LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SystemZLongBranch.cpp
Go to the documentation of this file.
1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass makes sure that all branches are in range. There are several ways
11 // in which this could be done. One aggressive approach is to assume that all
12 // branches are in range and successively replace those that turn out not
13 // to be in range with a longer form (branch relaxation). A simple
14 // implementation is to continually walk through the function relaxing
15 // branches until no more changes are needed and a fixed point is reached.
16 // However, in the pathological worst case, this implementation is
17 // quadratic in the number of blocks; relaxing branch N can make branch N-1
18 // go out of range, which in turn can make branch N-2 go out of range,
19 // and so on.
20 //
21 // An alternative approach is to assume that all branches must be
22 // converted to their long forms, then reinstate the short forms of
23 // branches that, even under this pessimistic assumption, turn out to be
24 // in range (branch shortening). This too can be implemented as a function
25 // walk that is repeated until a fixed point is reached. In general,
26 // the result of shortening is not as good as that of relaxation, and
27 // shortening is also quadratic in the worst case; shortening branch N
28 // can bring branch N-1 in range of the short form, which in turn can do
29 // the same for branch N-2, and so on. The main advantage of shortening
30 // is that each walk through the function produces valid code, so it is
31 // possible to stop at any point after the first walk. The quadraticness
32 // could therefore be handled with a maximum pass count, although the
33 // question then becomes: what maximum count should be used?
34 //
35 // On SystemZ, long branches are only needed for functions bigger than 64k,
36 // which are relatively rare to begin with, and the long branch sequences
37 // are actually relatively cheap. It therefore doesn't seem worth spending
38 // much compilation time on the problem. Instead, the approach we take is:
39 //
40 // (1) Work out the address that each block would have if no branches
41 // need relaxing. Exit the pass early if all branches are in range
42 // according to this assumption.
43 //
44 // (2) Work out the address that each block would have if all branches
45 // need relaxing.
46 //
47 // (3) Walk through the block calculating the final address of each instruction
48 // and relaxing those that need to be relaxed. For backward branches,
49 // this check uses the final address of the target block, as calculated
50 // earlier in the walk. For forward branches, this check uses the
51 // address of the target block that was calculated in (2). Both checks
52 // give a conservatively-correct range.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #define DEBUG_TYPE "systemz-long-branch"
57 
58 #include "SystemZTargetMachine.h"
59 #include "llvm/ADT/Statistic.h"
62 #include "llvm/IR/Function.h"
68 
69 using namespace llvm;
70 
71 STATISTIC(LongBranches, "Number of long branches.");
72 
73 namespace {
74  // Represents positional information about a basic block.
75  struct MBBInfo {
76  // The address that we currently assume the block has.
77  uint64_t Address;
78 
79  // The size of the block in bytes, excluding terminators.
80  // This value never changes.
81  uint64_t Size;
82 
83  // The minimum alignment of the block, as a log2 value.
84  // This value never changes.
85  unsigned Alignment;
86 
87  // The number of terminators in this block. This value never changes.
88  unsigned NumTerminators;
89 
90  MBBInfo()
91  : Address(0), Size(0), Alignment(0), NumTerminators(0) {}
92  };
93 
94  // Represents the state of a block terminator.
95  struct TerminatorInfo {
96  // If this terminator is a relaxable branch, this points to the branch
97  // instruction, otherwise it is null.
99 
100  // The address that we currently assume the terminator has.
101  uint64_t Address;
102 
103  // The current size of the terminator in bytes.
104  uint64_t Size;
105 
106  // If Branch is nonnull, this is the number of the target block,
107  // otherwise it is unused.
108  unsigned TargetBlock;
109 
110  // If Branch is nonnull, this is the length of the longest relaxed form,
111  // otherwise it is zero.
112  unsigned ExtraRelaxSize;
113 
114  TerminatorInfo() : Branch(0), Size(0), TargetBlock(0), ExtraRelaxSize(0) {}
115  };
116 
117  // Used to keep track of the current position while iterating over the blocks.
118  struct BlockPosition {
119  // The address that we assume this position has.
120  uint64_t Address;
121 
122  // The number of low bits in Address that are known to be the same
123  // as the runtime address.
124  unsigned KnownBits;
125 
126  BlockPosition(unsigned InitialAlignment)
127  : Address(0), KnownBits(InitialAlignment) {}
128  };
129 
130  class SystemZLongBranch : public MachineFunctionPass {
131  public:
132  static char ID;
133  SystemZLongBranch(const SystemZTargetMachine &tm)
134  : MachineFunctionPass(ID), TII(0) {}
135 
136  virtual const char *getPassName() const {
137  return "SystemZ Long Branch";
138  }
139 
140  bool runOnMachineFunction(MachineFunction &F);
141 
142  private:
143  void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
144  void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
145  bool AssumeRelaxed);
146  TerminatorInfo describeTerminator(MachineInstr *MI);
147  uint64_t initMBBInfo();
148  bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
149  bool mustRelaxABranch();
150  void setWorstCaseAddresses();
151  void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
152  void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
153  void relaxBranch(TerminatorInfo &Terminator);
154  void relaxBranches();
155 
156  const SystemZInstrInfo *TII;
157  MachineFunction *MF;
160  };
161 
162  char SystemZLongBranch::ID = 0;
163 
164  const uint64_t MaxBackwardRange = 0x10000;
165  const uint64_t MaxForwardRange = 0xfffe;
166 } // end of anonymous namespace
167 
169  return new SystemZLongBranch(TM);
170 }
171 
172 // Position describes the state immediately before Block. Update Block
173 // accordingly and move Position to the end of the block's non-terminator
174 // instructions.
175 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
176  MBBInfo &Block) {
177  if (Block.Alignment > Position.KnownBits) {
178  // When calculating the address of Block, we need to conservatively
179  // assume that Block had the worst possible misalignment.
180  Position.Address += ((uint64_t(1) << Block.Alignment) -
181  (uint64_t(1) << Position.KnownBits));
182  Position.KnownBits = Block.Alignment;
183  }
184 
185  // Align the addresses.
186  uint64_t AlignMask = (uint64_t(1) << Block.Alignment) - 1;
187  Position.Address = (Position.Address + AlignMask) & ~AlignMask;
188 
189  // Record the block's position.
190  Block.Address = Position.Address;
191 
192  // Move past the non-terminators in the block.
193  Position.Address += Block.Size;
194 }
195 
196 // Position describes the state immediately before Terminator.
197 // Update Terminator accordingly and move Position past it.
198 // Assume that Terminator will be relaxed if AssumeRelaxed.
199 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
200  TerminatorInfo &Terminator,
201  bool AssumeRelaxed) {
202  Terminator.Address = Position.Address;
203  Position.Address += Terminator.Size;
204  if (AssumeRelaxed)
205  Position.Address += Terminator.ExtraRelaxSize;
206 }
207 
208 // Return a description of terminator instruction MI.
209 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr *MI) {
210  TerminatorInfo Terminator;
211  Terminator.Size = TII->getInstSizeInBytes(MI);
212  if (MI->isConditionalBranch() || MI->isUnconditionalBranch()) {
213  switch (MI->getOpcode()) {
214  case SystemZ::J:
215  // Relaxes to JG, which is 2 bytes longer.
216  Terminator.ExtraRelaxSize = 2;
217  break;
218  case SystemZ::BRC:
219  // Relaxes to BRCL, which is 2 bytes longer.
220  Terminator.ExtraRelaxSize = 2;
221  break;
222  case SystemZ::BRCT:
223  case SystemZ::BRCTG:
224  // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
225  Terminator.ExtraRelaxSize = 6;
226  break;
227  case SystemZ::CRJ:
228  case SystemZ::CLRJ:
229  // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
230  Terminator.ExtraRelaxSize = 2;
231  break;
232  case SystemZ::CGRJ:
233  case SystemZ::CLGRJ:
234  // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
235  Terminator.ExtraRelaxSize = 4;
236  break;
237  case SystemZ::CIJ:
238  case SystemZ::CGIJ:
239  // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
240  Terminator.ExtraRelaxSize = 4;
241  break;
242  case SystemZ::CLIJ:
243  case SystemZ::CLGIJ:
244  // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
245  Terminator.ExtraRelaxSize = 6;
246  break;
247  default:
248  llvm_unreachable("Unrecognized branch instruction");
249  }
250  Terminator.Branch = MI;
251  Terminator.TargetBlock =
252  TII->getBranchInfo(MI).Target->getMBB()->getNumber();
253  }
254  return Terminator;
255 }
256 
257 // Fill MBBs and Terminators, setting the addresses on the assumption
258 // that no branches need relaxation. Return the size of the function under
259 // this assumption.
260 uint64_t SystemZLongBranch::initMBBInfo() {
261  MF->RenumberBlocks();
262  unsigned NumBlocks = MF->size();
263 
264  MBBs.clear();
265  MBBs.resize(NumBlocks);
266 
267  Terminators.clear();
268  Terminators.reserve(NumBlocks);
269 
270  BlockPosition Position(MF->getAlignment());
271  for (unsigned I = 0; I < NumBlocks; ++I) {
272  MachineBasicBlock *MBB = MF->getBlockNumbered(I);
273  MBBInfo &Block = MBBs[I];
274 
275  // Record the alignment, for quick access.
276  Block.Alignment = MBB->getAlignment();
277 
278  // Calculate the size of the fixed part of the block.
280  MachineBasicBlock::iterator End = MBB->end();
281  while (MI != End && !MI->isTerminator()) {
282  Block.Size += TII->getInstSizeInBytes(MI);
283  ++MI;
284  }
285  skipNonTerminators(Position, Block);
286 
287  // Add the terminators.
288  while (MI != End) {
289  if (!MI->isDebugValue()) {
290  assert(MI->isTerminator() && "Terminator followed by non-terminator");
291  Terminators.push_back(describeTerminator(MI));
292  skipTerminator(Position, Terminators.back(), false);
293  ++Block.NumTerminators;
294  }
295  ++MI;
296  }
297  }
298 
299  return Position.Address;
300 }
301 
302 // Return true if, under current assumptions, Terminator would need to be
303 // relaxed if it were placed at address Address.
304 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
305  uint64_t Address) {
306  if (!Terminator.Branch)
307  return false;
308 
309  const MBBInfo &Target = MBBs[Terminator.TargetBlock];
310  if (Address >= Target.Address) {
311  if (Address - Target.Address <= MaxBackwardRange)
312  return false;
313  } else {
314  if (Target.Address - Address <= MaxForwardRange)
315  return false;
316  }
317 
318  return true;
319 }
320 
321 // Return true if, under current assumptions, any terminator needs
322 // to be relaxed.
323 bool SystemZLongBranch::mustRelaxABranch() {
324  for (SmallVectorImpl<TerminatorInfo>::iterator TI = Terminators.begin(),
325  TE = Terminators.end(); TI != TE; ++TI)
326  if (mustRelaxBranch(*TI, TI->Address))
327  return true;
328  return false;
329 }
330 
331 // Set the address of each block on the assumption that all branches
332 // must be long.
333 void SystemZLongBranch::setWorstCaseAddresses() {
335  BlockPosition Position(MF->getAlignment());
336  for (SmallVectorImpl<MBBInfo>::iterator BI = MBBs.begin(), BE = MBBs.end();
337  BI != BE; ++BI) {
338  skipNonTerminators(Position, *BI);
339  for (unsigned BTI = 0, BTE = BI->NumTerminators; BTI != BTE; ++BTI) {
340  skipTerminator(Position, *TI, true);
341  ++TI;
342  }
343  }
344 }
345 
346 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
347 // by a BRCL on the result.
348 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
349  unsigned AddOpcode) {
350  MachineBasicBlock *MBB = MI->getParent();
351  DebugLoc DL = MI->getDebugLoc();
352  BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
353  .addOperand(MI->getOperand(0))
354  .addOperand(MI->getOperand(1))
355  .addImm(-1);
356  MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
357  .addImm(SystemZ::CCMASK_ICMP)
359  .addOperand(MI->getOperand(2));
360  // The implicit use of CC is a killing use.
361  BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
362  MI->eraseFromParent();
363 }
364 
365 // Split MI into the comparison given by CompareOpcode followed
366 // a BRCL on the result.
367 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
368  unsigned CompareOpcode) {
369  MachineBasicBlock *MBB = MI->getParent();
370  DebugLoc DL = MI->getDebugLoc();
371  BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
372  .addOperand(MI->getOperand(0))
373  .addOperand(MI->getOperand(1));
374  MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
375  .addImm(SystemZ::CCMASK_ICMP)
376  .addOperand(MI->getOperand(2))
377  .addOperand(MI->getOperand(3));
378  // The implicit use of CC is a killing use.
379  BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
380  MI->eraseFromParent();
381 }
382 
383 // Relax the branch described by Terminator.
384 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
385  MachineInstr *Branch = Terminator.Branch;
386  switch (Branch->getOpcode()) {
387  case SystemZ::J:
388  Branch->setDesc(TII->get(SystemZ::JG));
389  break;
390  case SystemZ::BRC:
391  Branch->setDesc(TII->get(SystemZ::BRCL));
392  break;
393  case SystemZ::BRCT:
394  splitBranchOnCount(Branch, SystemZ::AHI);
395  break;
396  case SystemZ::BRCTG:
397  splitBranchOnCount(Branch, SystemZ::AGHI);
398  break;
399  case SystemZ::CRJ:
400  splitCompareBranch(Branch, SystemZ::CR);
401  break;
402  case SystemZ::CGRJ:
403  splitCompareBranch(Branch, SystemZ::CGR);
404  break;
405  case SystemZ::CIJ:
406  splitCompareBranch(Branch, SystemZ::CHI);
407  break;
408  case SystemZ::CGIJ:
409  splitCompareBranch(Branch, SystemZ::CGHI);
410  break;
411  case SystemZ::CLRJ:
412  splitCompareBranch(Branch, SystemZ::CLR);
413  break;
414  case SystemZ::CLGRJ:
415  splitCompareBranch(Branch, SystemZ::CLGR);
416  break;
417  case SystemZ::CLIJ:
418  splitCompareBranch(Branch, SystemZ::CLFI);
419  break;
420  case SystemZ::CLGIJ:
421  splitCompareBranch(Branch, SystemZ::CLGFI);
422  break;
423  default:
424  llvm_unreachable("Unrecognized branch");
425  }
426 
427  Terminator.Size += Terminator.ExtraRelaxSize;
428  Terminator.ExtraRelaxSize = 0;
429  Terminator.Branch = 0;
430 
431  ++LongBranches;
432 }
433 
434 // Run a shortening pass and relax any branches that need to be relaxed.
435 void SystemZLongBranch::relaxBranches() {
437  BlockPosition Position(MF->getAlignment());
438  for (SmallVectorImpl<MBBInfo>::iterator BI = MBBs.begin(), BE = MBBs.end();
439  BI != BE; ++BI) {
440  skipNonTerminators(Position, *BI);
441  for (unsigned BTI = 0, BTE = BI->NumTerminators; BTI != BTE; ++BTI) {
442  assert(Position.Address <= TI->Address &&
443  "Addresses shouldn't go forwards");
444  if (mustRelaxBranch(*TI, Position.Address))
445  relaxBranch(*TI);
446  skipTerminator(Position, *TI, false);
447  ++TI;
448  }
449  }
450 }
451 
452 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
453  TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
454  MF = &F;
455  uint64_t Size = initMBBInfo();
456  if (Size <= MaxForwardRange || !mustRelaxABranch())
457  return false;
458 
459  setWorstCaseAddresses();
460  relaxBranches();
461  return true;
462 }
F(f)
bool isConditionalBranch(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:388
const unsigned CCMASK_ICMP
Definition: SystemZ.h:47
const HexagonInstrInfo * TII
#define llvm_unreachable(msg)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
const MachineInstrBuilder & addImm(int64_t Val) const
int getOpcode() const
Definition: MachineInstr.h:261
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:119
bundle_iterator< MachineInstr, instr_iterator > iterator
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
virtual const TargetInstrInfo * getInstrInfo() const
STATISTIC(LongBranches,"Number of long branches.")
void setDesc(const MCInstrDesc &tid)
Definition: MachineInstr.h:984
const unsigned CCMASK_CMP_NE
Definition: SystemZ.h:38
FunctionPass * createSystemZLongBranchPass(SystemZTargetMachine &TM)
#define I(x, y, z)
Definition: MD5.cpp:54
const TargetMachine & getTarget() const
virtual const HexagonRegisterInfo & getRegisterInfo() const
const MachineInstrBuilder & addOperand(const MachineOperand &MO) const
bool addRegisterKilled(unsigned IncomingReg, const TargetRegisterInfo *RegInfo, bool AddIfNotFound=false)
DebugLoc getDebugLoc() const
Definition: MachineInstr.h:244
bool isUnconditionalBranch(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:396
unsigned getAlignment() const