LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SelectionDAGBuilder.h
Go to the documentation of this file.
1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef SELECTIONDAGBUILDER_H
15 #define SELECTIONDAGBUILDER_H
16 
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/Support/CallSite.h"
25 #include <vector>
26 
27 namespace llvm {
28 
29 class AddrSpaceCastInst;
30 class AliasAnalysis;
31 class AllocaInst;
32 class BasicBlock;
33 class BitCastInst;
34 class BranchInst;
35 class CallInst;
36 class DbgValueInst;
37 class ExtractElementInst;
38 class ExtractValueInst;
39 class FCmpInst;
40 class FPExtInst;
41 class FPToSIInst;
42 class FPToUIInst;
43 class FPTruncInst;
44 class Function;
45 class FunctionLoweringInfo;
46 class GetElementPtrInst;
47 class GCFunctionInfo;
48 class ICmpInst;
49 class IntToPtrInst;
50 class IndirectBrInst;
51 class InvokeInst;
52 class InsertElementInst;
53 class InsertValueInst;
54 class Instruction;
55 class LoadInst;
56 class MachineBasicBlock;
57 class MachineInstr;
58 class MachineRegisterInfo;
59 class MDNode;
60 class PHINode;
61 class PtrToIntInst;
62 class ReturnInst;
63 class SDDbgValue;
64 class SExtInst;
65 class SelectInst;
66 class ShuffleVectorInst;
67 class SIToFPInst;
68 class StoreInst;
69 class SwitchInst;
70 class DataLayout;
71 class TargetLibraryInfo;
72 class TargetLowering;
73 class TruncInst;
74 class UIToFPInst;
75 class UnreachableInst;
76 class VAArgInst;
77 class ZExtInst;
78 
79 //===----------------------------------------------------------------------===//
80 /// SelectionDAGBuilder - This is the common target-independent lowering
81 /// implementation that is parameterized by a TargetLowering object.
82 ///
84  /// CurInst - The current instruction being visited
85  const Instruction *CurInst;
86 
88 
89  /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
90  /// to preserve debug information for incoming arguments.
91  DenseMap<const Value*, SDValue> UnusedArgNodeMap;
92 
93  /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
94  class DanglingDebugInfo {
95  const DbgValueInst* DI;
96  DebugLoc dl;
97  unsigned SDNodeOrder;
98  public:
99  DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
100  DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
101  DI(di), dl(DL), SDNodeOrder(SDNO) { }
102  const DbgValueInst* getDI() { return DI; }
103  DebugLoc getdl() { return dl; }
104  unsigned getSDNodeOrder() { return SDNodeOrder; }
105  };
106 
107  /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
108  /// yet seen the referent. We defer handling these until we do see it.
109  DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
110 
111 public:
112  /// PendingLoads - Loads are not emitted to the program immediately. We bunch
113  /// them up and then emit token factor nodes when possible. This allows us to
114  /// get simple disambiguation between loads without worrying about alias
115  /// analysis.
117 private:
118 
119  /// PendingExports - CopyToReg nodes that copy values to virtual registers
120  /// for export to other blocks need to be emitted before any terminator
121  /// instruction, but they have no other ordering requirements. We bunch them
122  /// up and the emit a single tokenfactor for them just before terminator
123  /// instructions.
124  SmallVector<SDValue, 8> PendingExports;
125 
126  /// SDNodeOrder - A unique monotonically increasing number used to order the
127  /// SDNodes we create.
128  unsigned SDNodeOrder;
129 
130  /// Case - A struct to record the Value for a switch case, and the
131  /// case's target basic block.
132  struct Case {
133  const Constant *Low;
134  const Constant *High;
135  MachineBasicBlock* BB;
136  uint32_t ExtraWeight;
137 
138  Case() : Low(0), High(0), BB(0), ExtraWeight(0) { }
139  Case(const Constant *low, const Constant *high, MachineBasicBlock *bb,
140  uint32_t extraweight) : Low(low), High(high), BB(bb),
141  ExtraWeight(extraweight) { }
142 
143  APInt size() const {
144  const APInt &rHigh = cast<ConstantInt>(High)->getValue();
145  const APInt &rLow = cast<ConstantInt>(Low)->getValue();
146  return (rHigh - rLow + 1ULL);
147  }
148  };
149 
150  struct CaseBits {
151  uint64_t Mask;
152  MachineBasicBlock* BB;
153  unsigned Bits;
154  uint32_t ExtraWeight;
155 
156  CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
157  uint32_t Weight):
158  Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { }
159  };
160 
161  typedef std::vector<Case> CaseVector;
162  typedef std::vector<CaseBits> CaseBitsVector;
163  typedef CaseVector::iterator CaseItr;
164  typedef std::pair<CaseItr, CaseItr> CaseRange;
165 
166  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
167  /// of conditional branches.
168  struct CaseRec {
169  CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
170  CaseRange r) :
171  CaseBB(bb), LT(lt), GE(ge), Range(r) {}
172 
173  /// CaseBB - The MBB in which to emit the compare and branch
174  MachineBasicBlock *CaseBB;
175  /// LT, GE - If nonzero, we know the current case value must be less-than or
176  /// greater-than-or-equal-to these Constants.
177  const Constant *LT;
178  const Constant *GE;
179  /// Range - A pair of iterators representing the range of case values to be
180  /// processed at this point in the binary search tree.
181  CaseRange Range;
182  };
183 
184  typedef std::vector<CaseRec> CaseRecVector;
185 
186  /// The comparison function for sorting the switch case values in the vector.
187  /// WARNING: Case ranges should be disjoint!
188  struct CaseCmp {
189  bool operator()(const Case &C1, const Case &C2) {
190  assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
191  const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
192  const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
193  return CI1->getValue().slt(CI2->getValue());
194  }
195  };
196 
197  struct CaseBitsCmp {
198  bool operator()(const CaseBits &C1, const CaseBits &C2) {
199  return C1.Bits > C2.Bits;
200  }
201  };
202 
203  size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
204 
205  /// CaseBlock - This structure is used to communicate between
206  /// SelectionDAGBuilder and SDISel for the code generation of additional basic
207  /// blocks needed by multi-case switch statements.
208  struct CaseBlock {
209  CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
210  const Value *cmpmiddle,
211  MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
212  MachineBasicBlock *me,
213  uint32_t trueweight = 0, uint32_t falseweight = 0)
214  : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
215  TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
216  TrueWeight(trueweight), FalseWeight(falseweight) { }
217 
218  // CC - the condition code to use for the case block's setcc node
219  ISD::CondCode CC;
220 
221  // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
222  // Emit by default LHS op RHS. MHS is used for range comparisons:
223  // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
224  const Value *CmpLHS, *CmpMHS, *CmpRHS;
225 
226  // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
227  MachineBasicBlock *TrueBB, *FalseBB;
228 
229  // ThisBB - the block into which to emit the code for the setcc and branches
230  MachineBasicBlock *ThisBB;
231 
232  // TrueWeight/FalseWeight - branch weights.
233  uint32_t TrueWeight, FalseWeight;
234  };
235 
236  struct JumpTable {
237  JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
238  MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
239 
240  /// Reg - the virtual register containing the index of the jump table entry
241  //. to jump to.
242  unsigned Reg;
243  /// JTI - the JumpTableIndex for this jump table in the function.
244  unsigned JTI;
245  /// MBB - the MBB into which to emit the code for the indirect jump.
246  MachineBasicBlock *MBB;
247  /// Default - the MBB of the default bb, which is a successor of the range
248  /// check MBB. This is when updating PHI nodes in successors.
249  MachineBasicBlock *Default;
250  };
251  struct JumpTableHeader {
252  JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
253  bool E = false):
254  First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
255  APInt First;
256  APInt Last;
257  const Value *SValue;
258  MachineBasicBlock *HeaderBB;
259  bool Emitted;
260  };
261  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
262 
263  struct BitTestCase {
264  BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
265  uint32_t Weight):
266  Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { }
267  uint64_t Mask;
268  MachineBasicBlock *ThisBB;
269  MachineBasicBlock *TargetBB;
270  uint32_t ExtraWeight;
271  };
272 
273  typedef SmallVector<BitTestCase, 3> BitTestInfo;
274 
275  struct BitTestBlock {
276  BitTestBlock(APInt F, APInt R, const Value* SV,
277  unsigned Rg, MVT RgVT, bool E,
278  MachineBasicBlock* P, MachineBasicBlock* D,
279  const BitTestInfo& C):
280  First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
281  Parent(P), Default(D), Cases(C) { }
282  APInt First;
283  APInt Range;
284  const Value *SValue;
285  unsigned Reg;
286  MVT RegVT;
287  bool Emitted;
288  MachineBasicBlock *Parent;
289  MachineBasicBlock *Default;
290  BitTestInfo Cases;
291  };
292 
293  /// A class which encapsulates all of the information needed to generate a
294  /// stack protector check and signals to isel via its state being initialized
295  /// that a stack protector needs to be generated.
296  ///
297  /// *NOTE* The following is a high level documentation of SelectionDAG Stack
298  /// Protector Generation. The reason that it is placed here is for a lack of
299  /// other good places to stick it.
300  ///
301  /// High Level Overview of SelectionDAG Stack Protector Generation:
302  ///
303  /// Previously, generation of stack protectors was done exclusively in the
304  /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
305  /// splitting basic blocks at the IR level to create the success/failure basic
306  /// blocks in the tail of the basic block in question. As a result of this,
307  /// calls that would have qualified for the sibling call optimization were no
308  /// longer eligible for optimization since said calls were no longer right in
309  /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
310  /// instruction).
311  ///
312  /// Then it was noticed that since the sibling call optimization causes the
313  /// callee to reuse the caller's stack, if we could delay the generation of
314  /// the stack protector check until later in CodeGen after the sibling call
315  /// decision was made, we get both the tail call optimization and the stack
316  /// protector check!
317  ///
318  /// A few goals in solving this problem were:
319  ///
320  /// 1. Preserve the architecture independence of stack protector generation.
321  ///
322  /// 2. Preserve the normal IR level stack protector check for platforms like
323  /// OpenBSD for which we support platform specific stack protector
324  /// generation.
325  ///
326  /// The main problem that guided the present solution is that one can not
327  /// solve this problem in an architecture independent manner at the IR level
328  /// only. This is because:
329  ///
330  /// 1. The decision on whether or not to perform a sibling call on certain
331  /// platforms (for instance i386) requires lower level information
332  /// related to available registers that can not be known at the IR level.
333  ///
334  /// 2. Even if the previous point were not true, the decision on whether to
335  /// perform a tail call is done in LowerCallTo in SelectionDAG which
336  /// occurs after the Stack Protector Pass. As a result, one would need to
337  /// put the relevant callinst into the stack protector check success
338  /// basic block (where the return inst is placed) and then move it back
339  /// later at SelectionDAG/MI time before the stack protector check if the
340  /// tail call optimization failed. The MI level option was nixed
341  /// immediately since it would require platform specific pattern
342  /// matching. The SelectionDAG level option was nixed because
343  /// SelectionDAG only processes one IR level basic block at a time
344  /// implying one could not create a DAG Combine to move the callinst.
345  ///
346  /// To get around this problem a few things were realized:
347  ///
348  /// 1. While one can not handle multiple IR level basic blocks at the
349  /// SelectionDAG Level, one can generate multiple machine basic blocks
350  /// for one IR level basic block. This is how we handle bit tests and
351  /// switches.
352  ///
353  /// 2. At the MI level, tail calls are represented via a special return
354  /// MIInst called "tcreturn". Thus if we know the basic block in which we
355  /// wish to insert the stack protector check, we get the correct behavior
356  /// by always inserting the stack protector check right before the return
357  /// statement. This is a "magical transformation" since no matter where
358  /// the stack protector check intrinsic is, we always insert the stack
359  /// protector check code at the end of the BB.
360  ///
361  /// Given the aforementioned constraints, the following solution was devised:
362  ///
363  /// 1. On platforms that do not support SelectionDAG stack protector check
364  /// generation, allow for the normal IR level stack protector check
365  /// generation to continue.
366  ///
367  /// 2. On platforms that do support SelectionDAG stack protector check
368  /// generation:
369  ///
370  /// a. Use the IR level stack protector pass to decide if a stack
371  /// protector is required/which BB we insert the stack protector check
372  /// in by reusing the logic already therein. If we wish to generate a
373  /// stack protector check in a basic block, we place a special IR
374  /// intrinsic called llvm.stackprotectorcheck right before the BB's
375  /// returninst or if there is a callinst that could potentially be
376  /// sibling call optimized, before the call inst.
377  ///
378  /// b. Then when a BB with said intrinsic is processed, we codegen the BB
379  /// normally via SelectBasicBlock. In said process, when we visit the
380  /// stack protector check, we do not actually emit anything into the
381  /// BB. Instead, we just initialize the stack protector descriptor
382  /// class (which involves stashing information/creating the success
383  /// mbbb and the failure mbb if we have not created one for this
384  /// function yet) and export the guard variable that we are going to
385  /// compare.
386  ///
387  /// c. After we finish selecting the basic block, in FinishBasicBlock if
388  /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is
389  /// initialized, we first find a splice point in the parent basic block
390  /// before the terminator and then splice the terminator of said basic
391  /// block into the success basic block. Then we code-gen a new tail for
392  /// the parent basic block consisting of the two loads, the comparison,
393  /// and finally two branches to the success/failure basic blocks. We
394  /// conclude by code-gening the failure basic block if we have not
395  /// code-gened it already (all stack protector checks we generate in
396  /// the same function, use the same failure basic block).
397  class StackProtectorDescriptor {
398  public:
399  StackProtectorDescriptor() : ParentMBB(0), SuccessMBB(0), FailureMBB(0),
400  Guard(0) { }
401  ~StackProtectorDescriptor() { }
402 
403  /// Returns true if all fields of the stack protector descriptor are
404  /// initialized implying that we should/are ready to emit a stack protector.
405  bool shouldEmitStackProtector() const {
406  return ParentMBB && SuccessMBB && FailureMBB && Guard;
407  }
408 
409  /// Initialize the stack protector descriptor structure for a new basic
410  /// block.
411  void initialize(const BasicBlock *BB,
412  MachineBasicBlock *MBB,
413  const CallInst &StackProtCheckCall) {
414  // Make sure we are not initialized yet.
415  assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
416  "already initialized!");
417  ParentMBB = MBB;
418  SuccessMBB = AddSuccessorMBB(BB, MBB);
419  FailureMBB = AddSuccessorMBB(BB, MBB, FailureMBB);
420  if (!Guard)
421  Guard = StackProtCheckCall.getArgOperand(0);
422  }
423 
424  /// Reset state that changes when we handle different basic blocks.
425  ///
426  /// This currently includes:
427  ///
428  /// 1. The specific basic block we are generating a
429  /// stack protector for (ParentMBB).
430  ///
431  /// 2. The successor machine basic block that will contain the tail of
432  /// parent mbb after we create the stack protector check (SuccessMBB). This
433  /// BB is visited only on stack protector check success.
434  void resetPerBBState() {
435  ParentMBB = 0;
436  SuccessMBB = 0;
437  }
438 
439  /// Reset state that only changes when we switch functions.
440  ///
441  /// This currently includes:
442  ///
443  /// 1. FailureMBB since we reuse the failure code path for all stack
444  /// protector checks created in an individual function.
445  ///
446  /// 2.The guard variable since the guard variable we are checking against is
447  /// always the same.
448  void resetPerFunctionState() {
449  FailureMBB = 0;
450  Guard = 0;
451  }
452 
453  MachineBasicBlock *getParentMBB() { return ParentMBB; }
454  MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
455  MachineBasicBlock *getFailureMBB() { return FailureMBB; }
456  const Value *getGuard() { return Guard; }
457 
458  private:
459  /// The basic block for which we are generating the stack protector.
460  ///
461  /// As a result of stack protector generation, we will splice the
462  /// terminators of this basic block into the successor mbb SuccessMBB and
463  /// replace it with a compare/branch to the successor mbbs
464  /// SuccessMBB/FailureMBB depending on whether or not the stack protector
465  /// was violated.
466  MachineBasicBlock *ParentMBB;
467 
468  /// A basic block visited on stack protector check success that contains the
469  /// terminators of ParentMBB.
470  MachineBasicBlock *SuccessMBB;
471 
472  /// This basic block visited on stack protector check failure that will
473  /// contain a call to __stack_chk_fail().
474  MachineBasicBlock *FailureMBB;
475 
476  /// The guard variable which we will compare against the stored value in the
477  /// stack protector stack slot.
478  const Value *Guard;
479 
480  /// Add a successor machine basic block to ParentMBB. If the successor mbb
481  /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
482  /// block will be created.
483  MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
484  MachineBasicBlock *ParentMBB,
485  MachineBasicBlock *SuccMBB = 0);
486  };
487 
488 private:
489  const TargetMachine &TM;
490 public:
492  const DataLayout *TD;
495 
496  /// SwitchCases - Vector of CaseBlock structures used to communicate
497  /// SwitchInst code generation information.
498  std::vector<CaseBlock> SwitchCases;
499  /// JTCases - Vector of JumpTable structures used to communicate
500  /// SwitchInst code generation information.
501  std::vector<JumpTableBlock> JTCases;
502  /// BitTestCases - Vector of BitTestBlock structures used to communicate
503  /// SwitchInst code generation information.
504  std::vector<BitTestBlock> BitTestCases;
505  /// A StackProtectorDescriptor structure used to communicate stack protector
506  /// information in between SelectBasicBlock and FinishBasicBlock.
507  StackProtectorDescriptor SPDescriptor;
508 
509  // Emit PHI-node-operand constants only once even if used by multiple
510  // PHI nodes.
512 
513  /// FuncInfo - Information about the function as a whole.
514  ///
516 
517  /// OptLevel - What optimization level we're generating code for.
518  ///
520 
521  /// GFI - Garbage collection metadata for the function.
523 
524  /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
526 
527  /// HasTailCall - This is set to true if a call in the current
528  /// block has been translated as a tail call. In this case,
529  /// no subsequent DAG nodes should be created.
530  ///
532 
534 
537  : CurInst(NULL), SDNodeOrder(0), TM(dag.getTarget()),
538  DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
539  HasTailCall(false) {
540  }
541 
542  void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
543  const TargetLibraryInfo *li);
544 
545  /// clear - Clear out the current SelectionDAG and the associated
546  /// state and prepare this SelectionDAGBuilder object to be used
547  /// for a new block. This doesn't clear out information about
548  /// additional blocks that are needed to complete switch lowering
549  /// or PHI node updating; that information is cleared out as it is
550  /// consumed.
551  void clear();
552 
553  /// clearDanglingDebugInfo - Clear the dangling debug information
554  /// map. This function is separated from the clear so that debug
555  /// information that is dangling in a basic block can be properly
556  /// resolved in a different basic block. This allows the
557  /// SelectionDAG to resolve dangling debug information attached
558  /// to PHI nodes.
559  void clearDanglingDebugInfo();
560 
561  /// getRoot - Return the current virtual root of the Selection DAG,
562  /// flushing any PendingLoad items. This must be done before emitting
563  /// a store or any other node that may need to be ordered after any
564  /// prior load instructions.
565  ///
566  SDValue getRoot();
567 
568  /// getControlRoot - Similar to getRoot, but instead of flushing all the
569  /// PendingLoad items, flush all the PendingExports items. It is necessary
570  /// to do this before emitting a terminator instruction.
571  ///
573 
574  SDLoc getCurSDLoc() const {
575  return SDLoc(CurInst, SDNodeOrder);
576  }
577 
579  return CurInst ? CurInst->getDebugLoc() : DebugLoc();
580  }
581 
582  unsigned getSDNodeOrder() const { return SDNodeOrder; }
583 
584  void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
585 
586  void visit(const Instruction &I);
587 
588  void visit(unsigned Opcode, const User &I);
589 
590  // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
591  // generate the debug data structures now that we've seen its definition.
592  void resolveDanglingDebugInfo(const Value *V, SDValue Val);
593  SDValue getValue(const Value *V);
595  SDValue getValueImpl(const Value *V);
596 
597  void setValue(const Value *V, SDValue NewN) {
598  SDValue &N = NodeMap[V];
599  assert(N.getNode() == 0 && "Already set a value for this node!");
600  N = NewN;
601  }
602 
603  void setUnusedArgValue(const Value *V, SDValue NewN) {
604  SDValue &N = UnusedArgNodeMap[V];
605  assert(N.getNode() == 0 && "Already set a value for this node!");
606  N = NewN;
607  }
608 
609  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
611  MachineBasicBlock *SwitchBB, unsigned Opc);
613  MachineBasicBlock *FBB,
614  MachineBasicBlock *CurBB,
615  MachineBasicBlock *SwitchBB);
616  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
617  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
618  void CopyToExportRegsIfNeeded(const Value *V);
619  void ExportFromCurrentBlock(const Value *V);
620  void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
621  MachineBasicBlock *LandingPad = NULL);
622 
623  std::pair<SDValue, SDValue> LowerCallOperands(const CallInst &CI,
624  unsigned ArgIdx,
625  unsigned NumArgs,
626  SDValue Callee,
627  bool useVoidTy = false);
628 
629  /// UpdateSplitBlock - When an MBB was split during scheduling, update the
630  /// references that ned to refer to the last resulting block.
632 
633 private:
634  // Terminator instructions.
635  void visitRet(const ReturnInst &I);
636  void visitBr(const BranchInst &I);
637  void visitSwitch(const SwitchInst &I);
638  void visitIndirectBr(const IndirectBrInst &I);
639  void visitUnreachable(const UnreachableInst &I) { /* noop */ }
640 
641  // Helpers for visitSwitch
642  bool handleSmallSwitchRange(CaseRec& CR,
643  CaseRecVector& WorkList,
644  const Value* SV,
645  MachineBasicBlock* Default,
646  MachineBasicBlock *SwitchBB);
647  bool handleJTSwitchCase(CaseRec& CR,
648  CaseRecVector& WorkList,
649  const Value* SV,
650  MachineBasicBlock* Default,
651  MachineBasicBlock *SwitchBB);
652  bool handleBTSplitSwitchCase(CaseRec& CR,
653  CaseRecVector& WorkList,
654  const Value* SV,
655  MachineBasicBlock* Default,
656  MachineBasicBlock *SwitchBB);
657  bool handleBitTestsSwitchCase(CaseRec& CR,
658  CaseRecVector& WorkList,
659  const Value* SV,
660  MachineBasicBlock* Default,
661  MachineBasicBlock *SwitchBB);
662 
663  uint32_t getEdgeWeight(const MachineBasicBlock *Src,
664  const MachineBasicBlock *Dst) const;
665  void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
666  uint32_t Weight = 0);
667 public:
668  void visitSwitchCase(CaseBlock &CB,
669  MachineBasicBlock *SwitchBB);
670  void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
671  MachineBasicBlock *ParentBB);
672  void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
673  void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
674  void visitBitTestCase(BitTestBlock &BB,
675  MachineBasicBlock* NextMBB,
676  uint32_t BranchWeightToNext,
677  unsigned Reg,
678  BitTestCase &B,
679  MachineBasicBlock *SwitchBB);
680  void visitJumpTable(JumpTable &JT);
681  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
682  MachineBasicBlock *SwitchBB);
683 
684 private:
685  // These all get lowered before this pass.
686  void visitInvoke(const InvokeInst &I);
687  void visitResume(const ResumeInst &I);
688 
689  void visitBinary(const User &I, unsigned OpCode);
690  void visitShift(const User &I, unsigned Opcode);
691  void visitAdd(const User &I) { visitBinary(I, ISD::ADD); }
692  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
693  void visitSub(const User &I) { visitBinary(I, ISD::SUB); }
694  void visitFSub(const User &I);
695  void visitMul(const User &I) { visitBinary(I, ISD::MUL); }
696  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
697  void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
698  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
699  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
700  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
701  void visitSDiv(const User &I);
702  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
703  void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
704  void visitOr (const User &I) { visitBinary(I, ISD::OR); }
705  void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
706  void visitShl (const User &I) { visitShift(I, ISD::SHL); }
707  void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
708  void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
709  void visitICmp(const User &I);
710  void visitFCmp(const User &I);
711  // Visit the conversion instructions
712  void visitTrunc(const User &I);
713  void visitZExt(const User &I);
714  void visitSExt(const User &I);
715  void visitFPTrunc(const User &I);
716  void visitFPExt(const User &I);
717  void visitFPToUI(const User &I);
718  void visitFPToSI(const User &I);
719  void visitUIToFP(const User &I);
720  void visitSIToFP(const User &I);
721  void visitPtrToInt(const User &I);
722  void visitIntToPtr(const User &I);
723  void visitBitCast(const User &I);
724  void visitAddrSpaceCast(const User &I);
725 
726  void visitExtractElement(const User &I);
727  void visitInsertElement(const User &I);
728  void visitShuffleVector(const User &I);
729 
730  void visitExtractValue(const ExtractValueInst &I);
731  void visitInsertValue(const InsertValueInst &I);
732  void visitLandingPad(const LandingPadInst &I);
733 
734  void visitGetElementPtr(const User &I);
735  void visitSelect(const User &I);
736 
737  void visitAlloca(const AllocaInst &I);
738  void visitLoad(const LoadInst &I);
739  void visitStore(const StoreInst &I);
740  void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
741  void visitAtomicRMW(const AtomicRMWInst &I);
742  void visitFence(const FenceInst &I);
743  void visitPHI(const PHINode &I);
744  void visitCall(const CallInst &I);
745  bool visitMemCmpCall(const CallInst &I);
746  bool visitMemChrCall(const CallInst &I);
747  bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
748  bool visitStrCmpCall(const CallInst &I);
749  bool visitStrLenCall(const CallInst &I);
750  bool visitStrNLenCall(const CallInst &I);
751  bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
752  void visitAtomicLoad(const LoadInst &I);
753  void visitAtomicStore(const StoreInst &I);
754 
755  void visitInlineAsm(ImmutableCallSite CS);
756  const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
757  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
758 
759  void visitVAStart(const CallInst &I);
760  void visitVAArg(const VAArgInst &I);
761  void visitVAEnd(const CallInst &I);
762  void visitVACopy(const CallInst &I);
763  void visitStackmap(const CallInst &I);
764  void visitPatchpoint(const CallInst &I);
765 
766  void visitUserOp1(const Instruction &I) {
767  llvm_unreachable("UserOp1 should not exist at instruction selection time!");
768  }
769  void visitUserOp2(const Instruction &I) {
770  llvm_unreachable("UserOp2 should not exist at instruction selection time!");
771  }
772 
773  void processIntegerCallValue(const Instruction &I,
774  SDValue Value, bool IsSigned);
775 
776  void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
777 
778  /// EmitFuncArgumentDbgValue - If V is an function argument then create
779  /// corresponding DBG_VALUE machine instruction for it now. At the end of
780  /// instruction selection, they will be inserted to the entry BB.
781  bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
782  int64_t Offset, const SDValue &N);
783 };
784 
785 } // end namespace llvm
786 
787 #endif
std::vector< BitTestBlock > BitTestCases
void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall, MachineBasicBlock *LandingPad=NULL)
void ExportFromCurrentBlock(const Value *V)
const TargetLibraryInfo * LibInfo
Various leaf nodes.
Definition: ISDOpcodes.h:60
void CopyValueToVirtualRegister(const Value *V, unsigned Reg)
SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo, CodeGenOpt::Level ol)
void setValue(const Value *V, SDValue NewN)
void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH, MachineBasicBlock *SwitchBB)
F(f)
SDValue getValueImpl(const Value *V)
DebugLoc getCurDebugLoc() const
SDValue getValue(const Value *V)
getValue - Return an SDValue for the given Value.
StackProtectorDescriptor SPDescriptor
void visitSPDescriptorParent(StackProtectorDescriptor &SPD, MachineBasicBlock *ParentBB)
unsigned getSDNodeOrder() const
void visitSwitchCase(CaseBlock &CB, MachineBasicBlock *SwitchBB)
globalsmodref aa
#define llvm_unreachable(msg)
void visitJumpTable(JumpTable &JT)
visitJumpTable - Emit JumpTable node in the current MBB
std::pair< SDValue, SDValue > LowerCallOperands(const CallInst &CI, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, bool useVoidTy=false)
Lower an argument list according to the target calling convention.
#define false
Definition: ConvertUTF.c:64
This file implements a class to represent arbitrary precision integral constant values and operations...
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
SDValue getNonRegisterValue(const Value *V)
bool ShouldEmitAsBranches(const std::vector< CaseBlock > &Cases)
SDNode * getNode() const
get the SDNode which holds the desired result
#define P(N)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB)
Simple binary floating point operators.
Definition: ISDOpcodes.h:222
static void initialize(TargetLibraryInfo &TLI, const Triple &T, const char **StandardNames)
LLVM Constant Representation.
Definition: Constant.h:41
#define H(x, y, z)
Definition: MD5.cpp:53
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
void visitBitTestCase(BitTestBlock &BB, MachineBasicBlock *NextMBB, uint32_t BranchWeightToNext, unsigned Reg, BitTestCase &B, MachineBasicBlock *SwitchBB)
visitBitTestCase - this function produces one "bit test"
void CopyToExportRegsIfNeeded(const Value *V)
void visitSPDescriptorFailure(StackProtectorDescriptor &SPD)
void visit(const Instruction &I)
void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last)
GCFunctionInfo * GFI
GFI - Garbage collection metadata for the function.
Class for arbitrary precision integers.
Definition: APInt.h:75
std::vector< JumpTableBlock > JTCases
SmallVector< SDValue, 8 > PendingLoads
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:295
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:318
void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB, MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB, unsigned Opc)
FindMergedConditions - If Cond is an expression like.
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
FunctionLoweringInfo & FuncInfo
void setUnusedArgValue(const Value *V, SDValue NewN)
LLVM Value Representation.
Definition: Value.h:66
void init(GCFunctionInfo *gfi, AliasAnalysis &aa, const TargetLibraryInfo *li)
std::vector< CaseBlock > SwitchCases
DenseMap< MachineBasicBlock *, SmallVector< unsigned, 4 > > LPadToCallSiteMap
LPadToCallSiteMap - Map a landing pad to the call site indexes.
DenseMap< const Constant *, unsigned > ConstantsOut
bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB)
void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB)
void resolveDanglingDebugInfo(const Value *V, SDValue Val)