
106  virtual void registerWithDebugger()
107  {
109  Registered = true;
110  }
111  virtual void deregisterWithDebugger()
112  {
114  }
115 };
116 
117 // The MemoryBuffer passed into this constructor is just a wrapper around the
118 // actual memory. Ultimately, the Binary parent class will take ownership of
119 // this MemoryBuffer object but not the underlying memory.
120 template<class ELFT>
121 DyldELFObject<ELFT>::DyldELFObject(MemoryBuffer *Wrapper, error_code &ec)
123  this->isDyldELFObject = true;
124 }
125 
126 template<class ELFT>
127 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
128  uint64_t Addr) {
129  DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
130  Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
131  reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
132 
133  // This assumes the address passed in matches the target address bitness
134  // The template-based type cast handles everything else.
135  shdr->sh_addr = static_cast<addr_type>(Addr);
136 }
137 
138 template<class ELFT>
139 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
140  uint64_t Addr) {
141 
142  Elf_Sym *sym = const_cast<Elf_Sym*>(
144 
145  // This assumes the address passed in matches the target address bitness
146  // The template-based type cast handles everything else.
147  sym->st_value = static_cast<addr_type>(Addr);
148 }
149 
150 } // namespace
151 
152 namespace llvm {
153 
155  if (!MemMgr)
156  return;
157  for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
158  SID EHFrameSID = UnregisteredEHFrameSections[i];
159  uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
160  uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
161  size_t EHFrameSize = Sections[EHFrameSID].Size;
162  MemMgr->registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
163  RegisteredEHFrameSections.push_back(EHFrameSID);
164  }
165  UnregisteredEHFrameSections.clear();
166 }
167 
169  if (!MemMgr)
170  return;
171  for (int i = 0, e = RegisteredEHFrameSections.size(); i != e; ++i) {
172  SID EHFrameSID = RegisteredEHFrameSections[i];
173  uint8_t *EHFrameAddr = Sections[EHFrameSID].Address;
174  uint64_t EHFrameLoadAddr = Sections[EHFrameSID].LoadAddress;
175  size_t EHFrameSize = Sections[EHFrameSID].Size;
176  MemMgr->deregisterEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
177  }
178  RegisteredEHFrameSections.clear();
179 }
180 
182  if (Buffer->getBufferSize() < ELF::EI_NIDENT)
183  llvm_unreachable("Unexpected ELF object size");
184  std::pair<unsigned char, unsigned char> Ident = std::make_pair(
185  (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
186  (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
187  error_code ec;
188 
189  if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
190  DyldELFObject<ELFType<support::little, 4, false> > *Obj =
191  new DyldELFObject<ELFType<support::little, 4, false> >(
192  Buffer->getMemBuffer(), ec);
193  return new ELFObjectImage<ELFType<support::little, 4, false> >(Buffer, Obj);
194  }
195  else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
196  DyldELFObject<ELFType<support::big, 4, false> > *Obj =
197  new DyldELFObject<ELFType<support::big, 4, false> >(
198  Buffer->getMemBuffer(), ec);
199  return new ELFObjectImage<ELFType<support::big, 4, false> >(Buffer, Obj);
200  }
201  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
202  DyldELFObject<ELFType<support::big, 8, true> > *Obj =
203  new DyldELFObject<ELFType<support::big, 8, true> >(
204  Buffer->getMemBuffer(), ec);
205  return new ELFObjectImage<ELFType<support::big, 8, true> >(Buffer, Obj);
206  }
207  else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
208  DyldELFObject<ELFType<support::little, 8, true> > *Obj =
209  new DyldELFObject<ELFType<support::little, 8, true> >(
210  Buffer->getMemBuffer(), ec);
211  return new ELFObjectImage<ELFType<support::little, 8, true> >(Buffer, Obj);
212  }
213  else
214  llvm_unreachable("Unexpected ELF format");
215 }
216 
218 }
219 
220 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
221  uint64_t Offset,
222  uint64_t Value,
223  uint32_t Type,
224  int64_t Addend,
225  uint64_t SymOffset) {
226  switch (Type) {
227  default:
228  llvm_unreachable("Relocation type not implemented yet!");
229  break;
230  case ELF::R_X86_64_64: {
231  uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
232  *Target = Value + Addend;
233  DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
234  << " at " << format("%p\n",Target));
235  break;
236  }
237  case ELF::R_X86_64_32:
238  case ELF::R_X86_64_32S: {
239  Value += Addend;
240  assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
241  (Type == ELF::R_X86_64_32S &&
242  ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
243  uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
244  uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
245  *Target = TruncatedAddr;
246  DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
247  << " at " << format("%p\n",Target));
248  break;
249  }
250  case ELF::R_X86_64_GOTPCREL: {
251  // findGOTEntry returns the 'G + GOT' part of the relocation calculation
252  // based on the load/target address of the GOT (not the current/local addr).
253  uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
254  uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
255  uint64_t FinalAddress = Section.LoadAddress + Offset;
256  // The processRelocationRef method combines the symbol offset and the addend
257  // and in most cases that's what we want. For this relocation type, we need
258  // the raw addend, so we subtract the symbol offset to get it.
259  int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
260  assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
261  int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
262  *Target = TruncOffset;
263  break;
264  }
265  case ELF::R_X86_64_PC32: {
266  // Get the placeholder value from the generated object since
267  // a previous relocation attempt may have overwritten the loaded version
268  uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
269  + Offset);
270  uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
271  uint64_t FinalAddress = Section.LoadAddress + Offset;
272  int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
273  assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
274  int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
275  *Target = TruncOffset;
276  break;
277  }
278  case ELF::R_X86_64_PC64: {
279  // Get the placeholder value from the generated object since
280  // a previous relocation attempt may have overwritten the loaded version
281  uint64_t *Placeholder = reinterpret_cast<uint64_t*>(Section.ObjAddress
282  + Offset);
283  uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
284  uint64_t FinalAddress = Section.LoadAddress + Offset;
285  *Target = *Placeholder + Value + Addend - FinalAddress;
286  break;
287  }
288  }
289 }
290 
291 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
292  uint64_t Offset,
293  uint32_t Value,
294  uint32_t Type,
295  int32_t Addend) {
296  switch (Type) {
297  case ELF::R_386_32: {
298  // Get the placeholder value from the generated object since
299  // a previous relocation attempt may have overwritten the loaded version
300  uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
301  + Offset);
302  uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
303  *Target = *Placeholder + Value + Addend;
304  break;
305  }
306  case ELF::R_386_PC32: {
307  // Get the placeholder value from the generated object since
308  // a previous relocation attempt may have overwritten the loaded version
309  uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
310  + Offset);
311  uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
312  uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
313  uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
314  *Target = RealOffset;
315  break;
316  }
317  default:
318  // There are other relocation types, but it appears these are the
319  // only ones currently used by the LLVM ELF object writer
320  llvm_unreachable("Relocation type not implemented yet!");
321  break;
322  }
323 }
324 
325 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
326  uint64_t Offset,
327  uint64_t Value,
328  uint32_t Type,
329  int64_t Addend) {
330  uint32_t *TargetPtr = reinterpret_cast<uint32_t*>(Section.Address + Offset);
331  uint64_t FinalAddress = Section.LoadAddress + Offset;
332 
333  DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
334  << format("%llx", Section.Address + Offset)
335  << " FinalAddress: 0x" << format("%llx",FinalAddress)
336  << " Value: 0x" << format("%llx",Value)
337  << " Type: 0x" << format("%x",Type)
338  << " Addend: 0x" << format("%llx",Addend)
339  << "\n");
340 
341  switch (Type) {
342  default:
343  llvm_unreachable("Relocation type not implemented yet!");
344  break;
345  case ELF::R_AARCH64_ABS64: {
346  uint64_t *TargetPtr = reinterpret_cast<uint64_t*>(Section.Address + Offset);
347  *TargetPtr = Value + Addend;
348  break;
349  }
350  case ELF::R_AARCH64_PREL32: {
351  uint64_t Result = Value + Addend - FinalAddress;
352  assert(static_cast<int64_t>(Result) >= INT32_MIN &&
353  static_cast<int64_t>(Result) <= UINT32_MAX);
354  *TargetPtr = static_cast<uint32_t>(Result & 0xffffffffU);
355  break;
356  }
357  case ELF::R_AARCH64_CALL26: // fallthrough
358  case ELF::R_AARCH64_JUMP26: {
359  // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
360  // calculation.
361  uint64_t BranchImm = Value + Addend - FinalAddress;
362 
363  // "Check that -2^27 <= result < 2^27".
364  assert(-(1LL << 27) <= static_cast<int64_t>(BranchImm) &&
365  static_cast<int64_t>(BranchImm) < (1LL << 27));
366 
367  // AArch64 code is emitted with .rela relocations. The data already in any
368  // bits affected by the relocation on entry is garbage.
369  *TargetPtr &= 0xfc000000U;
370  // Immediate goes in bits 25:0 of B and BL.
371  *TargetPtr |= static_cast<uint32_t>(BranchImm & 0xffffffcU) >> 2;
372  break;
373  }
375  uint64_t Result = Value + Addend;
376 
377  // AArch64 code is emitted with .rela relocations. The data already in any
378  // bits affected by the relocation on entry is garbage.
379  *TargetPtr &= 0xffe0001fU;
380  // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
381  *TargetPtr |= Result >> (48 - 5);
382  // Shift must be "lsl #48", in bits 22:21
383  assert((*TargetPtr >> 21 & 0x3) == 3 && "invalid shift for relocation");
384  break;
385  }
387  uint64_t Result = Value + Addend;
388 
389  // AArch64 code is emitted with .rela relocations. The data already in any
390  // bits affected by the relocation on entry is garbage.
391  *TargetPtr &= 0xffe0001fU;
392  // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
393  *TargetPtr |= ((Result & 0xffff00000000ULL) >> (32 - 5));
394  // Shift must be "lsl #32", in bits 22:21
395  assert((*TargetPtr >> 21 & 0x3) == 2 && "invalid shift for relocation");
396  break;
397  }
399  uint64_t Result = Value + Addend;
400 
401  // AArch64 code is emitted with .rela relocations. The data already in any
402  // bits affected by the relocation on entry is garbage.
403  *TargetPtr &= 0xffe0001fU;
404  // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
405  *TargetPtr |= ((Result & 0xffff0000U) >> (16 - 5));
406  // Shift must be "lsl #16", in bits 22:2
407  assert((*TargetPtr >> 21 & 0x3) == 1 && "invalid shift for relocation");
408  break;
409  }
411  uint64_t Result = Value + Addend;
412 
413  // AArch64 code is emitted with .rela relocations. The data already in any
414  // bits affected by the relocation on entry is garbage.
415  *TargetPtr &= 0xffe0001fU;
416  // Immediate goes in bits 20:5 of MOVZ/MOVK instruction
417  *TargetPtr |= ((Result & 0xffffU) << 5);
418  // Shift must be "lsl #0", in bits 22:21.
419  assert((*TargetPtr >> 21 & 0x3) == 0 && "invalid shift for relocation");
420  break;
421  }
422  }
423 }
424 
425 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
426  uint64_t Offset,
427  uint32_t Value,
428  uint32_t Type,
429  int32_t Addend) {
430  // TODO: Add Thumb relocations.
431  uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
432  Offset);
433  uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
434  uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
435  Value += Addend;
436 
437  DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
438  << Section.Address + Offset
439  << " FinalAddress: " << format("%p",FinalAddress)
440  << " Value: " << format("%x",Value)
441  << " Type: " << format("%x",Type)
442  << " Addend: " << format("%x",Addend)
443  << "\n");
444 
445  switch(Type) {
446  default:
447  llvm_unreachable("Not implemented relocation type!");
448 
449  // Write a 32bit value to relocation address, taking into account the
450  // implicit addend encoded in the target.
451  case ELF::R_ARM_TARGET1:
452  case ELF::R_ARM_ABS32:
453  *TargetPtr = *Placeholder + Value;
454  break;
455  // Write first 16 bit of 32 bit value to the mov instruction.
456  // Last 4 bit should be shifted.
458  // We are not expecting any other addend in the relocation address.
459  // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2
460  // non-contiguous fields.
461  assert((*Placeholder & 0x000F0FFF) == 0);
462  Value = Value & 0xFFFF;
463  *TargetPtr = *Placeholder | (Value & 0xFFF);
464  *TargetPtr |= ((Value >> 12) & 0xF) << 16;
465  break;
466  // Write last 16 bit of 32 bit value to the mov instruction.
467  // Last 4 bit should be shifted.
468  case ELF::R_ARM_MOVT_ABS:
469  // We are not expecting any other addend in the relocation address.
470  // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
471  assert((*Placeholder & 0x000F0FFF) == 0);
472 
473  Value = (Value >> 16) & 0xFFFF;
474  *TargetPtr = *Placeholder | (Value & 0xFFF);
475  *TargetPtr |= ((Value >> 12) & 0xF) << 16;
476  break;
477  // Write 24 bit relative value to the branch instruction.
478  case ELF::R_ARM_PC24 : // Fall through.
479  case ELF::R_ARM_CALL : // Fall through.
480  case ELF::R_ARM_JUMP24: {
481  int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
482  RelValue = (RelValue & 0x03FFFFFC) >> 2;
483  assert((*TargetPtr & 0xFFFFFF) == 0xFFFFFE);
484  *TargetPtr &= 0xFF000000;
485  *TargetPtr |= RelValue;
486  break;
487  }
489  // This relocation is reserved by the ARM ELF ABI for internal use. We
490  // appropriate it here to act as an R_ARM_ABS32 without any addend for use
491  // in the stubs created during JIT (which can't put an addend into the
492  // original object file).
493  *TargetPtr = Value;
494  break;
495  }
496 }
497 
498 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
499  uint64_t Offset,
500  uint32_t Value,
501  uint32_t Type,
502  int32_t Addend) {
503  uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress +
504  Offset);
505  uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
506  Value += Addend;
507 
508  DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
509  << Section.Address + Offset
510  << " FinalAddress: "
511  << format("%p",Section.LoadAddress + Offset)
512  << " Value: " << format("%x",Value)
513  << " Type: " << format("%x",Type)
514  << " Addend: " << format("%x",Addend)
515  << "\n");
516 
517  switch(Type) {
518  default:
519  llvm_unreachable("Not implemented relocation type!");
520  break;
521  case ELF::R_MIPS_32:
522  *TargetPtr = Value + (*Placeholder);
523  break;
524  case ELF::R_MIPS_26:
525  *TargetPtr = ((*Placeholder) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
526  break;
527  case ELF::R_MIPS_HI16:
528  // Get the higher 16-bits. Also add 1 if bit 15 is 1.
529  Value += ((*Placeholder) & 0x0000ffff) << 16;
530  *TargetPtr = ((*Placeholder) & 0xffff0000) |
531  (((Value + 0x8000) >> 16) & 0xffff);
532  break;
533  case ELF::R_MIPS_LO16:
534  Value += ((*Placeholder) & 0x0000ffff);
535  *TargetPtr = ((*Placeholder) & 0xffff0000) | (Value & 0xffff);
536  break;
537  case ELF::R_MIPS_UNUSED1:
538  // Similar to ELF::R_ARM_PRIVATE_0, R_MIPS_UNUSED1 and R_MIPS_UNUSED2
539  // are used for internal JIT purpose. These relocations are similar to
540  // R_MIPS_HI16 and R_MIPS_LO16, but they do not take any addend into
541  // account.
542  *TargetPtr = ((*TargetPtr) & 0xffff0000) |
543  (((Value + 0x8000) >> 16) & 0xffff);
544  break;
545  case ELF::R_MIPS_UNUSED2:
546  *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
547  break;
548  }
549 }
550 
551 // Return the .TOC. section address to R_PPC64_TOC relocations.
552 uint64_t RuntimeDyldELF::findPPC64TOC() const {
553  // The TOC consists of sections .got, .toc, .tocbss, .plt in that
554  // order. The TOC starts where the first of these sections starts.
555  SectionList::const_iterator it = Sections.begin();
556  SectionList::const_iterator ite = Sections.end();
557  for (; it != ite; ++it) {
558  if (it->Name == ".got" ||
559  it->Name == ".toc" ||
560  it->Name == ".tocbss" ||
561  it->Name == ".plt")
562  break;
563  }
564  if (it == ite) {
565  // This may happen for
566  // * references to TOC base base (sym@toc, .odp relocation) without
567  // a .toc directive.
568  // In this case just use the first section (which is usually
569  // the .odp) since the code won't reference the .toc base
570  // directly.
571  it = Sections.begin();
572  }
573  assert (it != ite);
574  // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
575  // thus permitting a full 64 Kbytes segment.
576  return it->LoadAddress + 0x8000;
577 }
578 
579 // Returns the sections and offset associated with the ODP entry referenced
580 // by Symbol.
581 void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
582  ObjSectionToIDMap &LocalSections,
583  RelocationValueRef &Rel) {
584  // Get the ELF symbol value (st_value) to compare with Relocation offset in
585  // .opd entries
586 
587  error_code err;
588  for (section_iterator si = Obj.begin_sections(),
589  se = Obj.end_sections(); si != se; si.increment(err)) {
590  section_iterator RelSecI = si->getRelocatedSection();
591  if (RelSecI == Obj.end_sections())
592  continue;
593 
594  StringRef RelSectionName;
595  check(RelSecI->getName(RelSectionName));
596  if (RelSectionName != ".opd")
597  continue;
598 
599  for (relocation_iterator i = si->begin_relocations(),
600  e = si->end_relocations(); i != e;) {
601  check(err);
602 
603  // The R_PPC64_ADDR64 relocation indicates the first field
604  // of a .opd entry
605  uint64_t TypeFunc;
606  check(i->getType(TypeFunc));
607  if (TypeFunc != ELF::R_PPC64_ADDR64) {
608  i.increment(err);
609  continue;
610  }
611 
612  uint64_t TargetSymbolOffset;
613  symbol_iterator TargetSymbol = i->getSymbol();
614  check(i->getOffset(TargetSymbolOffset));
615  int64_t Addend;
616  check(getELFRelocationAddend(*i, Addend));
617 
618  i = i.increment(err);
619  if (i == e)
620  break;
621  check(err);
622 
623  // Just check if following relocation is a R_PPC64_TOC
624  uint64_t TypeTOC;
625  check(i->getType(TypeTOC));
626  if (TypeTOC != ELF::R_PPC64_TOC)
627  continue;
628 
629  // Finally compares the Symbol value and the target symbol offset
630  // to check if this .opd entry refers to the symbol the relocation
631  // points to.
632  if (Rel.Addend != (int64_t)TargetSymbolOffset)
633  continue;
634 
635  section_iterator tsi(Obj.end_sections());
636  check(TargetSymbol->getSection(tsi));
637  Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
638  Rel.Addend = (intptr_t)Addend;
639  return;
640  }
641  }
642  llvm_unreachable("Attempting to get address of ODP entry!");
643 }
644 
645 // Relocation masks following the #lo(value), #hi(value), #higher(value),
646 // and #highest(value) macros defined in section 4.5.1. Relocation Types
647 // in PPC-elf64abi document.
648 //
649 static inline
650 uint16_t applyPPClo (uint64_t value)
651 {
652  return value & 0xffff;
653 }
654 
655 static inline
656 uint16_t applyPPChi (uint64_t value)
657 {
658  return (value >> 16) & 0xffff;
659 }
660 
661 static inline
662 uint16_t applyPPChigher (uint64_t value)
663 {
664  return (value >> 32) & 0xffff;
665 }
666 
667 static inline
668 uint16_t applyPPChighest (uint64_t value)
669 {
670  return (value >> 48) & 0xffff;
671 }
672 
673 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
674  uint64_t Offset,
675  uint64_t Value,
676  uint32_t Type,
677  int64_t Addend) {
678  uint8_t* LocalAddress = Section.Address + Offset;
679  switch (Type) {
680  default:
681  llvm_unreachable("Relocation type not implemented yet!");
682  break;
684  writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
685  break;
687  writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
688  break;
690  writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
691  break;
693  writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
694  break;
695  case ELF::R_PPC64_ADDR14 : {
696  assert(((Value + Addend) & 3) == 0);
697  // Preserve the AA/LK bits in the branch instruction
698  uint8_t aalk = *(LocalAddress+3);
699  writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
700  } break;
701  case ELF::R_PPC64_ADDR32 : {
702  int32_t Result = static_cast<int32_t>(Value + Addend);
703  if (SignExtend32<32>(Result) != Result)
704  llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
705  writeInt32BE(LocalAddress, Result);
706  } break;
707  case ELF::R_PPC64_REL24 : {
708  uint64_t FinalAddress = (Section.LoadAddress + Offset);
709  int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
710  if (SignExtend32<24>(delta) != delta)
711  llvm_unreachable("Relocation R_PPC64_REL24 overflow");
712  // Generates a 'bl <address>' instruction
713  writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
714  } break;
715  case ELF::R_PPC64_REL32 : {
716  uint64_t FinalAddress = (Section.LoadAddress + Offset);
717  int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
718  if (SignExtend32<32>(delta) != delta)
719  llvm_unreachable("Relocation R_PPC64_REL32 overflow");
720  writeInt32BE(LocalAddress, delta);
721  } break;
722  case ELF::R_PPC64_REL64: {
723  uint64_t FinalAddress = (Section.LoadAddress + Offset);
724  uint64_t Delta = Value - FinalAddress + Addend;
725  writeInt64BE(LocalAddress, Delta);
726  } break;
727  case ELF::R_PPC64_ADDR64 :
728  writeInt64BE(LocalAddress, Value + Addend);
729  break;
730  case ELF::R_PPC64_TOC :
731  writeInt64BE(LocalAddress, findPPC64TOC());
732  break;
733  case ELF::R_PPC64_TOC16 : {
734  uint64_t TOCStart = findPPC64TOC();
735  Value = applyPPClo((Value + Addend) - TOCStart);
736  writeInt16BE(LocalAddress, applyPPClo(Value));
737  } break;
738  case ELF::R_PPC64_TOC16_DS : {
739  uint64_t TOCStart = findPPC64TOC();
740  Value = ((Value + Addend) - TOCStart);
741  writeInt16BE(LocalAddress, applyPPClo(Value));
742  } break;
743  }
744 }
745 
746 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
747  uint64_t Offset,
748  uint64_t Value,
749  uint32_t Type,
750  int64_t Addend) {
751  uint8_t *LocalAddress = Section.Address + Offset;
752  switch (Type) {
753  default:
754  llvm_unreachable("Relocation type not implemented yet!");
755  break;
756  case ELF::R_390_PC16DBL:
757  case ELF::R_390_PLT16DBL: {
758  int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
759  assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
760  writeInt16BE(LocalAddress, Delta / 2);
761  break;
762  }
763  case ELF::R_390_PC32DBL:
764  case ELF::R_390_PLT32DBL: {
765  int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
766  assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
767  writeInt32BE(LocalAddress, Delta / 2);
768  break;
769  }
770  case ELF::R_390_PC32: {
771  int64_t Delta = (Value + Addend) - (Section.LoadAddress + Offset);
772  assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
773  writeInt32BE(LocalAddress, Delta);
774  break;
775  }
776  case ELF::R_390_64:
777  writeInt64BE(LocalAddress, Value + Addend);
778  break;
779  }
780 }
781 
782 // The target location for the relocation is described by RE.SectionID and
783 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
784 // SectionEntry has three members describing its location.
785 // SectionEntry::Address is the address at which the section has been loaded
786 // into memory in the current (host) process. SectionEntry::LoadAddress is the
787 // address that the section will have in the target process.
788 // SectionEntry::ObjAddress is the address of the bits for this section in the
789 // original emitted object image (also in the current address space).
790 //
791 // Relocations will be applied as if the section were loaded at
792 // SectionEntry::LoadAddress, but they will be applied at an address based
793 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
794 // Target memory contents if they are required for value calculations.
795 //
796 // The Value parameter here is the load address of the symbol for the
797 // relocation to be applied. For relocations which refer to symbols in the
798 // current object Value will be the LoadAddress of the section in which
799 // the symbol resides (RE.Addend provides additional information about the
800 // symbol location). For external symbols, Value will be the address of the
801 // symbol in the target address space.
802 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
803  uint64_t Value) {
804  const SectionEntry &Section = Sections[RE.SectionID];
805  return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
806  RE.SymOffset);
807 }
808 
809 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
810  uint64_t Offset,
811  uint64_t Value,
812  uint32_t Type,
813  int64_t Addend,
814  uint64_t SymOffset) {
815  switch (Arch) {
816  case Triple::x86_64:
817  resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
818  break;
819  case Triple::x86:
820  resolveX86Relocation(Section, Offset,
821  (uint32_t)(Value & 0xffffffffL), Type,
822  (uint32_t)(Addend & 0xffffffffL));
823  break;
824  case Triple::aarch64:
825  resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
826  break;
827  case Triple::arm: // Fall through.
828  case Triple::thumb:
829  resolveARMRelocation(Section, Offset,
830  (uint32_t)(Value & 0xffffffffL), Type,
831  (uint32_t)(Addend & 0xffffffffL));
832  break;
833  case Triple::mips: // Fall through.
834  case Triple::mipsel:
835  resolveMIPSRelocation(Section, Offset,
836  (uint32_t)(Value & 0xffffffffL), Type,
837  (uint32_t)(Addend & 0xffffffffL));
838  break;
839  case Triple::ppc64: // Fall through.
840  case Triple::ppc64le:
841  resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
842  break;
843  case Triple::systemz:
844  resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
845  break;
846  default: llvm_unreachable("Unsupported CPU type!");
847  }
848 }
849 
850 void RuntimeDyldELF::processRelocationRef(unsigned SectionID,
851  RelocationRef RelI,
852  ObjectImage &Obj,
853  ObjSectionToIDMap &ObjSectionToID,
854  const SymbolTableMap &Symbols,
855  StubMap &Stubs) {
856  uint64_t RelType;
857  Check(RelI.getType(RelType));
858  int64_t Addend;
859  Check(getELFRelocationAddend(RelI, Addend));
861 
862  // Obtain the symbol name which is referenced in the relocation
863  StringRef TargetName;
864  if (Symbol != Obj.end_symbols())
865  Symbol->getName(TargetName);
866  DEBUG(dbgs() << "\t\tRelType: " << RelType
867  << " Addend: " << Addend
868  << " TargetName: " << TargetName
869  << "\n");
870  RelocationValueRef Value;
871  // First search for the symbol in the local symbol table
872  SymbolTableMap::const_iterator lsi = Symbols.end();
874  if (Symbol != Obj.end_symbols()) {
875  lsi = Symbols.find(TargetName.data());
876  Symbol->getType(SymType);
877  }
878  if (lsi != Symbols.end()) {
879  Value.SectionID = lsi->second.first;
880  Value.Offset = lsi->second.second;
881  Value.Addend = lsi->second.second + Addend;
882  } else {
883  // Search for the symbol in the global symbol table
884  SymbolTableMap::const_iterator gsi = GlobalSymbolTable.end();
885  if (Symbol != Obj.end_symbols())
886  gsi = GlobalSymbolTable.find(TargetName.data());
887  if (gsi != GlobalSymbolTable.end()) {
888  Value.SectionID = gsi->second.first;
889  Value.Offset = gsi->second.second;
890  Value.Addend = gsi->second.second + Addend;
891  } else {
892  switch (SymType) {
893  case SymbolRef::ST_Debug: {
894  // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
895  // and can be changed by another developers. Maybe best way is add
896  // a new symbol type ST_Section to SymbolRef and use it.
897  section_iterator si(Obj.end_sections());
898  Symbol->getSection(si);
899  if (si == Obj.end_sections())
900  llvm_unreachable("Symbol section not found, bad object file format!");
901  DEBUG(dbgs() << "\t\tThis is section symbol\n");
902  // Default to 'true' in case isText fails (though it never does).
903  bool isCode = true;
904  si->isText(isCode);
905  Value.SectionID = findOrEmitSection(Obj,
906  (*si),
907  isCode,
908  ObjSectionToID);
909  Value.Addend = Addend;
910  break;
911  }
912  case SymbolRef::ST_Data:
913  case SymbolRef::ST_Unknown: {
914  Value.SymbolName = TargetName.data();
915  Value.Addend = Addend;
916 
917  // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
918  // will manifest here as a NULL symbol name.
919  // We can set this as a valid (but empty) symbol name, and rely
920  // on addRelocationForSymbol to handle this.
921  if (!Value.SymbolName)
922  Value.SymbolName = "";
923  break;
924  }
925  default:
926  llvm_unreachable("Unresolved symbol type!");
927  break;
928  }
929  }
930  }
931  uint64_t Offset;
932  Check(RelI.getOffset(Offset));
933 
934  DEBUG(dbgs() << "\t\tSectionID: " << SectionID
935  << " Offset: " << Offset
936  << "\n");
937  if (Arch == Triple::aarch64 &&
938  (RelType == ELF::R_AARCH64_CALL26 ||
939  RelType == ELF::R_AARCH64_JUMP26)) {
940  // This is an AArch64 branch relocation, need to use a stub function.
941  DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
942  SectionEntry &Section = Sections[SectionID];
943 
944  // Look for an existing stub.
945  StubMap::const_iterator i = Stubs.find(Value);
946  if (i != Stubs.end()) {
947  resolveRelocation(Section, Offset,
948  (uint64_t)Section.Address + i->second, RelType, 0);
949  DEBUG(dbgs() << " Stub function found\n");
950  } else {
951  // Create a new stub function.
952  DEBUG(dbgs() << " Create a new stub function\n");
953  Stubs[Value] = Section.StubOffset;
954  uint8_t *StubTargetAddr = createStubFunction(Section.Address +
955  Section.StubOffset);
956 
957  RelocationEntry REmovz_g3(SectionID,
958  StubTargetAddr - Section.Address,
960  RelocationEntry REmovk_g2(SectionID,
961  StubTargetAddr - Section.Address + 4,
963  RelocationEntry REmovk_g1(SectionID,
964  StubTargetAddr - Section.Address + 8,
966  RelocationEntry REmovk_g0(SectionID,
967  StubTargetAddr - Section.Address + 12,
969 
970  if (Value.SymbolName) {
971  addRelocationForSymbol(REmovz_g3, Value.SymbolName);
972  addRelocationForSymbol(REmovk_g2, Value.SymbolName);
973  addRelocationForSymbol(REmovk_g1, Value.SymbolName);
974  addRelocationForSymbol(REmovk_g0, Value.SymbolName);
975  } else {
976  addRelocationForSection(REmovz_g3, Value.SectionID);
977  addRelocationForSection(REmovk_g2, Value.SectionID);
978  addRelocationForSection(REmovk_g1, Value.SectionID);
979  addRelocationForSection(REmovk_g0, Value.SectionID);
980  }
981  resolveRelocation(Section, Offset,
982  (uint64_t)Section.Address + Section.StubOffset,
983  RelType, 0);
984  Section.StubOffset += getMaxStubSize();
985  }
986  } else if (Arch == Triple::arm &&
987  (RelType == ELF::R_ARM_PC24 ||
988  RelType == ELF::R_ARM_CALL ||
989  RelType == ELF::R_ARM_JUMP24)) {
990  // This is an ARM branch relocation, need to use a stub function.
991  DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
992  SectionEntry &Section = Sections[SectionID];
993 
994  // Look for an existing stub.
995  StubMap::const_iterator i = Stubs.find(Value);
996  if (i != Stubs.end()) {
997  resolveRelocation(Section, Offset,
998  (uint64_t)Section.Address + i->second, RelType, 0);
999  DEBUG(dbgs() << " Stub function found\n");
1000  } else {
1001  // Create a new stub function.
1002  DEBUG(dbgs() << " Create a new stub function\n");
1003  Stubs[Value] = Section.StubOffset;
1004  uint8_t *StubTargetAddr = createStubFunction(Section.Address +
1005  Section.StubOffset);
1006  RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
1007  ELF::R_ARM_PRIVATE_0, Value.Addend);
1008  if (Value.SymbolName)
1009  addRelocationForSymbol(RE, Value.SymbolName);
1010  else
1011  addRelocationForSection(RE, Value.SectionID);
1012 
1013  resolveRelocation(Section, Offset,
1014  (uint64_t)Section.Address + Section.StubOffset,
1015  RelType, 0);
1016  Section.StubOffset += getMaxStubSize();
1017  }
1018  } else if ((Arch == Triple::mipsel || Arch == Triple::mips) &&
1019  RelType == ELF::R_MIPS_26) {
1020  // This is an Mips branch relocation, need to use a stub function.
1021  DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1022  SectionEntry &Section = Sections[SectionID];
1023  uint8_t *Target = Section.Address + Offset;
1024  uint32_t *TargetAddress = (uint32_t *)Target;
1025 
1026  // Extract the addend from the instruction.
1027  uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
1028 
1029  Value.Addend += Addend;
1030 
1031  // Look up for existing stub.
1032  StubMap::const_iterator i = Stubs.find(Value);
1033  if (i != Stubs.end()) {
1034  RelocationEntry RE(SectionID, Offset, RelType, i->second);
1035  addRelocationForSection(RE, SectionID);
1036  DEBUG(dbgs() << " Stub function found\n");
1037  } else {
1038  // Create a new stub function.
1039  DEBUG(dbgs() << " Create a new stub function\n");
1040  Stubs[Value] = Section.StubOffset;
1041  uint8_t *StubTargetAddr = createStubFunction(Section.Address +
1042  Section.StubOffset);
1043 
1044  // Creating Hi and Lo relocations for the filled stub instructions.
1045  RelocationEntry REHi(SectionID,
1046  StubTargetAddr - Section.Address,
1047  ELF::R_MIPS_UNUSED1, Value.Addend);
1048  RelocationEntry RELo(SectionID,
1049  StubTargetAddr - Section.Address + 4,
1050  ELF::R_MIPS_UNUSED2, Value.Addend);
1051 
1052  if (Value.SymbolName) {
1053  addRelocationForSymbol(REHi, Value.SymbolName);
1054  addRelocationForSymbol(RELo, Value.SymbolName);
1055  } else {
1056  addRelocationForSection(REHi, Value.SectionID);
1057  addRelocationForSection(RELo, Value.SectionID);
1058  }
1059 
1060  RelocationEntry RE(SectionID, Offset, RelType, Section.StubOffset);
1061  addRelocationForSection(RE, SectionID);
1062  Section.StubOffset += getMaxStubSize();
1063  }
1064  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1065  if (RelType == ELF::R_PPC64_REL24) {
1066  // A PPC branch relocation will need a stub function if the target is
1067  // an external symbol (Symbol::ST_Unknown) or if the target address
1068  // is not within the signed 24-bits branch address.
1069  SectionEntry &Section = Sections[SectionID];
1070  uint8_t *Target = Section.Address + Offset;
1071  bool RangeOverflow = false;
1072  if (SymType != SymbolRef::ST_Unknown) {
1073  // A function call may points to the .opd entry, so the final symbol value
1074  // in calculated based in the relocation values in .opd section.
1075  findOPDEntrySection(Obj, ObjSectionToID, Value);
1076  uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
1077  int32_t delta = static_cast<int32_t>(Target - RelocTarget);
1078  // If it is within 24-bits branch range, just set the branch target
1079  if (SignExtend32<24>(delta) == delta) {
1080  RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1081  if (Value.SymbolName)
1082  addRelocationForSymbol(RE, Value.SymbolName);
1083  else
1084  addRelocationForSection(RE, Value.SectionID);
1085  } else {
1086  RangeOverflow = true;
1087  }
1088  }
1089  if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
1090  // It is an external symbol (SymbolRef::ST_Unknown) or within a range
1091  // larger than 24-bits.
1092  StubMap::const_iterator i = Stubs.find(Value);
1093  if (i != Stubs.end()) {
1094  // Symbol function stub already created, just relocate to it
1095  resolveRelocation(Section, Offset,
1096  (uint64_t)Section.Address + i->second, RelType, 0);
1097  DEBUG(dbgs() << " Stub function found\n");
1098  } else {
1099  // Create a new stub function.
1100  DEBUG(dbgs() << " Create a new stub function\n");
1101  Stubs[Value] = Section.StubOffset;
1102  uint8_t *StubTargetAddr = createStubFunction(Section.Address +
1103  Section.StubOffset);
1104  RelocationEntry RE(SectionID, StubTargetAddr - Section.Address,
1105  ELF::R_PPC64_ADDR64, Value.Addend);
1106 
1107  // Generates the 64-bits address loads as exemplified in section
1108  // 4.5.1 in PPC64 ELF ABI.
1109  RelocationEntry REhst(SectionID,
1110  StubTargetAddr - Section.Address + 2,
1112  RelocationEntry REhr(SectionID,
1113  StubTargetAddr - Section.Address + 6,
1115  RelocationEntry REh(SectionID,
1116  StubTargetAddr - Section.Address + 14,
1118  RelocationEntry REl(SectionID,
1119  StubTargetAddr - Section.Address + 18,
1121 
1122  if (Value.SymbolName) {
1123  addRelocationForSymbol(REhst, Value.SymbolName);
1124  addRelocationForSymbol(REhr, Value.SymbolName);
1125  addRelocationForSymbol(REh, Value.SymbolName);
1126  addRelocationForSymbol(REl, Value.SymbolName);
1127  } else {
1128  addRelocationForSection(REhst, Value.SectionID);
1129  addRelocationForSection(REhr, Value.SectionID);
1130  addRelocationForSection(REh, Value.SectionID);
1131  addRelocationForSection(REl, Value.SectionID);
1132  }
1133 
1134  resolveRelocation(Section, Offset,
1135  (uint64_t)Section.Address + Section.StubOffset,
1136  RelType, 0);
1137  if (SymType == SymbolRef::ST_Unknown)
1138  // Restore the TOC for external calls
1139  writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
1140  Section.StubOffset += getMaxStubSize();
1141  }
1142  }
1143  } else {
1144  RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1145  // Extra check to avoid relocation againt empty symbols (usually
1146  // the R_PPC64_TOC).
1147  if (SymType != SymbolRef::ST_Unknown && TargetName.empty())
1148  Value.SymbolName = NULL;
1149 
1150  if (Value.SymbolName)
1151  addRelocationForSymbol(RE, Value.SymbolName);
1152  else
1153  addRelocationForSection(RE, Value.SectionID);
1154  }
1155  } else if (Arch == Triple::systemz &&
1156  (RelType == ELF::R_390_PLT32DBL ||
1157  RelType == ELF::R_390_GOTENT)) {
1158  // Create function stubs for both PLT and GOT references, regardless of
1159  // whether the GOT reference is to data or code. The stub contains the
1160  // full address of the symbol, as needed by GOT references, and the
1161  // executable part only adds an overhead of 8 bytes.
1162  //
1163  // We could try to conserve space by allocating the code and data
1164  // parts of the stub separately. However, as things stand, we allocate
1165  // a stub for every relocation, so using a GOT in JIT code should be
1166  // no less space efficient than using an explicit constant pool.
1167  DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1168  SectionEntry &Section = Sections[SectionID];
1169 
1170  // Look for an existing stub.
1171  StubMap::const_iterator i = Stubs.find(Value);
1172  uintptr_t StubAddress;
1173  if (i != Stubs.end()) {
1174  StubAddress = uintptr_t(Section.Address) + i->second;
1175  DEBUG(dbgs() << " Stub function found\n");
1176  } else {
1177  // Create a new stub function.
1178  DEBUG(dbgs() << " Create a new stub function\n");
1179 
1180  uintptr_t BaseAddress = uintptr_t(Section.Address);
1181  uintptr_t StubAlignment = getStubAlignment();
1182  StubAddress = (BaseAddress + Section.StubOffset +
1183  StubAlignment - 1) & -StubAlignment;
1184  unsigned StubOffset = StubAddress - BaseAddress;
1185 
1186  Stubs[Value] = StubOffset;
1187  createStubFunction((uint8_t *)StubAddress);
1188  RelocationEntry RE(SectionID, StubOffset + 8,
1189  ELF::R_390_64, Value.Addend - Addend);
1190  if (Value.SymbolName)
1191  addRelocationForSymbol(RE, Value.SymbolName);
1192  else
1193  addRelocationForSection(RE, Value.SectionID);
1194  Section.StubOffset = StubOffset + getMaxStubSize();
1195  }
1196 
1197  if (RelType == ELF::R_390_GOTENT)
1198  resolveRelocation(Section, Offset, StubAddress + 8,
1199  ELF::R_390_PC32DBL, Addend);
1200  else
1201  resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1202  } else if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_PLT32) {
1203  // The way the PLT relocations normally work is that the linker allocates the
1204  // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1205  // entry will then jump to an address provided by the GOT. On first call, the
1206  // GOT address will point back into PLT code that resolves the symbol. After
1207  // the first call, the GOT entry points to the actual function.
1208  //
1209  // For local functions we're ignoring all of that here and just replacing
1210  // the PLT32 relocation type with PC32, which will translate the relocation
1211  // into a PC-relative call directly to the function. For external symbols we
1212  // can't be sure the function will be within 2^32 bytes of the call site, so
1213  // we need to create a stub, which calls into the GOT. This case is
1214  // equivalent to the usual PLT implementation except that we use the stub
1215  // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1216  // rather than allocating a PLT section.
1217  if (Value.SymbolName) {
1218  // This is a call to an external function.
1219  // Look for an existing stub.
1220  SectionEntry &Section = Sections[SectionID];
1221  StubMap::const_iterator i = Stubs.find(Value);
1222  uintptr_t StubAddress;
1223  if (i != Stubs.end()) {
1224  StubAddress = uintptr_t(Section.Address) + i->second;
1225  DEBUG(dbgs() << " Stub function found\n");
1226  } else {
1227  // Create a new stub function (equivalent to a PLT entry).
1228  DEBUG(dbgs() << " Create a new stub function\n");
1229 
1230  uintptr_t BaseAddress = uintptr_t(Section.Address);
1231  uintptr_t StubAlignment = getStubAlignment();
1232  StubAddress = (BaseAddress + Section.StubOffset +
1233  StubAlignment - 1) & -StubAlignment;
1234  unsigned StubOffset = StubAddress - BaseAddress;
1235  Stubs[Value] = StubOffset;
1236  createStubFunction((uint8_t *)StubAddress);
1237 
1238  // Create a GOT entry for the external function.
1239  GOTEntries.push_back(Value);
1240 
1241  // Make our stub function a relative call to the GOT entry.
1242  RelocationEntry RE(SectionID, StubOffset + 2,
1244  addRelocationForSymbol(RE, Value.SymbolName);
1245 
1246  // Bump our stub offset counter
1247  Section.StubOffset = StubOffset + getMaxStubSize();
1248  }
1249 
1250  // Make the target call a call into the stub table.
1251  resolveRelocation(Section, Offset, StubAddress,
1252  ELF::R_X86_64_PC32, Addend);
1253  } else {
1254  RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1255  Value.Offset);
1256  addRelocationForSection(RE, Value.SectionID);
1257  }
1258  } else {
1259  if (Arch == Triple::x86_64 && RelType == ELF::R_X86_64_GOTPCREL) {
1260  GOTEntries.push_back(Value);
1261  }
1262  RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1263  if (Value.SymbolName)
1264  addRelocationForSymbol(RE, Value.SymbolName);
1265  else
1266  addRelocationForSection(RE, Value.SectionID);
1267  }
1268 }
1269 
1270 void RuntimeDyldELF::updateGOTEntries(StringRef Name, uint64_t Addr) {
1271 
1274 
1275  for (it = GOTs.begin(); it != end; ++it) {
1276  GOTRelocations &GOTEntries = it->second;
1277  for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
1278  if (GOTEntries[i].SymbolName != 0 && GOTEntries[i].SymbolName == Name) {
1279  GOTEntries[i].Offset = Addr;
1280  }
1281  }
1282  }
1283 }
1284 
1285 size_t RuntimeDyldELF::getGOTEntrySize() {
1286  // We don't use the GOT in all of these cases, but it's essentially free
1287  // to put them all here.
1288  size_t Result = 0;
1289  switch (Arch) {
1290  case Triple::x86_64:
1291  case Triple::aarch64:
1292  case Triple::ppc64:
1293  case Triple::ppc64le:
1294  case Triple::systemz:
1295  Result = sizeof(uint64_t);
1296  break;
1297  case Triple::x86:
1298  case Triple::arm:
1299  case Triple::thumb:
1300  case Triple::mips:
1301  case Triple::mipsel:
1302  Result = sizeof(uint32_t);
1303  break;
1304  default: llvm_unreachable("Unsupported CPU type!");
1305  }
1306  return Result;
1307 }
1308 
1309 uint64_t RuntimeDyldELF::findGOTEntry(uint64_t LoadAddress,
1310  uint64_t Offset) {
1311 
1312  const size_t GOTEntrySize = getGOTEntrySize();
1313 
1315  SmallVectorImpl<std::pair<SID, GOTRelocations> >::const_iterator end = GOTs.end();
1316 
1317  int GOTIndex = -1;
1318  for (it = GOTs.begin(); it != end; ++it) {
1319  SID GOTSectionID = it->first;
1320  const GOTRelocations &GOTEntries = it->second;
1321 
1322  // Find the matching entry in our vector.
1323  uint64_t SymbolOffset = 0;
1324  for (int i = 0, e = GOTEntries.size(); i != e; ++i) {
1325  if (GOTEntries[i].SymbolName == 0) {
1326  if (getSectionLoadAddress(GOTEntries[i].SectionID) == LoadAddress &&
1327  GOTEntries[i].Offset == Offset) {
1328  GOTIndex = i;
1329  SymbolOffset = GOTEntries[i].Offset;
1330  break;
1331  }
1332  } else {
1333  // GOT entries for external symbols use the addend as the address when
1334  // the external symbol has been resolved.
1335  if (GOTEntries[i].Offset == LoadAddress) {
1336  GOTIndex = i;
1337  // Don't use the Addend here. The relocation handler will use it.
1338  break;
1339  }
1340  }
1341  }
1342 
1343  if (GOTIndex != -1) {
1344  if (GOTEntrySize == sizeof(uint64_t)) {
1345  uint64_t *LocalGOTAddr = (uint64_t*)getSectionAddress(GOTSectionID);
1346  // Fill in this entry with the address of the symbol being referenced.
1347  LocalGOTAddr[GOTIndex] = LoadAddress + SymbolOffset;
1348  } else {
1349  uint32_t *LocalGOTAddr = (uint32_t*)getSectionAddress(GOTSectionID);
1350  // Fill in this entry with the address of the symbol being referenced.
1351  LocalGOTAddr[GOTIndex] = (uint32_t)(LoadAddress + SymbolOffset);
1352  }
1353 
1354  // Calculate the load address of this entry
1355  return getSectionLoadAddress(GOTSectionID) + (GOTIndex * GOTEntrySize);
1356  }
1357  }
1358 
1359  assert(GOTIndex != -1 && "Unable to find requested GOT entry.");
1360  return 0;
1361 }
1362 
1364  // If necessary, allocate the global offset table
1365  if (MemMgr) {
1366  // Allocate the GOT if necessary
1367  size_t numGOTEntries = GOTEntries.size();
1368  if (numGOTEntries != 0) {
1369  // Allocate memory for the section
1370  unsigned SectionID = Sections.size();
1371  size_t TotalSize = numGOTEntries * getGOTEntrySize();
1372  uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, getGOTEntrySize(),
1373  SectionID, ".got", false);
1374  if (!Addr)
1375  report_fatal_error("Unable to allocate memory for GOT!");
1376 
1377  GOTs.push_back(std::make_pair(SectionID, GOTEntries));
1378  Sections.push_back(SectionEntry(".got", Addr, TotalSize, 0));
1379  // For now, initialize all GOT entries to zero. We'll fill them in as
1380  // needed when GOT-based relocations are applied.
1381  memset(Addr, 0, TotalSize);
1382  }
1383  }
1384  else {
1385  report_fatal_error("Unable to allocate memory for GOT!");
1386  }
1387 
1388  // Look for and record the EH frame section.
1389  ObjSectionToIDMap::iterator i, e;
1390  for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1391  const SectionRef &Section = i->first;
1392  StringRef Name;
1393  Section.getName(Name);
1394  if (Name == ".eh_frame") {
1395  UnregisteredEHFrameSections.push_back(i->second);
1396  break;
1397  }
1398  }
1399 }
1400 
1402  if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
1403  return false;
1404  return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
1405 }
1406 } // namespace llvm
static bool Check(DecodeStatus &Out, DecodeStatus In)
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
DataRefImpl getRawDataRefImpl() const
Definition: ObjectFile.h:445
virtual void finalizeLoad(ObjSectionToIDMap &SectionMap)
size_t getBufferSize() const
Definition: ObjectBuffer.h:47
virtual bool deregisterObject(const ObjectBuffer &Object)=0
iterator find(StringRef Key)
Definition: StringMap.h:291
static uint16_t applyPPChigher(uint64_t value)
uint8_t * Address
Address - address in the linker's memory where the section resides.
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type cast(const Y &Val)
Definition: Casting.h:224
DataRefImpl getRawDataRefImpl() const
Definition: ObjectFile.h:533
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
bool isa(const Y &Val)
Definition: Casting.h:134
unsigned SectionID
SectionID - the section this relocation points to.
const char * getBufferStart() const
Definition: ObjectBuffer.h:46
#define llvm_unreachable(msg)
std::map< RelocationValueRef, uintptr_t > StubMap
format_object1< T > format(const char *Fmt, const T &Val)
Definition: Format.h:180
virtual void deregisterEHFrames()
const char * data() const
Definition: StringRef.h:107
virtual object::symbol_iterator end_symbols() const =0
virtual void registerObject(const ObjectBuffer &Object)=0
error_code getName(StringRef &Result) const
Definition: ObjectFile.h:468
MemoryBuffer * getMemBuffer() const
Definition: ObjectBuffer.h:42
static uint16_t applyPPChi(uint64_t value)
int memcmp(const void *s1, const void *s2, size_t n);
friend const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
* if(!EatIfPresent(lltok::kw_thread_local)) return false
static error_code getELFRelocationAddend(const RelocationRef R, int64_t &Addend)
static JITRegistrar & getGDBRegistrar()
Returns a reference to a GDB JIT registrar singleton.
symbol_iterator getSymbol() const
Definition: ObjectFile.h:559
static uint16_t applyPPClo(uint64_t value)
virtual void processRelocationRef(unsigned SectionID, RelocationRef RelI, ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols, StubMap &Stubs)
Parses the object file relocation and stores it to Relocations or SymbolRelocations (this depends on ...
static uint16_t applyPPChighest(uint64_t value)
content_iterator & increment(error_code &err)
Definition: ObjectFile.h:65
static const char ElfMagic[]
Definition: Support/ELF.h:46
uint32_t RelType
RelType - relocation type.
virtual ObjectImage * createObjectImage(ObjectBuffer *InputBuffer)
const Elf_Sym * getSymbol(DataRefImpl Symb) const
size_t strlen(const char *s);
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
std::string message() const
uint64_t Offset
Offset - offset into the section.
std::map< SectionRef, unsigned > ObjSectionToIDMap
virtual void registerEHFrames()
LLVM Value Representation.
Definition: Value.h:66
error_code getType(uint64_t &Result) const
Definition: ObjectFile.h:563
#define DEBUG(X)
Definition: Debug.h:97
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Definition: ELFTypes.h:102
error_code getOffset(uint64_t &Result) const
Definition: ObjectFile.h:555
virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const
iterator end()
Definition: StringMap.h:281
virtual object::section_iterator end_sections() const =0
bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:110
virtual object::section_iterator begin_sections() const =0