LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SystemZISelDAGToDAG.cpp
Go to the documentation of this file.
1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the SystemZ target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZTargetMachine.h"
17 #include "llvm/Support/Debug.h"
19 
20 using namespace llvm;
21 
22 namespace {
23 // Used to build addressing modes.
24 struct SystemZAddressingMode {
25  // The shape of the address.
26  enum AddrForm {
27  // base+displacement
28  FormBD,
29 
30  // base+displacement+index for load and store operands
31  FormBDXNormal,
32 
33  // base+displacement+index for load address operands
34  FormBDXLA,
35 
36  // base+displacement+index+ADJDYNALLOC
37  FormBDXDynAlloc
38  };
39  AddrForm Form;
40 
41  // The type of displacement. The enum names here correspond directly
42  // to the definitions in SystemZOperand.td. We could split them into
43  // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
44  enum DispRange {
45  Disp12Only,
46  Disp12Pair,
47  Disp20Only,
48  Disp20Only128,
49  Disp20Pair
50  };
51  DispRange DR;
52 
53  // The parts of the address. The address is equivalent to:
54  //
55  // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
56  SDValue Base;
57  int64_t Disp;
58  SDValue Index;
59  bool IncludesDynAlloc;
60 
61  SystemZAddressingMode(AddrForm form, DispRange dr)
62  : Form(form), DR(dr), Base(), Disp(0), Index(),
63  IncludesDynAlloc(false) {}
64 
65  // True if the address can have an index register.
66  bool hasIndexField() { return Form != FormBD; }
67 
68  // True if the address can (and must) include ADJDYNALLOC.
69  bool isDynAlloc() { return Form == FormBDXDynAlloc; }
70 
71  void dump() {
72  errs() << "SystemZAddressingMode " << this << '\n';
73 
74  errs() << " Base ";
75  if (Base.getNode() != 0)
76  Base.getNode()->dump();
77  else
78  errs() << "null\n";
79 
80  if (hasIndexField()) {
81  errs() << " Index ";
82  if (Index.getNode() != 0)
83  Index.getNode()->dump();
84  else
85  errs() << "null\n";
86  }
87 
88  errs() << " Disp " << Disp;
89  if (IncludesDynAlloc)
90  errs() << " + ADJDYNALLOC";
91  errs() << '\n';
92  }
93 };
94 
95 // Return a mask with Count low bits set.
96 static uint64_t allOnes(unsigned int Count) {
97  return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
98 }
99 
100 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
101 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
102 // Rotate (I5). The combined operand value is effectively:
103 //
104 // (or (rotl Input, Rotate), ~Mask)
105 //
106 // for RNSBG and:
107 //
108 // (and (rotl Input, Rotate), Mask)
109 //
110 // otherwise. The output value has BitSize bits, although Input may be
111 // narrower (in which case the upper bits are don't care).
112 struct RxSBGOperands {
113  RxSBGOperands(unsigned Op, SDValue N)
114  : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
115  Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
116  Rotate(0) {}
117 
118  unsigned Opcode;
119  unsigned BitSize;
120  uint64_t Mask;
121  SDValue Input;
122  unsigned Start;
123  unsigned End;
124  unsigned Rotate;
125 };
126 
127 class SystemZDAGToDAGISel : public SelectionDAGISel {
128  const SystemZTargetLowering &Lowering;
129  const SystemZSubtarget &Subtarget;
130 
131  // Used by SystemZOperands.td to create integer constants.
132  inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
133  return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
134  }
135 
136  const SystemZTargetMachine &getTargetMachine() const {
137  return static_cast<const SystemZTargetMachine &>(TM);
138  }
139 
140  const SystemZInstrInfo *getInstrInfo() const {
141  return getTargetMachine().getInstrInfo();
142  }
143 
144  // Try to fold more of the base or index of AM into AM, where IsBase
145  // selects between the base and index.
146  bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
147 
148  // Try to describe N in AM, returning true on success.
149  bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
150 
151  // Extract individual target operands from matched address AM.
152  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
153  SDValue &Base, SDValue &Disp) const;
154  void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
155  SDValue &Base, SDValue &Disp, SDValue &Index) const;
156 
157  // Try to match Addr as a FormBD address with displacement type DR.
158  // Return true on success, storing the base and displacement in
159  // Base and Disp respectively.
160  bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
161  SDValue &Base, SDValue &Disp) const;
162 
163  // Try to match Addr as a FormBDX address with displacement type DR.
164  // Return true on success and if the result had no index. Store the
165  // base and displacement in Base and Disp respectively.
166  bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167  SDValue &Base, SDValue &Disp) const;
168 
169  // Try to match Addr as a FormBDX* address of form Form with
170  // displacement type DR. Return true on success, storing the base,
171  // displacement and index in Base, Disp and Index respectively.
172  bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
173  SystemZAddressingMode::DispRange DR, SDValue Addr,
174  SDValue &Base, SDValue &Disp, SDValue &Index) const;
175 
176  // PC-relative address matching routines used by SystemZOperands.td.
177  bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
178  if (SystemZISD::isPCREL(Addr.getOpcode())) {
179  Target = Addr.getOperand(0);
180  return true;
181  }
182  return false;
183  }
184 
185  // BD matching routines used by SystemZOperands.td.
186  bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
187  return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
188  }
189  bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
190  return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
191  }
192  bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193  return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
194  }
195  bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196  return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
197  }
198 
199  // MVI matching routines used by SystemZOperands.td.
200  bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
201  return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
202  }
203  bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
204  return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
205  }
206 
207  // BDX matching routines used by SystemZOperands.td.
208  bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
209  SDValue &Index) const {
210  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
211  SystemZAddressingMode::Disp12Only,
212  Addr, Base, Disp, Index);
213  }
214  bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
215  SDValue &Index) const {
216  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217  SystemZAddressingMode::Disp12Pair,
218  Addr, Base, Disp, Index);
219  }
220  bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
221  SDValue &Index) const {
222  return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
223  SystemZAddressingMode::Disp12Only,
224  Addr, Base, Disp, Index);
225  }
226  bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227  SDValue &Index) const {
228  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
229  SystemZAddressingMode::Disp20Only,
230  Addr, Base, Disp, Index);
231  }
232  bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
233  SDValue &Index) const {
234  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235  SystemZAddressingMode::Disp20Only128,
236  Addr, Base, Disp, Index);
237  }
238  bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
239  SDValue &Index) const {
240  return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241  SystemZAddressingMode::Disp20Pair,
242  Addr, Base, Disp, Index);
243  }
244  bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245  SDValue &Index) const {
246  return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
247  SystemZAddressingMode::Disp12Pair,
248  Addr, Base, Disp, Index);
249  }
250  bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251  SDValue &Index) const {
252  return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253  SystemZAddressingMode::Disp20Pair,
254  Addr, Base, Disp, Index);
255  }
256 
257  // Check whether (or Op (and X InsertMask)) is effectively an insertion
258  // of X into bits InsertMask of some Y != Op. Return true if so and
259  // set Op to that Y.
260  bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
261 
262  // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
263  // Return true on success.
264  bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
265 
266  // Try to fold some of RxSBG.Input into other fields of RxSBG.
267  // Return true on success.
268  bool expandRxSBG(RxSBGOperands &RxSBG) const;
269 
270  // Return an undefined value of type VT.
271  SDValue getUNDEF(SDLoc DL, EVT VT) const;
272 
273  // Convert N to VT, if it isn't already.
274  SDValue convertTo(SDLoc DL, EVT VT, SDValue N) const;
275 
276  // Try to implement AND or shift node N using RISBG with the zero flag set.
277  // Return the selected node on success, otherwise return null.
278  SDNode *tryRISBGZero(SDNode *N);
279 
280  // Try to use RISBG or Opcode to implement OR or XOR node N.
281  // Return the selected node on success, otherwise return null.
282  SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
283 
284  // If Op0 is null, then Node is a constant that can be loaded using:
285  //
286  // (Opcode UpperVal LowerVal)
287  //
288  // If Op0 is nonnull, then Node can be implemented using:
289  //
290  // (Opcode (Opcode Op0 UpperVal) LowerVal)
291  SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
292  uint64_t UpperVal, uint64_t LowerVal);
293 
294  // Return true if Load and Store are loads and stores of the same size
295  // and are guaranteed not to overlap. Such operations can be implemented
296  // using block (SS-format) instructions.
297  //
298  // Partial overlap would lead to incorrect code, since the block operations
299  // are logically bytewise, even though they have a fast path for the
300  // non-overlapping case. We also need to avoid full overlap (i.e. two
301  // addresses that might be equal at run time) because although that case
302  // would be handled correctly, it might be implemented by millicode.
303  bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
304 
305  // N is a (store (load Y), X) pattern. Return true if it can use an MVC
306  // from Y to X.
307  bool storeLoadCanUseMVC(SDNode *N) const;
308 
309  // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
310  // if A[1 - I] == X and if N can use a block operation like NC from A[I]
311  // to X.
312  bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
313 
314 public:
315  SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
316  : SelectionDAGISel(TM, OptLevel),
317  Lowering(*TM.getTargetLowering()),
318  Subtarget(*TM.getSubtargetImpl()) { }
319 
320  // Override MachineFunctionPass.
321  virtual const char *getPassName() const LLVM_OVERRIDE {
322  return "SystemZ DAG->DAG Pattern Instruction Selection";
323  }
324 
325  // Override SelectionDAGISel.
326  virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
327  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
328  char ConstraintCode,
329  std::vector<SDValue> &OutOps)
331 
332  // Include the pieces autogenerated from the target description.
333  #include "SystemZGenDAGISel.inc"
334 };
335 } // end anonymous namespace
336 
338  CodeGenOpt::Level OptLevel) {
339  return new SystemZDAGToDAGISel(TM, OptLevel);
340 }
341 
342 // Return true if Val should be selected as a displacement for an address
343 // with range DR. Here we're interested in the range of both the instruction
344 // described by DR and of any pairing instruction.
345 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
346  switch (DR) {
347  case SystemZAddressingMode::Disp12Only:
348  return isUInt<12>(Val);
349 
350  case SystemZAddressingMode::Disp12Pair:
351  case SystemZAddressingMode::Disp20Only:
352  case SystemZAddressingMode::Disp20Pair:
353  return isInt<20>(Val);
354 
355  case SystemZAddressingMode::Disp20Only128:
356  return isInt<20>(Val) && isInt<20>(Val + 8);
357  }
358  llvm_unreachable("Unhandled displacement range");
359 }
360 
361 // Change the base or index in AM to Value, where IsBase selects
362 // between the base and index.
363 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
364  SDValue Value) {
365  if (IsBase)
366  AM.Base = Value;
367  else
368  AM.Index = Value;
369 }
370 
371 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
372 // where IsBase selects between the base and index. Try to fold the
373 // ADJDYNALLOC into AM.
374 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
375  SDValue Value) {
376  if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
377  changeComponent(AM, IsBase, Value);
378  AM.IncludesDynAlloc = true;
379  return true;
380  }
381  return false;
382 }
383 
384 // The base of AM is equivalent to Base + Index. Try to use Index as
385 // the index register.
386 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
387  SDValue Index) {
388  if (AM.hasIndexField() && !AM.Index.getNode()) {
389  AM.Base = Base;
390  AM.Index = Index;
391  return true;
392  }
393  return false;
394 }
395 
396 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
397 // between the base and index. Try to fold Op1 into AM's displacement.
398 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
399  SDValue Op0, uint64_t Op1) {
400  // First try adjusting the displacement.
401  int64_t TestDisp = AM.Disp + Op1;
402  if (selectDisp(AM.DR, TestDisp)) {
403  changeComponent(AM, IsBase, Op0);
404  AM.Disp = TestDisp;
405  return true;
406  }
407 
408  // We could consider forcing the displacement into a register and
409  // using it as an index, but it would need to be carefully tuned.
410  return false;
411 }
412 
413 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
414  bool IsBase) const {
415  SDValue N = IsBase ? AM.Base : AM.Index;
416  unsigned Opcode = N.getOpcode();
417  if (Opcode == ISD::TRUNCATE) {
418  N = N.getOperand(0);
419  Opcode = N.getOpcode();
420  }
421  if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
422  SDValue Op0 = N.getOperand(0);
423  SDValue Op1 = N.getOperand(1);
424 
425  unsigned Op0Code = Op0->getOpcode();
426  unsigned Op1Code = Op1->getOpcode();
427 
428  if (Op0Code == SystemZISD::ADJDYNALLOC)
429  return expandAdjDynAlloc(AM, IsBase, Op1);
430  if (Op1Code == SystemZISD::ADJDYNALLOC)
431  return expandAdjDynAlloc(AM, IsBase, Op0);
432 
433  if (Op0Code == ISD::Constant)
434  return expandDisp(AM, IsBase, Op1,
435  cast<ConstantSDNode>(Op0)->getSExtValue());
436  if (Op1Code == ISD::Constant)
437  return expandDisp(AM, IsBase, Op0,
438  cast<ConstantSDNode>(Op1)->getSExtValue());
439 
440  if (IsBase && expandIndex(AM, Op0, Op1))
441  return true;
442  }
443  if (Opcode == SystemZISD::PCREL_OFFSET) {
444  SDValue Full = N.getOperand(0);
445  SDValue Base = N.getOperand(1);
446  SDValue Anchor = Base.getOperand(0);
447  uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
448  cast<GlobalAddressSDNode>(Anchor)->getOffset());
449  return expandDisp(AM, IsBase, Base, Offset);
450  }
451  return false;
452 }
453 
454 // Return true if an instruction with displacement range DR should be
455 // used for displacement value Val. selectDisp(DR, Val) must already hold.
456 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
457  assert(selectDisp(DR, Val) && "Invalid displacement");
458  switch (DR) {
459  case SystemZAddressingMode::Disp12Only:
460  case SystemZAddressingMode::Disp20Only:
461  case SystemZAddressingMode::Disp20Only128:
462  return true;
463 
464  case SystemZAddressingMode::Disp12Pair:
465  // Use the other instruction if the displacement is too large.
466  return isUInt<12>(Val);
467 
468  case SystemZAddressingMode::Disp20Pair:
469  // Use the other instruction if the displacement is small enough.
470  return !isUInt<12>(Val);
471  }
472  llvm_unreachable("Unhandled displacement range");
473 }
474 
475 // Return true if Base + Disp + Index should be performed by LA(Y).
476 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
477  // Don't use LA(Y) for constants.
478  if (!Base)
479  return false;
480 
481  // Always use LA(Y) for frame addresses, since we know that the destination
482  // register is almost always (perhaps always) going to be different from
483  // the frame register.
484  if (Base->getOpcode() == ISD::FrameIndex)
485  return true;
486 
487  if (Disp) {
488  // Always use LA(Y) if there is a base, displacement and index.
489  if (Index)
490  return true;
491 
492  // Always use LA if the displacement is small enough. It should always
493  // be no worse than AGHI (and better if it avoids a move).
494  if (isUInt<12>(Disp))
495  return true;
496 
497  // For similar reasons, always use LAY if the constant is too big for AGHI.
498  // LAY should be no worse than AGFI.
499  if (!isInt<16>(Disp))
500  return true;
501  } else {
502  // Don't use LA for plain registers.
503  if (!Index)
504  return false;
505 
506  // Don't use LA for plain addition if the index operand is only used
507  // once. It should be a natural two-operand addition in that case.
508  if (Index->hasOneUse())
509  return false;
510 
511  // Prefer addition if the second operation is sign-extended, in the
512  // hope of using AGF.
513  unsigned IndexOpcode = Index->getOpcode();
514  if (IndexOpcode == ISD::SIGN_EXTEND ||
515  IndexOpcode == ISD::SIGN_EXTEND_INREG)
516  return false;
517  }
518 
519  // Don't use LA for two-operand addition if either operand is only
520  // used once. The addition instructions are better in that case.
521  if (Base->hasOneUse())
522  return false;
523 
524  return true;
525 }
526 
527 // Return true if Addr is suitable for AM, updating AM if so.
528 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
529  SystemZAddressingMode &AM) const {
530  // Start out assuming that the address will need to be loaded separately,
531  // then try to extend it as much as we can.
532  AM.Base = Addr;
533 
534  // First try treating the address as a constant.
535  if (Addr.getOpcode() == ISD::Constant &&
536  expandDisp(AM, true, SDValue(),
537  cast<ConstantSDNode>(Addr)->getSExtValue()))
538  ;
539  else
540  // Otherwise try expanding each component.
541  while (expandAddress(AM, true) ||
542  (AM.Index.getNode() && expandAddress(AM, false)))
543  continue;
544 
545  // Reject cases where it isn't profitable to use LA(Y).
546  if (AM.Form == SystemZAddressingMode::FormBDXLA &&
547  !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
548  return false;
549 
550  // Reject cases where the other instruction in a pair should be used.
551  if (!isValidDisp(AM.DR, AM.Disp))
552  return false;
553 
554  // Make sure that ADJDYNALLOC is included where necessary.
555  if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
556  return false;
557 
558  DEBUG(AM.dump());
559  return true;
560 }
561 
562 // Insert a node into the DAG at least before Pos. This will reposition
563 // the node as needed, and will assign it a node ID that is <= Pos's ID.
564 // Note that this does *not* preserve the uniqueness of node IDs!
565 // The selection DAG must no longer depend on their uniqueness when this
566 // function is used.
567 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
568  if (N.getNode()->getNodeId() == -1 ||
569  N.getNode()->getNodeId() > Pos->getNodeId()) {
570  DAG->RepositionNode(Pos, N.getNode());
571  N.getNode()->setNodeId(Pos->getNodeId());
572  }
573 }
574 
575 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
576  EVT VT, SDValue &Base,
577  SDValue &Disp) const {
578  Base = AM.Base;
579  if (!Base.getNode())
580  // Register 0 means "no base". This is mostly useful for shifts.
581  Base = CurDAG->getRegister(0, VT);
582  else if (Base.getOpcode() == ISD::FrameIndex) {
583  // Lower a FrameIndex to a TargetFrameIndex.
584  int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
585  Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
586  } else if (Base.getValueType() != VT) {
587  // Truncate values from i64 to i32, for shifts.
588  assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
589  "Unexpected truncation");
590  SDLoc DL(Base);
591  SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
592  insertDAGNode(CurDAG, Base.getNode(), Trunc);
593  Base = Trunc;
594  }
595 
596  // Lower the displacement to a TargetConstant.
597  Disp = CurDAG->getTargetConstant(AM.Disp, VT);
598 }
599 
600 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
601  EVT VT, SDValue &Base,
602  SDValue &Disp,
603  SDValue &Index) const {
604  getAddressOperands(AM, VT, Base, Disp);
605 
606  Index = AM.Index;
607  if (!Index.getNode())
608  // Register 0 means "no index".
609  Index = CurDAG->getRegister(0, VT);
610 }
611 
612 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
613  SDValue Addr, SDValue &Base,
614  SDValue &Disp) const {
615  SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
616  if (!selectAddress(Addr, AM))
617  return false;
618 
619  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
620  return true;
621 }
622 
623 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
624  SDValue Addr, SDValue &Base,
625  SDValue &Disp) const {
626  SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
627  if (!selectAddress(Addr, AM) || AM.Index.getNode())
628  return false;
629 
630  getAddressOperands(AM, Addr.getValueType(), Base, Disp);
631  return true;
632 }
633 
634 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
635  SystemZAddressingMode::DispRange DR,
636  SDValue Addr, SDValue &Base,
637  SDValue &Disp, SDValue &Index) const {
638  SystemZAddressingMode AM(Form, DR);
639  if (!selectAddress(Addr, AM))
640  return false;
641 
642  getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
643  return true;
644 }
645 
646 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
647  uint64_t InsertMask) const {
648  // We're only interested in cases where the insertion is into some operand
649  // of Op, rather than into Op itself. The only useful case is an AND.
650  if (Op.getOpcode() != ISD::AND)
651  return false;
652 
653  // We need a constant mask.
654  ConstantSDNode *MaskNode =
656  if (!MaskNode)
657  return false;
658 
659  // It's not an insertion of Op.getOperand(0) if the two masks overlap.
660  uint64_t AndMask = MaskNode->getZExtValue();
661  if (InsertMask & AndMask)
662  return false;
663 
664  // It's only an insertion if all bits are covered or are known to be zero.
665  // The inner check covers all cases but is more expensive.
666  uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
667  if (Used != (AndMask | InsertMask)) {
668  APInt KnownZero, KnownOne;
669  CurDAG->ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne);
670  if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
671  return false;
672  }
673 
674  Op = Op.getOperand(0);
675  return true;
676 }
677 
678 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
679  uint64_t Mask) const {
680  const SystemZInstrInfo *TII = getInstrInfo();
681  if (RxSBG.Rotate != 0)
682  Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
683  Mask &= RxSBG.Mask;
684  if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
685  RxSBG.Mask = Mask;
686  return true;
687  }
688  return false;
689 }
690 
691 // Return true if any bits of (RxSBG.Input & Mask) are significant.
692 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
693  // Rotate the mask in the same way as RxSBG.Input is rotated.
694  if (RxSBG.Rotate != 0)
695  Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
696  return (Mask & RxSBG.Mask) != 0;
697 }
698 
699 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
700  SDValue N = RxSBG.Input;
701  unsigned Opcode = N.getOpcode();
702  switch (Opcode) {
703  case ISD::AND: {
704  if (RxSBG.Opcode == SystemZ::RNSBG)
705  return false;
706 
707  ConstantSDNode *MaskNode =
709  if (!MaskNode)
710  return false;
711 
712  SDValue Input = N.getOperand(0);
713  uint64_t Mask = MaskNode->getZExtValue();
714  if (!refineRxSBGMask(RxSBG, Mask)) {
715  // If some bits of Input are already known zeros, those bits will have
716  // been removed from the mask. See if adding them back in makes the
717  // mask suitable.
718  APInt KnownZero, KnownOne;
719  CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
720  Mask |= KnownZero.getZExtValue();
721  if (!refineRxSBGMask(RxSBG, Mask))
722  return false;
723  }
724  RxSBG.Input = Input;
725  return true;
726  }
727 
728  case ISD::OR: {
729  if (RxSBG.Opcode != SystemZ::RNSBG)
730  return false;
731 
732  ConstantSDNode *MaskNode =
734  if (!MaskNode)
735  return false;
736 
737  SDValue Input = N.getOperand(0);
738  uint64_t Mask = ~MaskNode->getZExtValue();
739  if (!refineRxSBGMask(RxSBG, Mask)) {
740  // If some bits of Input are already known ones, those bits will have
741  // been removed from the mask. See if adding them back in makes the
742  // mask suitable.
743  APInt KnownZero, KnownOne;
744  CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
745  Mask &= ~KnownOne.getZExtValue();
746  if (!refineRxSBGMask(RxSBG, Mask))
747  return false;
748  }
749  RxSBG.Input = Input;
750  return true;
751  }
752 
753  case ISD::ROTL: {
754  // Any 64-bit rotate left can be merged into the RxSBG.
755  if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
756  return false;
757  ConstantSDNode *CountNode
759  if (!CountNode)
760  return false;
761 
762  RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
763  RxSBG.Input = N.getOperand(0);
764  return true;
765  }
766 
767  case ISD::SIGN_EXTEND:
768  case ISD::ZERO_EXTEND:
769  case ISD::ANY_EXTEND: {
770  // Check that the extension bits are don't-care (i.e. are masked out
771  // by the final mask).
772  unsigned InnerBitSize = N.getOperand(0).getValueType().getSizeInBits();
773  if (maskMatters(RxSBG, allOnes(RxSBG.BitSize) - allOnes(InnerBitSize)))
774  return false;
775 
776  RxSBG.Input = N.getOperand(0);
777  return true;
778  }
779 
780  case ISD::SHL: {
781  ConstantSDNode *CountNode =
783  if (!CountNode)
784  return false;
785 
786  uint64_t Count = CountNode->getZExtValue();
787  unsigned BitSize = N.getValueType().getSizeInBits();
788  if (Count < 1 || Count >= BitSize)
789  return false;
790 
791  if (RxSBG.Opcode == SystemZ::RNSBG) {
792  // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
793  // count bits from RxSBG.Input are ignored.
794  if (maskMatters(RxSBG, allOnes(Count)))
795  return false;
796  } else {
797  // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
798  if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
799  return false;
800  }
801 
802  RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
803  RxSBG.Input = N.getOperand(0);
804  return true;
805  }
806 
807  case ISD::SRL:
808  case ISD::SRA: {
809  ConstantSDNode *CountNode =
811  if (!CountNode)
812  return false;
813 
814  uint64_t Count = CountNode->getZExtValue();
815  unsigned BitSize = N.getValueType().getSizeInBits();
816  if (Count < 1 || Count >= BitSize)
817  return false;
818 
819  if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
820  // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
821  // count bits from RxSBG.Input are ignored.
822  if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
823  return false;
824  } else {
825  // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
826  // which is similar to SLL above.
827  if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
828  return false;
829  }
830 
831  RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
832  RxSBG.Input = N.getOperand(0);
833  return true;
834  }
835  default:
836  return false;
837  }
838 }
839 
840 SDValue SystemZDAGToDAGISel::getUNDEF(SDLoc DL, EVT VT) const {
841  SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
842  return SDValue(N, 0);
843 }
844 
845 SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) const {
846  if (N.getValueType() == MVT::i32 && VT == MVT::i64)
847  return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
848  DL, VT, getUNDEF(DL, MVT::i64), N);
849  if (N.getValueType() == MVT::i64 && VT == MVT::i32)
850  return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
851  assert(N.getValueType() == VT && "Unexpected value types");
852  return N;
853 }
854 
855 SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
856  EVT VT = N->getValueType(0);
857  RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
858  unsigned Count = 0;
859  while (expandRxSBG(RISBG))
860  if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND)
861  Count += 1;
862  if (Count == 0)
863  return 0;
864  if (Count == 1) {
865  // Prefer to use normal shift instructions over RISBG, since they can handle
866  // all cases and are sometimes shorter.
867  if (N->getOpcode() != ISD::AND)
868  return 0;
869 
870  // Prefer register extensions like LLC over RISBG. Also prefer to start
871  // out with normal ANDs if one instruction would be enough. We can convert
872  // these ANDs into an RISBG later if a three-address instruction is useful.
873  if (VT == MVT::i32 ||
874  RISBG.Mask == 0xff ||
875  RISBG.Mask == 0xffff ||
876  SystemZ::isImmLF(~RISBG.Mask) ||
877  SystemZ::isImmHF(~RISBG.Mask)) {
878  // Force the new mask into the DAG, since it may include known-one bits.
879  ConstantSDNode *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
880  if (MaskN->getZExtValue() != RISBG.Mask) {
881  SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
882  N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
883  return SelectCode(N);
884  }
885  return 0;
886  }
887  }
888 
889  unsigned Opcode = SystemZ::RISBG;
890  EVT OpcodeVT = MVT::i64;
891  if (VT == MVT::i32 && Subtarget.hasHighWord()) {
892  Opcode = SystemZ::RISBMux;
893  OpcodeVT = MVT::i32;
894  RISBG.Start &= 31;
895  RISBG.End &= 31;
896  }
897  SDValue Ops[5] = {
898  getUNDEF(SDLoc(N), OpcodeVT),
899  convertTo(SDLoc(N), OpcodeVT, RISBG.Input),
900  CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
901  CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
902  CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
903  };
904  N = CurDAG->getMachineNode(Opcode, SDLoc(N), OpcodeVT, Ops);
905  return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
906 }
907 
908 SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
909  // Try treating each operand of N as the second operand of the RxSBG
910  // and see which goes deepest.
911  RxSBGOperands RxSBG[] = {
912  RxSBGOperands(Opcode, N->getOperand(0)),
913  RxSBGOperands(Opcode, N->getOperand(1))
914  };
915  unsigned Count[] = { 0, 0 };
916  for (unsigned I = 0; I < 2; ++I)
917  while (expandRxSBG(RxSBG[I]))
918  if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND)
919  Count[I] += 1;
920 
921  // Do nothing if neither operand is suitable.
922  if (Count[0] == 0 && Count[1] == 0)
923  return 0;
924 
925  // Pick the deepest second operand.
926  unsigned I = Count[0] > Count[1] ? 0 : 1;
927  SDValue Op0 = N->getOperand(I ^ 1);
928 
929  // Prefer IC for character insertions from memory.
930  if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
931  if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
932  if (Load->getMemoryVT() == MVT::i8)
933  return 0;
934 
935  // See whether we can avoid an AND in the first operand by converting
936  // ROSBG to RISBG.
937  if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
938  Opcode = SystemZ::RISBG;
939 
940  EVT VT = N->getValueType(0);
941  SDValue Ops[5] = {
942  convertTo(SDLoc(N), MVT::i64, Op0),
943  convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
944  CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
945  CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
946  CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
947  };
948  N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
949  return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
950 }
951 
952 SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
953  SDValue Op0, uint64_t UpperVal,
954  uint64_t LowerVal) {
955  EVT VT = Node->getValueType(0);
956  SDLoc DL(Node);
957  SDValue Upper = CurDAG->getConstant(UpperVal, VT);
958  if (Op0.getNode())
959  Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
960  Upper = SDValue(Select(Upper.getNode()), 0);
961 
962  SDValue Lower = CurDAG->getConstant(LowerVal, VT);
963  SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
964  return Or.getNode();
965 }
966 
967 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
968  LoadSDNode *Load) const {
969  // Check that the two memory operands have the same size.
970  if (Load->getMemoryVT() != Store->getMemoryVT())
971  return false;
972 
973  // Volatility stops an access from being decomposed.
974  if (Load->isVolatile() || Store->isVolatile())
975  return false;
976 
977  // There's no chance of overlap if the load is invariant.
978  if (Load->isInvariant())
979  return true;
980 
981  // Otherwise we need to check whether there's an alias.
982  const Value *V1 = Load->getSrcValue();
983  const Value *V2 = Store->getSrcValue();
984  if (!V1 || !V2)
985  return false;
986 
987  // Reject equality.
988  uint64_t Size = Load->getMemoryVT().getStoreSize();
989  int64_t End1 = Load->getSrcValueOffset() + Size;
990  int64_t End2 = Store->getSrcValueOffset() + Size;
991  if (V1 == V2 && End1 == End2)
992  return false;
993 
994  return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
995  AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
996 }
997 
998 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
999  StoreSDNode *Store = cast<StoreSDNode>(N);
1000  LoadSDNode *Load = cast<LoadSDNode>(Store->getValue());
1001 
1002  // Prefer not to use MVC if either address can use ... RELATIVE LONG
1003  // instructions.
1004  uint64_t Size = Load->getMemoryVT().getStoreSize();
1005  if (Size > 1 && Size <= 8) {
1006  // Prefer LHRL, LRL and LGRL.
1007  if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1008  return false;
1009  // Prefer STHRL, STRL and STGRL.
1010  if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1011  return false;
1012  }
1013 
1014  return canUseBlockOperation(Store, Load);
1015 }
1016 
1017 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1018  unsigned I) const {
1019  StoreSDNode *StoreA = cast<StoreSDNode>(N);
1020  LoadSDNode *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1021  LoadSDNode *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1022  return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1023 }
1024 
1026  // Dump information about the Node being selected
1027  DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
1028 
1029  // If we have a custom node, we already have selected!
1030  if (Node->isMachineOpcode()) {
1031  DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1032  Node->setNodeId(-1);
1033  return 0;
1034  }
1035 
1036  unsigned Opcode = Node->getOpcode();
1037  SDNode *ResNode = 0;
1038  switch (Opcode) {
1039  case ISD::OR:
1040  if (Node->getOperand(1).getOpcode() != ISD::Constant)
1041  ResNode = tryRxSBG(Node, SystemZ::ROSBG);
1042  goto or_xor;
1043 
1044  case ISD::XOR:
1045  if (Node->getOperand(1).getOpcode() != ISD::Constant)
1046  ResNode = tryRxSBG(Node, SystemZ::RXSBG);
1047  // Fall through.
1048  or_xor:
1049  // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1050  // split the operation into two.
1051  if (!ResNode && Node->getValueType(0) == MVT::i64)
1052  if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1053  uint64_t Val = Op1->getZExtValue();
1054  if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
1055  Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1056  Val - uint32_t(Val), uint32_t(Val));
1057  }
1058  break;
1059 
1060  case ISD::AND:
1061  if (Node->getOperand(1).getOpcode() != ISD::Constant)
1062  ResNode = tryRxSBG(Node, SystemZ::RNSBG);
1063  // Fall through.
1064  case ISD::ROTL:
1065  case ISD::SHL:
1066  case ISD::SRL:
1067  if (!ResNode)
1068  ResNode = tryRISBGZero(Node);
1069  break;
1070 
1071  case ISD::Constant:
1072  // If this is a 64-bit constant that is out of the range of LLILF,
1073  // LLIHF and LGFI, split it into two 32-bit pieces.
1074  if (Node->getValueType(0) == MVT::i64) {
1075  uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1076  if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
1077  Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
1078  Val - uint32_t(Val), uint32_t(Val));
1079  }
1080  break;
1081 
1082  case ISD::ATOMIC_LOAD_SUB:
1083  // Try to convert subtractions of constants to additions.
1084  if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
1085  uint64_t Value = -Op2->getZExtValue();
1086  EVT VT = Node->getValueType(0);
1087  if (VT == MVT::i32 || isInt<32>(Value)) {
1088  SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
1089  CurDAG->getConstant(int32_t(Value), VT) };
1090  Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
1091  Node->getVTList(), Ops, array_lengthof(Ops));
1092  }
1093  }
1094  break;
1095 
1097  SDValue Op0 = Node->getOperand(0);
1098  SDValue Op1 = Node->getOperand(1);
1099  // Prefer to put any load first, so that it can be matched as a
1100  // conditional load.
1101  if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1102  SDValue CCValid = Node->getOperand(2);
1103  SDValue CCMask = Node->getOperand(3);
1104  uint64_t ConstCCValid =
1105  cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1106  uint64_t ConstCCMask =
1107  cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1108  // Invert the condition.
1109  CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
1110  CCMask.getValueType());
1111  SDValue Op4 = Node->getOperand(4);
1112  Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1113  }
1114  break;
1115  }
1116  }
1117 
1118  // Select the default instruction
1119  if (!ResNode)
1120  ResNode = SelectCode(Node);
1121 
1122  DEBUG(errs() << "=> ";
1123  if (ResNode == NULL || ResNode == Node)
1124  Node->dump(CurDAG);
1125  else
1126  ResNode->dump(CurDAG);
1127  errs() << "\n";
1128  );
1129  return ResNode;
1130 }
1131 
1132 bool SystemZDAGToDAGISel::
1133 SelectInlineAsmMemoryOperand(const SDValue &Op,
1134  char ConstraintCode,
1135  std::vector<SDValue> &OutOps) {
1136  assert(ConstraintCode == 'm' && "Unexpected constraint code");
1137  // Accept addresses with short displacements, which are compatible
1138  // with Q, R, S and T. But keep the index operand for future expansion.
1139  SDValue Base, Disp, Index;
1140  if (!selectBDXAddr(SystemZAddressingMode::FormBD,
1141  SystemZAddressingMode::Disp12Only,
1142  Op, Base, Disp, Index))
1143  return true;
1144  OutOps.push_back(Base);
1145  OutOps.push_back(Disp);
1146  OutOps.push_back(Index);
1147  return false;
1148 }
bool isInt< 32 >(int64_t x)
Definition: MathExtras.h:276
static bool isImmHF(uint64_t Val)
Definition: SystemZ.h:104
raw_ostream & errs()
static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N)
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
void dump() const
dump - Dump this node, for debugging.
bool hasOneUse() const
SDVTList getVTList() const
static bool isImmLF(uint64_t Val)
Definition: SystemZ.h:99
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask)
unsigned getOpcode() const
const SDValue & getOperand(unsigned Num) const
void setNodeId(int Id)
setNodeId - Set unique node id.
int64_t getSrcValueOffset() const
static uint64_t allOnes(unsigned int Count)
const HexagonInstrInfo * TII
#define llvm_unreachable(msg)
EVT getValueType(unsigned ResNo) const
FunctionPass * createSystemZISelDag(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
#define false
Definition: ConvertUTF.c:64
size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:250
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase, SDValue Value)
const SDValue & getBasePtr() const
EVT getMemoryVT() const
getMemoryVT - Return the type of the in-memory value.
static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index)
SDNode * getNode() const
get the SDNode which holds the desired result
unsigned getStoreSize() const
Definition: ValueTypes.h:787
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
const SDValue & getOperand(unsigned i) const
static bool expandDisp(SystemZAddressingMode &AM, bool IsBase, SDValue Op0, uint64_t Op1)
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
void RepositionNode(allnodes_iterator Position, SDNode *N)
Definition: SelectionDAG.h:982
static void changeComponent(SystemZAddressingMode &AM, bool IsBase, SDValue Value)
unsigned getOpcode() const
bool isPCREL(unsigned Opcode)
bool isVolatile() const
const SDValue & getValue() const
Location - A description of a memory location.
bool isRxSBGMask(uint64_t Mask, unsigned BitSize, unsigned &Start, unsigned &End) const
bool isInvariant() const
const MDNode * getTBAAInfo() const
Returns the TBAAInfo that describes the dereference.
Class for arbitrary precision integers.
Definition: APInt.h:75
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:357
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:360
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:295
IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
Definition: TargetOpcodes.h:52
unsigned getSizeInBits() const
getSizeInBits - Return the size of the specified value type in bits.
Definition: ValueTypes.h:779
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
const Value * getSrcValue() const
Returns the SrcValue and offset that describes the location of the access.
bool isInt< 16 >(int64_t x)
Definition: MathExtras.h:272
int getNodeId() const
EVT getValueType() const
static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val)
static bool expandIndex(SystemZAddressingMode &AM, SDValue Base, SDValue Index)
LLVM Value Representation.
Definition: Value.h:66
static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val)
#define DEBUG(X)
Definition: Debug.h:97
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:363
bool isMachineOpcode() const
#define LLVM_OVERRIDE
Definition: Compiler.h:155
uint64_t getZExtValue() const