LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ARMAsmBackend.cpp
Go to the documentation of this file.
1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
14 #include "llvm/ADT/StringSwitch.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCDirectives.h"
20 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCObjectWriter.h"
24 #include "llvm/MC/MCSectionELF.h"
25 #include "llvm/MC/MCSectionMachO.h"
27 #include "llvm/MC/MCValue.h"
28 #include "llvm/Support/ELF.h"
30 #include "llvm/Support/MachO.h"
32 using namespace llvm;
33 
34 namespace {
35 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
36 public:
37  ARMELFObjectWriter(uint8_t OSABI)
38  : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
39  /*HasRelocationAddend*/ false) {}
40 };
41 
42 class ARMAsmBackend : public MCAsmBackend {
43  const MCSubtargetInfo* STI;
44  bool isThumbMode; // Currently emitting Thumb code.
45 public:
46  ARMAsmBackend(const Target &T, const StringRef TT)
47  : MCAsmBackend(), STI(ARM_MC::createARMMCSubtargetInfo(TT, "", "")),
48  isThumbMode(TT.startswith("thumb")) {}
49 
50  ~ARMAsmBackend() {
51  delete STI;
52  }
53 
54  unsigned getNumFixupKinds() const { return ARM::NumTargetFixupKinds; }
55 
56  bool hasNOP() const {
57  return (STI->getFeatureBits() & ARM::HasV6T2Ops) != 0;
58  }
59 
60  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
61  const static MCFixupKindInfo Infos[ARM::NumTargetFixupKinds] = {
62 // This table *must* be in the order that the fixup_* kinds are defined in
63 // ARMFixupKinds.h.
64 //
65 // Name Offset (bits) Size (bits) Flags
66 { "fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
67 { "fixup_t2_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
69 { "fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
70 { "fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
71 { "fixup_t2_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
73 { "fixup_thumb_adr_pcrel_10",0, 8, MCFixupKindInfo::FKF_IsPCRel |
75 { "fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
76 { "fixup_t2_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel |
78 { "fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
79 { "fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
80 { "fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
81 { "fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
82 { "fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
83 { "fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
84 { "fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
85 { "fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel },
86 { "fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
87 { "fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel },
88 { "fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel },
89 { "fixup_arm_thumb_cp", 0, 8, MCFixupKindInfo::FKF_IsPCRel |
91 { "fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel },
92 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 - 19.
93 { "fixup_arm_movt_hi16", 0, 20, 0 },
94 { "fixup_arm_movw_lo16", 0, 20, 0 },
95 { "fixup_t2_movt_hi16", 0, 20, 0 },
96 { "fixup_t2_movw_lo16", 0, 20, 0 },
97 { "fixup_arm_movt_hi16_pcrel", 0, 20, MCFixupKindInfo::FKF_IsPCRel },
98 { "fixup_arm_movw_lo16_pcrel", 0, 20, MCFixupKindInfo::FKF_IsPCRel },
99 { "fixup_t2_movt_hi16_pcrel", 0, 20, MCFixupKindInfo::FKF_IsPCRel },
100 { "fixup_t2_movw_lo16_pcrel", 0, 20, MCFixupKindInfo::FKF_IsPCRel },
101  };
102 
103  if (Kind < FirstTargetFixupKind)
104  return MCAsmBackend::getFixupKindInfo(Kind);
105 
106  assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
107  "Invalid kind!");
108  return Infos[Kind - FirstTargetFixupKind];
109  }
110 
111  /// processFixupValue - Target hook to process the literal value of a fixup
112  /// if necessary.
113  void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
114  const MCFixup &Fixup, const MCFragment *DF,
115  MCValue &Target, uint64_t &Value,
116  bool &IsResolved);
117 
118 
119  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
120  uint64_t Value) const;
121 
122  bool mayNeedRelaxation(const MCInst &Inst) const;
123 
124  bool fixupNeedsRelaxation(const MCFixup &Fixup,
125  uint64_t Value,
126  const MCRelaxableFragment *DF,
127  const MCAsmLayout &Layout) const;
128 
129  void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
130 
131  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
132 
133  void handleAssemblerFlag(MCAssemblerFlag Flag) {
134  switch (Flag) {
135  default: break;
136  case MCAF_Code16:
137  setIsThumb(true);
138  break;
139  case MCAF_Code32:
140  setIsThumb(false);
141  break;
142  }
143  }
144 
145  unsigned getPointerSize() const { return 4; }
146  bool isThumb() const { return isThumbMode; }
147  void setIsThumb(bool it) { isThumbMode = it; }
148 };
149 } // end anonymous namespace
150 
151 static unsigned getRelaxedOpcode(unsigned Op) {
152  switch (Op) {
153  default: return Op;
154  case ARM::tBcc: return ARM::t2Bcc;
155  case ARM::tLDRpci: return ARM::t2LDRpci;
156  case ARM::tADR: return ARM::t2ADR;
157  case ARM::tB: return ARM::t2B;
158  }
159 }
160 
161 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
162  if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode())
163  return true;
164  return false;
165 }
166 
167 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
168  uint64_t Value,
169  const MCRelaxableFragment *DF,
170  const MCAsmLayout &Layout) const {
171  switch ((unsigned)Fixup.getKind()) {
173  // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
174  // low bit being an implied zero. There's an implied +4 offset for the
175  // branch, so we adjust the other way here to determine what's
176  // encodable.
177  //
178  // Relax if the value is too big for a (signed) i8.
179  int64_t Offset = int64_t(Value) - 4;
180  return Offset > 2046 || Offset < -2048;
181  }
183  // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
184  // low bit being an implied zero. There's an implied +4 offset for the
185  // branch, so we adjust the other way here to determine what's
186  // encodable.
187  //
188  // Relax if the value is too big for a (signed) i8.
189  int64_t Offset = int64_t(Value) - 4;
190  return Offset > 254 || Offset < -256;
191  }
194  // If the immediate is negative, greater than 1020, or not a multiple
195  // of four, the wide version of the instruction must be used.
196  int64_t Offset = int64_t(Value) - 4;
197  return Offset > 1020 || Offset < 0 || Offset & 3;
198  }
199  }
200  llvm_unreachable("Unexpected fixup kind in fixupNeedsRelaxation()!");
201 }
202 
203 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
204  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
205 
206  // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
207  if (RelaxedOp == Inst.getOpcode()) {
208  SmallString<256> Tmp;
209  raw_svector_ostream OS(Tmp);
210  Inst.dump_pretty(OS);
211  OS << "\n";
212  report_fatal_error("unexpected instruction to relax: " + OS.str());
213  }
214 
215  // The instructions we're relaxing have (so far) the same operands.
216  // We just need to update to the proper opcode.
217  Res = Inst;
218  Res.setOpcode(RelaxedOp);
219 }
220 
221 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
222  const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
223  const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
224  const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
225  const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
226  if (isThumb()) {
227  const uint16_t nopEncoding = hasNOP() ? Thumb2_16bitNopEncoding
228  : Thumb1_16bitNopEncoding;
229  uint64_t NumNops = Count / 2;
230  for (uint64_t i = 0; i != NumNops; ++i)
231  OW->Write16(nopEncoding);
232  if (Count & 1)
233  OW->Write8(0);
234  return true;
235  }
236  // ARM mode
237  const uint32_t nopEncoding = hasNOP() ? ARMv6T2_NopEncoding
238  : ARMv4_NopEncoding;
239  uint64_t NumNops = Count / 4;
240  for (uint64_t i = 0; i != NumNops; ++i)
241  OW->Write32(nopEncoding);
242  // FIXME: should this function return false when unable to write exactly
243  // 'Count' bytes with NOP encodings?
244  switch (Count % 4) {
245  default: break; // No leftover bytes to write
246  case 1: OW->Write8(0); break;
247  case 2: OW->Write16(0); break;
248  case 3: OW->Write16(0); OW->Write8(0xa0); break;
249  }
250 
251  return true;
252 }
253 
254 static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
255  MCContext *Ctx = NULL) {
256  unsigned Kind = Fixup.getKind();
257  switch (Kind) {
258  default:
259  llvm_unreachable("Unknown fixup kind!");
260  case FK_Data_1:
261  case FK_Data_2:
262  case FK_Data_4:
263  return Value;
265  Value >>= 16;
266  // Fallthrough
270  unsigned Hi4 = (Value & 0xF000) >> 12;
271  unsigned Lo12 = Value & 0x0FFF;
272  // inst{19-16} = Hi4;
273  // inst{11-0} = Lo12;
274  Value = (Hi4 << 16) | (Lo12);
275  return Value;
276  }
278  Value >>= 16;
279  // Fallthrough
281  case ARM::fixup_t2_movt_hi16_pcrel: //FIXME: Shouldn't this be shifted like
282  // the other hi16 fixup?
284  unsigned Hi4 = (Value & 0xF000) >> 12;
285  unsigned i = (Value & 0x800) >> 11;
286  unsigned Mid3 = (Value & 0x700) >> 8;
287  unsigned Lo8 = Value & 0x0FF;
288  // inst{19-16} = Hi4;
289  // inst{26} = i;
290  // inst{14-12} = Mid3;
291  // inst{7-0} = Lo8;
292  Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
293  uint64_t swapped = (Value & 0xFFFF0000) >> 16;
294  swapped |= (Value & 0x0000FFFF) << 16;
295  return swapped;
296  }
298  // ARM PC-relative values are offset by 8.
299  Value -= 4;
300  // FALLTHROUGH
302  // Offset by 4, adjusted by two due to the half-word ordering of thumb.
303  Value -= 4;
304  bool isAdd = true;
305  if ((int64_t)Value < 0) {
306  Value = -Value;
307  isAdd = false;
308  }
309  if (Ctx && Value >= 4096)
310  Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
311  Value |= isAdd << 23;
312 
313  // Same addressing mode as fixup_arm_pcrel_10,
314  // but with 16-bit halfwords swapped.
315  if (Kind == ARM::fixup_t2_ldst_pcrel_12) {
316  uint64_t swapped = (Value & 0xFFFF0000) >> 16;
317  swapped |= (Value & 0x0000FFFF) << 16;
318  return swapped;
319  }
320 
321  return Value;
322  }
324  return ((Value - 4) >> 2) & 0xff;
326  // ARM PC-relative values are offset by 8.
327  Value -= 8;
328  unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
329  if ((int64_t)Value < 0) {
330  Value = -Value;
331  opc = 2; // 0b0010
332  }
333  if (Ctx && ARM_AM::getSOImmVal(Value) == -1)
334  Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
335  // Encode the immediate and shift the opcode into place.
336  return ARM_AM::getSOImmVal(Value) | (opc << 21);
337  }
338 
340  Value -= 4;
341  unsigned opc = 0;
342  if ((int64_t)Value < 0) {
343  Value = -Value;
344  opc = 5;
345  }
346 
347  uint32_t out = (opc << 21);
348  out |= (Value & 0x800) << 15;
349  out |= (Value & 0x700) << 4;
350  out |= (Value & 0x0FF);
351 
352  uint64_t swapped = (out & 0xFFFF0000) >> 16;
353  swapped |= (out & 0x0000FFFF) << 16;
354  return swapped;
355  }
356 
361  case ARM::fixup_arm_blx:
362  // These values don't encode the low two bits since they're always zero.
363  // Offset by 8 just as above.
364  return 0xffffff & ((Value - 8) >> 2);
366  Value = Value - 4;
367  Value >>= 1; // Low bit is not encoded.
368 
369  uint32_t out = 0;
370  bool I = Value & 0x800000;
371  bool J1 = Value & 0x400000;
372  bool J2 = Value & 0x200000;
373  J1 ^= I;
374  J2 ^= I;
375 
376  out |= I << 26; // S bit
377  out |= !J1 << 13; // J1 bit
378  out |= !J2 << 11; // J2 bit
379  out |= (Value & 0x1FF800) << 5; // imm6 field
380  out |= (Value & 0x0007FF); // imm11 field
381 
382  uint64_t swapped = (out & 0xFFFF0000) >> 16;
383  swapped |= (out & 0x0000FFFF) << 16;
384  return swapped;
385  }
387  Value = Value - 4;
388  Value >>= 1; // Low bit is not encoded.
389 
390  uint64_t out = 0;
391  out |= (Value & 0x80000) << 7; // S bit
392  out |= (Value & 0x40000) >> 7; // J2 bit
393  out |= (Value & 0x20000) >> 4; // J1 bit
394  out |= (Value & 0x1F800) << 5; // imm6 field
395  out |= (Value & 0x007FF); // imm11 field
396 
397  uint32_t swapped = (out & 0xFFFF0000) >> 16;
398  swapped |= (out & 0x0000FFFF) << 16;
399  return swapped;
400  }
402  // The value doesn't encode the low bit (always zero) and is offset by
403  // four. The 32-bit immediate value is encoded as
404  // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
405  // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
406  // The value is encoded into disjoint bit positions in the destination
407  // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
408  // J = either J1 or J2 bit
409  //
410  // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
411  //
412  // Note that the halfwords are stored high first, low second; so we need
413  // to transpose the fixup value here to map properly.
414  uint32_t offset = (Value - 4) >> 1;
415  uint32_t signBit = (offset & 0x800000) >> 23;
416  uint32_t I1Bit = (offset & 0x400000) >> 22;
417  uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
418  uint32_t I2Bit = (offset & 0x200000) >> 21;
419  uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
420  uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
421  uint32_t imm11Bits = (offset & 0x000007FF);
422 
423  uint32_t Binary = 0;
424  uint32_t firstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
425  uint32_t secondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
426  (uint16_t)imm11Bits);
427  Binary |= secondHalf << 16;
428  Binary |= firstHalf;
429  return Binary;
430 
431  }
433  // The value doesn't encode the low two bits (always zero) and is offset by
434  // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
435  // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
436  // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
437  // The value is encoded into disjoint bit positions in the destination
438  // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
439  // J = either J1 or J2 bit, 0 = zero.
440  //
441  // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
442  //
443  // Note that the halfwords are stored high first, low second; so we need
444  // to transpose the fixup value here to map properly.
445  uint32_t offset = (Value - 2) >> 2;
446  uint32_t signBit = (offset & 0x400000) >> 22;
447  uint32_t I1Bit = (offset & 0x200000) >> 21;
448  uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
449  uint32_t I2Bit = (offset & 0x100000) >> 20;
450  uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
451  uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
452  uint32_t imm10LBits = (offset & 0x3FF);
453 
454  uint32_t Binary = 0;
455  uint32_t firstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
456  uint32_t secondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
457  ((uint16_t)imm10LBits) << 1);
458  Binary |= secondHalf << 16;
459  Binary |= firstHalf;
460  return Binary;
461  }
463  // Offset by 4, and don't encode the low two bits. Two bytes of that
464  // 'off by 4' is implicitly handled by the half-word ordering of the
465  // Thumb encoding, so we only need to adjust by 2 here.
466  return ((Value - 2) >> 2) & 0xff;
468  // Offset by 4 and don't encode the lower bit, which is always 0.
469  uint32_t Binary = (Value - 4) >> 1;
470  return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
471  }
473  // Offset by 4 and don't encode the lower bit, which is always 0.
474  return ((Value - 4) >> 1) & 0x7ff;
476  // Offset by 4 and don't encode the lower bit, which is always 0.
477  return ((Value - 4) >> 1) & 0xff;
479  Value = Value - 8; // ARM fixups offset by an additional word and don't
480  // need to adjust for the half-word ordering.
481  bool isAdd = true;
482  if ((int64_t)Value < 0) {
483  Value = -Value;
484  isAdd = false;
485  }
486  // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
487  if (Ctx && Value >= 256)
488  Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
489  Value = (Value & 0xf) | ((Value & 0xf0) << 4);
490  return Value | (isAdd << 23);
491  }
493  Value = Value - 4; // ARM fixups offset by an additional word and don't
494  // need to adjust for the half-word ordering.
495  // Fall through.
496  case ARM::fixup_t2_pcrel_10: {
497  // Offset by 4, adjusted by two due to the half-word ordering of thumb.
498  Value = Value - 4;
499  bool isAdd = true;
500  if ((int64_t)Value < 0) {
501  Value = -Value;
502  isAdd = false;
503  }
504  // These values don't encode the low two bits since they're always zero.
505  Value >>= 2;
506  if (Ctx && Value >= 256)
507  Ctx->FatalError(Fixup.getLoc(), "out of range pc-relative fixup value");
508  Value |= isAdd << 23;
509 
510  // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
511  // swapped.
512  if (Kind == ARM::fixup_t2_pcrel_10) {
513  uint32_t swapped = (Value & 0xFFFF0000) >> 16;
514  swapped |= (Value & 0x0000FFFF) << 16;
515  return swapped;
516  }
517 
518  return Value;
519  }
520  }
521 }
522 
523 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm,
524  const MCAsmLayout &Layout,
525  const MCFixup &Fixup,
526  const MCFragment *DF,
527  MCValue &Target, uint64_t &Value,
528  bool &IsResolved) {
529  const MCSymbolRefExpr *A = Target.getSymA();
530  // Some fixups to thumb function symbols need the low bit (thumb bit)
531  // twiddled.
532  if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 &&
538  if (A) {
539  const MCSymbol &Sym = A->getSymbol().AliasedSymbol();
540  if (Asm.isThumbFunc(&Sym))
541  Value |= 1;
542  }
543  }
544  // We must always generate a relocation for BL/BLX instructions if we have
545  // a symbol to reference, as the linker relies on knowing the destination
546  // symbol's thumb-ness to get interworking right.
547  if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx ||
549  (unsigned)Fixup.getKind() == ARM::fixup_arm_blx ||
552  IsResolved = false;
553 
554  // Try to get the encoded value for the fixup as-if we're mapping it into
555  // the instruction. This allows adjustFixupValue() to issue a diagnostic
556  // if the value aren't invalid.
557  (void)adjustFixupValue(Fixup, Value, &Asm.getContext());
558 }
559 
560 /// getFixupKindNumBytes - The number of bytes the fixup may change.
561 static unsigned getFixupKindNumBytes(unsigned Kind) {
562  switch (Kind) {
563  default:
564  llvm_unreachable("Unknown fixup kind!");
565 
566  case FK_Data_1:
570  return 1;
571 
572  case FK_Data_2:
575  return 2;
576 
583  case ARM::fixup_arm_blx:
586  return 3;
587 
588  case FK_Data_4:
604  return 4;
605  }
606 }
607 
608 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
609  unsigned DataSize, uint64_t Value) const {
610  unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
611  Value = adjustFixupValue(Fixup, Value);
612  if (!Value) return; // Doesn't change encoding.
613 
614  unsigned Offset = Fixup.getOffset();
615  assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
616 
617  // For each byte of the fragment that the fixup touches, mask in the bits from
618  // the fixup value. The Value has been "split up" into the appropriate
619  // bitfields above.
620  for (unsigned i = 0; i != NumBytes; ++i)
621  Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
622 }
623 
624 namespace {
625 
626 // FIXME: This should be in a separate file.
627 // ELF is an ELF of course...
628 class ELFARMAsmBackend : public ARMAsmBackend {
629 public:
630  uint8_t OSABI;
631  ELFARMAsmBackend(const Target &T, const StringRef TT,
632  uint8_t _OSABI)
633  : ARMAsmBackend(T, TT), OSABI(_OSABI) { }
634 
635  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
636  return createARMELFObjectWriter(OS, OSABI);
637  }
638 };
639 
640 // FIXME: This should be in a separate file.
641 class DarwinARMAsmBackend : public ARMAsmBackend {
642 public:
643  const MachO::CPUSubTypeARM Subtype;
644  DarwinARMAsmBackend(const Target &T, const StringRef TT,
646  : ARMAsmBackend(T, TT), Subtype(st) {
647  HasDataInCodeSupport = true;
648  }
649 
650  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
651  return createARMMachObjectWriter(OS, /*Is64Bit=*/false,
653  Subtype);
654  }
655 
656  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
657  return false;
658  }
659 };
660 
661 } // end anonymous namespace
662 
664  const MCRegisterInfo &MRI,
665  StringRef TT, StringRef CPU) {
666  Triple TheTriple(TT);
667 
668  if (TheTriple.isOSDarwin()) {
671  .Cases("armv4t", "thumbv4t", MachO::CPU_SUBTYPE_ARM_V4T)
672  .Cases("armv5e", "thumbv5e", MachO::CPU_SUBTYPE_ARM_V5TEJ)
673  .Cases("armv6", "thumbv6", MachO::CPU_SUBTYPE_ARM_V6)
674  .Cases("armv6m", "thumbv6m", MachO::CPU_SUBTYPE_ARM_V6M)
675  .Cases("armv7em", "thumbv7em", MachO::CPU_SUBTYPE_ARM_V7EM)
676  .Cases("armv7f", "thumbv7f", MachO::CPU_SUBTYPE_ARM_V7F)
677  .Cases("armv7k", "thumbv7k", MachO::CPU_SUBTYPE_ARM_V7K)
678  .Cases("armv7m", "thumbv7m", MachO::CPU_SUBTYPE_ARM_V7M)
679  .Cases("armv7s", "thumbv7s", MachO::CPU_SUBTYPE_ARM_V7S)
681 
682  return new DarwinARMAsmBackend(T, TT, CS);
683  }
684 
685 #if 0
686  // FIXME: Introduce yet another checker but assert(0).
687  if (TheTriple.isOSBinFormatCOFF())
688  assert(0 && "Windows not supported on ARM");
689 #endif
690 
691  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(Triple(TT).getOS());
692  return new ELFARMAsmBackend(T, TT, OSABI);
693 }
const MCSymbol & getSymbol() const
Definition: MCExpr.h:283
SMLoc getLoc() const
Definition: MCFixup.h:107
static unsigned adjustFixupValue(const MCFixup &Fixup, uint64_t Value, MCContext *Ctx=NULL)
void Write32(uint32_t Value)
static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA)
MCContext & getContext() const
Definition: MCAssembler.h:992
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
#define llvm_unreachable(msg)
#define false
Definition: ConvertUTF.c:64
A four-byte fixup.
Definition: MCFixup.h:25
.code16 (X86) / .code 16 (ARM)
Definition: MCDirectives.h:50
uint32_t getOffset() const
Definition: MCFixup.h:90
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:42
void Write8(uint8_t Value)
MCFixupKind
MCFixupKind - Extensible enumeration to represent the type of a fixup.
Definition: MCFixup.h:22
static unsigned getRelaxedOpcode(unsigned Op)
Should this fixup kind force a 4-byte aligned effective PC value?
bool isOSBinFormatCOFF() const
Tests whether the OS uses the COFF binary format.
Definition: Triple.h:348
MCFixupKind getKind() const
Definition: MCFixup.h:88
A one-byte fixup.
Definition: MCFixup.h:23
bool isOSDarwin() const
isOSDarwin - Is this a "Darwin" OS (OS X or iOS).
Definition: Triple.h:313
MCObjectWriter * createARMMachObjectWriter(raw_ostream &OS, bool Is64Bit, uint32_t CPUType, uint32_t CPUSubtype)
createARMMachObjectWriter - Construct an ARM Mach-O object writer.
void Write16(uint16_t Value)
void setOpcode(unsigned Op)
Definition: MCInst.h:157
const MCSymbolRefExpr * getSymA() const
Definition: MCValue.h:43
MCSubtargetInfo * createARMMCSubtargetInfo(StringRef TT, StringRef CPU, StringRef FS)
R Default(const T &Value) const
Definition: StringSwitch.h:111
unsigned getOpcode() const
Definition: MCInst.h:158
MCObjectWriter * createARMELFObjectWriter(raw_ostream &OS, uint8_t OSABI)
createARMELFObjectWriter - Construct an ELF Mach-O object writer.
static int getSOImmVal(unsigned Arg)
.code32 (X86) / .code 32 (ARM)
Definition: MCDirectives.h:51
void dump_pretty(raw_ostream &OS, const MCAsmInfo *MAI=0, const MCInstPrinter *Printer=0, StringRef Separator=" ") const
Dump the MCInst as prettily as possible using the additional MC structures, if given. Operators are separated by the Separator string.
Definition: MCInst.cpp:51
const MCSymbol & AliasedSymbol() const
Definition: MCSymbol.cpp:42
MCAssemblerFlag
Definition: MCDirectives.h:47
MCAsmBackend * createARMAsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU)
StringRef getArchName() const
Definition: Triple.cpp:486
#define I(x, y, z)
Definition: MD5.cpp:54
MCFixupKindInfo - Target independent information on a fixup kind.
LLVM Value Representation.
Definition: Value.h:66
MCAsmBackend - Generic interface to target specific assembler backends.
Definition: MCAsmBackend.h:34
StringSwitch & Cases(const char(&S0)[N0], const char(&S1)[N1], const T &Value)
Definition: StringSwitch.h:85
const MCRegisterInfo & MRI
bool isThumbFunc(const MCSymbol *Func) const
Check whether a given symbol has been flagged with .thumb_func.
Definition: MCAssembler.h:963
static unsigned getFixupKindNumBytes(unsigned Kind)
getFixupKindNumBytes - The number of bytes the fixup may change.
virtual const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const
getFixupKindInfo - Get information on a fixup kind.
A two-byte fixup.
Definition: MCFixup.h:24