LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
DeadStoreElimination.cpp
Go to the documentation of this file.
1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a trivial dead store elimination that only considers
11 // basic-block local redundant stores.
12 //
13 // FIXME: This should eventually be extended to be a post-dominator tree
14 // traversal. Doing so would be pretty trivial.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #define DEBUG_TYPE "dse"
19 #include "llvm/Transforms/Scalar.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
39 using namespace llvm;
40 
41 STATISTIC(NumFastStores, "Number of stores deleted");
42 STATISTIC(NumFastOther , "Number of other instrs removed");
43 
44 namespace {
45  struct DSE : public FunctionPass {
46  AliasAnalysis *AA;
48  DominatorTree *DT;
49  const TargetLibraryInfo *TLI;
50 
51  static char ID; // Pass identification, replacement for typeid
52  DSE() : FunctionPass(ID), AA(0), MD(0), DT(0) {
54  }
55 
56  virtual bool runOnFunction(Function &F) {
57  AA = &getAnalysis<AliasAnalysis>();
58  MD = &getAnalysis<MemoryDependenceAnalysis>();
59  DT = &getAnalysis<DominatorTree>();
60  TLI = AA->getTargetLibraryInfo();
61 
62  bool Changed = false;
63  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
64  // Only check non-dead blocks. Dead blocks may have strange pointer
65  // cycles that will confuse alias analysis.
66  if (DT->isReachableFromEntry(I))
67  Changed |= runOnBasicBlock(*I);
68 
69  AA = 0; MD = 0; DT = 0;
70  return Changed;
71  }
72 
73  bool runOnBasicBlock(BasicBlock &BB);
74  bool HandleFree(CallInst *F);
75  bool handleEndBlock(BasicBlock &BB);
76  void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
77  SmallSetVector<Value*, 16> &DeadStackObjects);
78 
79  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80  AU.setPreservesCFG();
87  }
88  };
89 }
90 
91 char DSE::ID = 0;
92 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
96 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
97 
98 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
99 
100 //===----------------------------------------------------------------------===//
101 // Helper functions
102 //===----------------------------------------------------------------------===//
103 
104 /// DeleteDeadInstruction - Delete this instruction. Before we do, go through
105 /// and zero out all the operands of this instruction. If any of them become
106 /// dead, delete them and the computation tree that feeds them.
107 ///
108 /// If ValueSet is non-null, remove any deleted instructions from it as well.
109 ///
112  const TargetLibraryInfo *TLI,
113  SmallSetVector<Value*, 16> *ValueSet = 0) {
114  SmallVector<Instruction*, 32> NowDeadInsts;
115 
116  NowDeadInsts.push_back(I);
117  --NumFastOther;
118 
119  // Before we touch this instruction, remove it from memdep!
120  do {
121  Instruction *DeadInst = NowDeadInsts.pop_back_val();
122  ++NumFastOther;
123 
124  // This instruction is dead, zap it, in stages. Start by removing it from
125  // MemDep, which needs to know the operands and needs it to be in the
126  // function.
127  MD.removeInstruction(DeadInst);
128 
129  for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
130  Value *Op = DeadInst->getOperand(op);
131  DeadInst->setOperand(op, 0);
132 
133  // If this operand just became dead, add it to the NowDeadInsts list.
134  if (!Op->use_empty()) continue;
135 
136  if (Instruction *OpI = dyn_cast<Instruction>(Op))
137  if (isInstructionTriviallyDead(OpI, TLI))
138  NowDeadInsts.push_back(OpI);
139  }
140 
141  DeadInst->eraseFromParent();
142 
143  if (ValueSet) ValueSet->remove(DeadInst);
144  } while (!NowDeadInsts.empty());
145 }
146 
147 
148 /// hasMemoryWrite - Does this instruction write some memory? This only returns
149 /// true for things that we can analyze with other helpers below.
150 static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo *TLI) {
151  if (isa<StoreInst>(I))
152  return true;
153  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
154  switch (II->getIntrinsicID()) {
155  default:
156  return false;
157  case Intrinsic::memset:
158  case Intrinsic::memmove:
159  case Intrinsic::memcpy:
162  return true;
163  }
164  }
165  if (CallSite CS = I) {
166  if (Function *F = CS.getCalledFunction()) {
167  if (TLI && TLI->has(LibFunc::strcpy) &&
168  F->getName() == TLI->getName(LibFunc::strcpy)) {
169  return true;
170  }
171  if (TLI && TLI->has(LibFunc::strncpy) &&
172  F->getName() == TLI->getName(LibFunc::strncpy)) {
173  return true;
174  }
175  if (TLI && TLI->has(LibFunc::strcat) &&
176  F->getName() == TLI->getName(LibFunc::strcat)) {
177  return true;
178  }
179  if (TLI && TLI->has(LibFunc::strncat) &&
180  F->getName() == TLI->getName(LibFunc::strncat)) {
181  return true;
182  }
183  }
184  }
185  return false;
186 }
187 
188 /// getLocForWrite - Return a Location stored to by the specified instruction.
189 /// If isRemovable returns true, this function and getLocForRead completely
190 /// describe the memory operations for this instruction.
193  if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
194  return AA.getLocation(SI);
195 
196  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
197  // memcpy/memmove/memset.
199  // If we don't have target data around, an unknown size in Location means
200  // that we should use the size of the pointee type. This isn't valid for
201  // memset/memcpy, which writes more than an i8.
202  if (Loc.Size == AliasAnalysis::UnknownSize && AA.getDataLayout() == 0)
203  return AliasAnalysis::Location();
204  return Loc;
205  }
206 
207  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
208  if (II == 0) return AliasAnalysis::Location();
209 
210  switch (II->getIntrinsicID()) {
211  default: return AliasAnalysis::Location(); // Unhandled intrinsic.
213  // If we don't have target data around, an unknown size in Location means
214  // that we should use the size of the pointee type. This isn't valid for
215  // init.trampoline, which writes more than an i8.
216  if (AA.getDataLayout() == 0) return AliasAnalysis::Location();
217 
218  // FIXME: We don't know the size of the trampoline, so we can't really
219  // handle it here.
220  return AliasAnalysis::Location(II->getArgOperand(0));
222  uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
223  return AliasAnalysis::Location(II->getArgOperand(1), Len);
224  }
225  }
226 }
227 
228 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
229 /// instruction if any.
232  assert(hasMemoryWrite(Inst, AA.getTargetLibraryInfo()) &&
233  "Unknown instruction case");
234 
235  // The only instructions that both read and write are the mem transfer
236  // instructions (memcpy/memmove).
237  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
238  return AA.getLocationForSource(MTI);
239  return AliasAnalysis::Location();
240 }
241 
242 
243 /// isRemovable - If the value of this instruction and the memory it writes to
244 /// is unused, may we delete this instruction?
245 static bool isRemovable(Instruction *I) {
246  // Don't remove volatile/atomic stores.
247  if (StoreInst *SI = dyn_cast<StoreInst>(I))
248  return SI->isUnordered();
249 
250  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
251  switch (II->getIntrinsicID()) {
252  default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
254  // Never remove dead lifetime_end's, e.g. because it is followed by a
255  // free.
256  return false;
258  // Always safe to remove init_trampoline.
259  return true;
260 
261  case Intrinsic::memset:
262  case Intrinsic::memmove:
263  case Intrinsic::memcpy:
264  // Don't remove volatile memory intrinsics.
265  return !cast<MemIntrinsic>(II)->isVolatile();
266  }
267  }
268 
269  if (CallSite CS = I)
270  return CS.getInstruction()->use_empty();
271 
272  return false;
273 }
274 
275 
276 /// isShortenable - Returns true if this instruction can be safely shortened in
277 /// length.
278 static bool isShortenable(Instruction *I) {
279  // Don't shorten stores for now
280  if (isa<StoreInst>(I))
281  return false;
282 
283  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
284  switch (II->getIntrinsicID()) {
285  default: return false;
286  case Intrinsic::memset:
287  case Intrinsic::memcpy:
288  // Do shorten memory intrinsics.
289  return true;
290  }
291  }
292 
293  // Don't shorten libcalls calls for now.
294 
295  return false;
296 }
297 
298 /// getStoredPointerOperand - Return the pointer that is being written to.
300  if (StoreInst *SI = dyn_cast<StoreInst>(I))
301  return SI->getPointerOperand();
302  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
303  return MI->getDest();
304 
305  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
306  switch (II->getIntrinsicID()) {
307  default: llvm_unreachable("Unexpected intrinsic!");
309  return II->getArgOperand(0);
310  }
311  }
312 
313  CallSite CS = I;
314  // All the supported functions so far happen to have dest as their first
315  // argument.
316  return CS.getArgument(0);
317 }
318 
319 static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
320  uint64_t Size;
321  if (getObjectSize(V, Size, AA.getDataLayout(), AA.getTargetLibraryInfo()))
322  return Size;
324 }
325 
326 namespace {
328  {
329  OverwriteComplete,
330  OverwriteEnd,
331  OverwriteUnknown
332  };
333 }
334 
335 /// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
336 /// completely overwrites a store to the 'Earlier' location.
337 /// 'OverwriteEnd' if the end of the 'Earlier' location is completely
338 /// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
340  const AliasAnalysis::Location &Earlier,
341  AliasAnalysis &AA,
342  int64_t &EarlierOff,
343  int64_t &LaterOff) {
344  const Value *P1 = Earlier.Ptr->stripPointerCasts();
345  const Value *P2 = Later.Ptr->stripPointerCasts();
346 
347  // If the start pointers are the same, we just have to compare sizes to see if
348  // the later store was larger than the earlier store.
349  if (P1 == P2) {
350  // If we don't know the sizes of either access, then we can't do a
351  // comparison.
352  if (Later.Size == AliasAnalysis::UnknownSize ||
353  Earlier.Size == AliasAnalysis::UnknownSize) {
354  // If we have no DataLayout information around, then the size of the store
355  // is inferrable from the pointee type. If they are the same type, then
356  // we know that the store is safe.
357  if (AA.getDataLayout() == 0 &&
358  Later.Ptr->getType() == Earlier.Ptr->getType())
359  return OverwriteComplete;
360 
361  return OverwriteUnknown;
362  }
363 
364  // Make sure that the Later size is >= the Earlier size.
365  if (Later.Size >= Earlier.Size)
366  return OverwriteComplete;
367  }
368 
369  // Otherwise, we have to have size information, and the later store has to be
370  // larger than the earlier one.
371  if (Later.Size == AliasAnalysis::UnknownSize ||
372  Earlier.Size == AliasAnalysis::UnknownSize ||
373  AA.getDataLayout() == 0)
374  return OverwriteUnknown;
375 
376  // Check to see if the later store is to the entire object (either a global,
377  // an alloca, or a byval argument). If so, then it clearly overwrites any
378  // other store to the same object.
379  const DataLayout *TD = AA.getDataLayout();
380 
381  const Value *UO1 = GetUnderlyingObject(P1, TD),
382  *UO2 = GetUnderlyingObject(P2, TD);
383 
384  // If we can't resolve the same pointers to the same object, then we can't
385  // analyze them at all.
386  if (UO1 != UO2)
387  return OverwriteUnknown;
388 
389  // If the "Later" store is to a recognizable object, get its size.
390  uint64_t ObjectSize = getPointerSize(UO2, AA);
391  if (ObjectSize != AliasAnalysis::UnknownSize)
392  if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
393  return OverwriteComplete;
394 
395  // Okay, we have stores to two completely different pointers. Try to
396  // decompose the pointer into a "base + constant_offset" form. If the base
397  // pointers are equal, then we can reason about the two stores.
398  EarlierOff = 0;
399  LaterOff = 0;
400  const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
401  const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
402 
403  // If the base pointers still differ, we have two completely different stores.
404  if (BP1 != BP2)
405  return OverwriteUnknown;
406 
407  // The later store completely overlaps the earlier store if:
408  //
409  // 1. Both start at the same offset and the later one's size is greater than
410  // or equal to the earlier one's, or
411  //
412  // |--earlier--|
413  // |-- later --|
414  //
415  // 2. The earlier store has an offset greater than the later offset, but which
416  // still lies completely within the later store.
417  //
418  // |--earlier--|
419  // |----- later ------|
420  //
421  // We have to be careful here as *Off is signed while *.Size is unsigned.
422  if (EarlierOff >= LaterOff &&
423  Later.Size >= Earlier.Size &&
424  uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
425  return OverwriteComplete;
426 
427  // The other interesting case is if the later store overwrites the end of
428  // the earlier store
429  //
430  // |--earlier--|
431  // |-- later --|
432  //
433  // In this case we may want to trim the size of earlier to avoid generating
434  // writes to addresses which will definitely be overwritten later
435  if (LaterOff > EarlierOff &&
436  LaterOff < int64_t(EarlierOff + Earlier.Size) &&
437  int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
438  return OverwriteEnd;
439 
440  // Otherwise, they don't completely overlap.
441  return OverwriteUnknown;
442 }
443 
444 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
445 /// memory region into an identical pointer) then it doesn't actually make its
446 /// input dead in the traditional sense. Consider this case:
447 ///
448 /// memcpy(A <- B)
449 /// memcpy(A <- A)
450 ///
451 /// In this case, the second store to A does not make the first store to A dead.
452 /// The usual situation isn't an explicit A<-A store like this (which can be
453 /// trivially removed) but a case where two pointers may alias.
454 ///
455 /// This function detects when it is unsafe to remove a dependent instruction
456 /// because the DSE inducing instruction may be a self-read.
457 static bool isPossibleSelfRead(Instruction *Inst,
458  const AliasAnalysis::Location &InstStoreLoc,
459  Instruction *DepWrite, AliasAnalysis &AA) {
460  // Self reads can only happen for instructions that read memory. Get the
461  // location read.
462  AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
463  if (InstReadLoc.Ptr == 0) return false; // Not a reading instruction.
464 
465  // If the read and written loc obviously don't alias, it isn't a read.
466  if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
467 
468  // Okay, 'Inst' may copy over itself. However, we can still remove a the
469  // DepWrite instruction if we can prove that it reads from the same location
470  // as Inst. This handles useful cases like:
471  // memcpy(A <- B)
472  // memcpy(A <- B)
473  // Here we don't know if A/B may alias, but we do know that B/B are must
474  // aliases, so removing the first memcpy is safe (assuming it writes <= #
475  // bytes as the second one.
476  AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
477 
478  if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
479  return false;
480 
481  // If DepWrite doesn't read memory or if we can't prove it is a must alias,
482  // then it can't be considered dead.
483  return true;
484 }
485 
486 
487 //===----------------------------------------------------------------------===//
488 // DSE Pass
489 //===----------------------------------------------------------------------===//
490 
491 bool DSE::runOnBasicBlock(BasicBlock &BB) {
492  bool MadeChange = false;
493 
494  // Do a top-down walk on the BB.
495  for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
496  Instruction *Inst = BBI++;
497 
498  // Handle 'free' calls specially.
499  if (CallInst *F = isFreeCall(Inst, TLI)) {
500  MadeChange |= HandleFree(F);
501  continue;
502  }
503 
504  // If we find something that writes memory, get its memory dependence.
505  if (!hasMemoryWrite(Inst, TLI))
506  continue;
507 
508  MemDepResult InstDep = MD->getDependency(Inst);
509 
510  // Ignore any store where we can't find a local dependence.
511  // FIXME: cross-block DSE would be fun. :)
512  if (!InstDep.isDef() && !InstDep.isClobber())
513  continue;
514 
515  // If we're storing the same value back to a pointer that we just
516  // loaded from, then the store can be removed.
517  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
518  if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
519  if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
520  SI->getOperand(0) == DepLoad && isRemovable(SI)) {
521  DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n "
522  << "LOAD: " << *DepLoad << "\n STORE: " << *SI << '\n');
523 
524  // DeleteDeadInstruction can delete the current instruction. Save BBI
525  // in case we need it.
526  WeakVH NextInst(BBI);
527 
528  DeleteDeadInstruction(SI, *MD, TLI);
529 
530  if (NextInst == 0) // Next instruction deleted.
531  BBI = BB.begin();
532  else if (BBI != BB.begin()) // Revisit this instruction if possible.
533  --BBI;
534  ++NumFastStores;
535  MadeChange = true;
536  continue;
537  }
538  }
539  }
540 
541  // Figure out what location is being stored to.
542  AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
543 
544  // If we didn't get a useful location, fail.
545  if (Loc.Ptr == 0)
546  continue;
547 
548  while (InstDep.isDef() || InstDep.isClobber()) {
549  // Get the memory clobbered by the instruction we depend on. MemDep will
550  // skip any instructions that 'Loc' clearly doesn't interact with. If we
551  // end up depending on a may- or must-aliased load, then we can't optimize
552  // away the store and we bail out. However, if we depend on on something
553  // that overwrites the memory location we *can* potentially optimize it.
554  //
555  // Find out what memory location the dependent instruction stores.
556  Instruction *DepWrite = InstDep.getInst();
557  AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
558  // If we didn't get a useful location, or if it isn't a size, bail out.
559  if (DepLoc.Ptr == 0)
560  break;
561 
562  // If we find a write that is a) removable (i.e., non-volatile), b) is
563  // completely obliterated by the store to 'Loc', and c) which we know that
564  // 'Inst' doesn't load from, then we can remove it.
565  if (isRemovable(DepWrite) &&
566  !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
567  int64_t InstWriteOffset, DepWriteOffset;
568  OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
569  DepWriteOffset, InstWriteOffset);
570  if (OR == OverwriteComplete) {
571  DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: "
572  << *DepWrite << "\n KILLER: " << *Inst << '\n');
573 
574  // Delete the store and now-dead instructions that feed it.
575  DeleteDeadInstruction(DepWrite, *MD, TLI);
576  ++NumFastStores;
577  MadeChange = true;
578 
579  // DeleteDeadInstruction can delete the current instruction in loop
580  // cases, reset BBI.
581  BBI = Inst;
582  if (BBI != BB.begin())
583  --BBI;
584  break;
585  } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
586  // TODO: base this on the target vector size so that if the earlier
587  // store was too small to get vector writes anyway then its likely
588  // a good idea to shorten it
589  // Power of 2 vector writes are probably always a bad idea to optimize
590  // as any store/memset/memcpy is likely using vector instructions so
591  // shortening it to not vector size is likely to be slower
592  MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
593  unsigned DepWriteAlign = DepIntrinsic->getAlignment();
594  if (llvm::isPowerOf2_64(InstWriteOffset) ||
595  ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
596 
597  DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW END: "
598  << *DepWrite << "\n KILLER (offset "
599  << InstWriteOffset << ", "
600  << DepLoc.Size << ")"
601  << *Inst << '\n');
602 
603  Value* DepWriteLength = DepIntrinsic->getLength();
604  Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
605  InstWriteOffset -
606  DepWriteOffset);
607  DepIntrinsic->setLength(TrimmedLength);
608  MadeChange = true;
609  }
610  }
611  }
612 
613  // If this is a may-aliased store that is clobbering the store value, we
614  // can keep searching past it for another must-aliased pointer that stores
615  // to the same location. For example, in:
616  // store -> P
617  // store -> Q
618  // store -> P
619  // we can remove the first store to P even though we don't know if P and Q
620  // alias.
621  if (DepWrite == &BB.front()) break;
622 
623  // Can't look past this instruction if it might read 'Loc'.
624  if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
625  break;
626 
627  InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
628  }
629  }
630 
631  // If this block ends in a return, unwind, or unreachable, all allocas are
632  // dead at its end, which means stores to them are also dead.
633  if (BB.getTerminator()->getNumSuccessors() == 0)
634  MadeChange |= handleEndBlock(BB);
635 
636  return MadeChange;
637 }
638 
639 /// Find all blocks that will unconditionally lead to the block BB and append
640 /// them to F.
642  BasicBlock *BB, DominatorTree *DT) {
643  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
644  BasicBlock *Pred = *I;
645  if (Pred == BB) continue;
646  TerminatorInst *PredTI = Pred->getTerminator();
647  if (PredTI->getNumSuccessors() != 1)
648  continue;
649 
650  if (DT->isReachableFromEntry(Pred))
651  Blocks.push_back(Pred);
652  }
653 }
654 
655 /// HandleFree - Handle frees of entire structures whose dependency is a store
656 /// to a field of that structure.
657 bool DSE::HandleFree(CallInst *F) {
658  bool MadeChange = false;
659 
662  Blocks.push_back(F->getParent());
663 
664  while (!Blocks.empty()) {
665  BasicBlock *BB = Blocks.pop_back_val();
666  Instruction *InstPt = BB->getTerminator();
667  if (BB == F->getParent()) InstPt = F;
668 
669  MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
670  while (Dep.isDef() || Dep.isClobber()) {
671  Instruction *Dependency = Dep.getInst();
672  if (!hasMemoryWrite(Dependency, TLI) || !isRemovable(Dependency))
673  break;
674 
675  Value *DepPointer =
677 
678  // Check for aliasing.
679  if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
680  break;
681 
682  Instruction *Next = llvm::next(BasicBlock::iterator(Dependency));
683 
684  // DCE instructions only used to calculate that store
685  DeleteDeadInstruction(Dependency, *MD, TLI);
686  ++NumFastStores;
687  MadeChange = true;
688 
689  // Inst's old Dependency is now deleted. Compute the next dependency,
690  // which may also be dead, as in
691  // s[0] = 0;
692  // s[1] = 0; // This has just been deleted.
693  // free(s);
694  Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
695  }
696 
697  if (Dep.isNonLocal())
698  FindUnconditionalPreds(Blocks, BB, DT);
699  }
700 
701  return MadeChange;
702 }
703 
704 namespace {
705  struct CouldRef {
706  typedef Value *argument_type;
707  const CallSite CS;
708  AliasAnalysis *AA;
709 
710  bool operator()(Value *I) {
711  // See if the call site touches the value.
713  AA->getModRefInfo(CS, I, getPointerSize(I, *AA));
714 
715  return A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref;
716  }
717  };
718 }
719 
720 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
721 /// function end block. Ex:
722 /// %A = alloca i32
723 /// ...
724 /// store i32 1, i32* %A
725 /// ret void
726 bool DSE::handleEndBlock(BasicBlock &BB) {
727  bool MadeChange = false;
728 
729  // Keep track of all of the stack objects that are dead at the end of the
730  // function.
731  SmallSetVector<Value*, 16> DeadStackObjects;
732 
733  // Find all of the alloca'd pointers in the entry block.
734  BasicBlock *Entry = BB.getParent()->begin();
735  for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) {
736  if (isa<AllocaInst>(I))
737  DeadStackObjects.insert(I);
738 
739  // Okay, so these are dead heap objects, but if the pointer never escapes
740  // then it's leaked by this function anyways.
741  else if (isAllocLikeFn(I, TLI) && !PointerMayBeCaptured(I, true, true))
742  DeadStackObjects.insert(I);
743  }
744 
745  // Treat byval arguments the same, stores to them are dead at the end of the
746  // function.
747  for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
748  AE = BB.getParent()->arg_end(); AI != AE; ++AI)
749  if (AI->hasByValAttr())
750  DeadStackObjects.insert(AI);
751 
752  // Scan the basic block backwards
753  for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
754  --BBI;
755 
756  // If we find a store, check to see if it points into a dead stack value.
757  if (hasMemoryWrite(BBI, TLI) && isRemovable(BBI)) {
758  // See through pointer-to-pointer bitcasts
759  SmallVector<Value *, 4> Pointers;
761 
762  // Stores to stack values are valid candidates for removal.
763  bool AllDead = true;
764  for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
765  E = Pointers.end(); I != E; ++I)
766  if (!DeadStackObjects.count(*I)) {
767  AllDead = false;
768  break;
769  }
770 
771  if (AllDead) {
772  Instruction *Dead = BBI++;
773 
774  DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n DEAD: "
775  << *Dead << "\n Objects: ";
776  for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
777  E = Pointers.end(); I != E; ++I) {
778  dbgs() << **I;
779  if (llvm::next(I) != E)
780  dbgs() << ", ";
781  }
782  dbgs() << '\n');
783 
784  // DCE instructions only used to calculate that store.
785  DeleteDeadInstruction(Dead, *MD, TLI, &DeadStackObjects);
786  ++NumFastStores;
787  MadeChange = true;
788  continue;
789  }
790  }
791 
792  // Remove any dead non-memory-mutating instructions.
793  if (isInstructionTriviallyDead(BBI, TLI)) {
794  Instruction *Inst = BBI++;
795  DeleteDeadInstruction(Inst, *MD, TLI, &DeadStackObjects);
796  ++NumFastOther;
797  MadeChange = true;
798  continue;
799  }
800 
801  if (isa<AllocaInst>(BBI)) {
802  // Remove allocas from the list of dead stack objects; there can't be
803  // any references before the definition.
804  DeadStackObjects.remove(BBI);
805  continue;
806  }
807 
808  if (CallSite CS = cast<Value>(BBI)) {
809  // Remove allocation function calls from the list of dead stack objects;
810  // there can't be any references before the definition.
811  if (isAllocLikeFn(BBI, TLI))
812  DeadStackObjects.remove(BBI);
813 
814  // If this call does not access memory, it can't be loading any of our
815  // pointers.
816  if (AA->doesNotAccessMemory(CS))
817  continue;
818 
819  // If the call might load from any of our allocas, then any store above
820  // the call is live.
821  CouldRef Pred = { CS, AA };
822  DeadStackObjects.remove_if(Pred);
823 
824  // If all of the allocas were clobbered by the call then we're not going
825  // to find anything else to process.
826  if (DeadStackObjects.empty())
827  break;
828 
829  continue;
830  }
831 
832  AliasAnalysis::Location LoadedLoc;
833 
834  // If we encounter a use of the pointer, it is no longer considered dead
835  if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
836  if (!L->isUnordered()) // Be conservative with atomic/volatile load
837  break;
838  LoadedLoc = AA->getLocation(L);
839  } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
840  LoadedLoc = AA->getLocation(V);
841  } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
842  LoadedLoc = AA->getLocationForSource(MTI);
843  } else if (!BBI->mayReadFromMemory()) {
844  // Instruction doesn't read memory. Note that stores that weren't removed
845  // above will hit this case.
846  continue;
847  } else {
848  // Unknown inst; assume it clobbers everything.
849  break;
850  }
851 
852  // Remove any allocas from the DeadPointer set that are loaded, as this
853  // makes any stores above the access live.
854  RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
855 
856  // If all of the allocas were clobbered by the access then we're not going
857  // to find anything else to process.
858  if (DeadStackObjects.empty())
859  break;
860  }
861 
862  return MadeChange;
863 }
864 
865 namespace {
866  struct CouldAlias {
867  typedef Value *argument_type;
868  const AliasAnalysis::Location &LoadedLoc;
869  AliasAnalysis *AA;
870 
871  bool operator()(Value *I) {
872  // See if the loaded location could alias the stack location.
873  AliasAnalysis::Location StackLoc(I, getPointerSize(I, *AA));
874  return !AA->isNoAlias(StackLoc, LoadedLoc);
875  }
876  };
877 }
878 
879 /// RemoveAccessedObjects - Check to see if the specified location may alias any
880 /// of the stack objects in the DeadStackObjects set. If so, they become live
881 /// because the location is being loaded.
882 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
883  SmallSetVector<Value*, 16> &DeadStackObjects) {
884  const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
885 
886  // A constant can't be in the dead pointer set.
887  if (isa<Constant>(UnderlyingPointer))
888  return;
889 
890  // If the kill pointer can be easily reduced to an alloca, don't bother doing
891  // extraneous AA queries.
892  if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
893  DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
894  return;
895  }
896 
897  // Remove objects that could alias LoadedLoc.
898  CouldAlias Pred = { LoadedLoc, AA };
899  DeadStackObjects.remove_if(Pred);
900 }
unsigned getAlignment() const
const DataLayout * getDataLayout() const
Definition: AliasAnalysis.h:89
AnalysisUsage & addPreserved()
static PassRegistry * getPassRegistry()
void GetUnderlyingObjects(Value *V, SmallVectorImpl< Value * > &Objects, const DataLayout *TD=0, unsigned MaxLookup=6)
bool isReachableFromEntry(const BasicBlock *A) const
Definition: Dominators.h:879
iterator end()
Definition: Function.h:397
Intrinsic::ID getIntrinsicID() const
Definition: IntrinsicInst.h:43
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
static Location getLocationForSource(const MemTransferInst *MTI)
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout *TD)
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
arg_iterator arg_end()
Definition: Function.h:418
char *strcat(char *s1, const char *s2);
const Instruction & front() const
Definition: BasicBlock.h:205
static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA)
F(f)
void initializeDSEPass(PassRegistry &)
static bool isShortenable(Instruction *I)
static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later, const AliasAnalysis::Location &Earlier, AliasAnalysis &AA, int64_t &EarlierOff, int64_t &LaterOff)
ValTy * getArgument(unsigned ArgNo) const
Definition: CallSite.h:111
const CallInst * isFreeCall(const Value *I, const TargetLibraryInfo *TLI)
isFreeCall - Returns non-null if the value is a call to the builtin free()
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
Value * GetUnderlyingObject(Value *V, const DataLayout *TD=0, unsigned MaxLookup=6)
AnalysisUsage & addRequired()
bool isNoAlias(const Location &LocA, const Location &LocB)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
bool has(LibFunc::Func F) const
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define llvm_unreachable(msg)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
bool remove(const value_type &X)
Remove an item from the set vector.
Definition: SetVector.h:118
#define false
Definition: ConvertUTF.c:64
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:102
static Value * getStoredPointerOperand(Instruction *I)
getStoredPointerOperand - Return the pointer that is being written to.
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
static void DeleteDeadInstruction(Instruction *I, MemoryDependenceAnalysis &MD, const TargetLibraryInfo *TLI, SmallSetVector< Value *, 16 > *ValueSet=0)
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:59
static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo *TLI)
iterator begin()
Definition: Function.h:395
static bool isPossibleSelfRead(Instruction *Inst, const AliasAnalysis::Location &InstStoreLoc, Instruction *DepWrite, AliasAnalysis &AA)
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
static AliasAnalysis::Location getLocForRead(Instruction *Inst, AliasAnalysis &AA)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
machine Machine Common Subexpression Elimination
Definition: MachineCSE.cpp:111
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:266
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
static Location getLocationForDest(const MemIntrinsic *MI)
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
arg_iterator arg_begin()
Definition: Function.h:410
Location - A description of a memory location.
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, bool StoreCaptures)
bool isMustAlias(const Location &LocA, const Location &LocB)
isMustAlias - A convenience wrapper.
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:218
char *strncat(char *s1, const char *s2, size_t n);
iterator end()
Definition: BasicBlock.h:195
FunctionPass * createDeadStoreEliminationPass()
STATISTIC(NumFastStores,"Number of stores deleted")
Type * getType() const
Definition: Value.h:111
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:164
Value * getLength() const
Value * stripPointerCasts()
Strips off any unneeded pointer casts, all-zero GEPs and aliases from the specified value...
Definition: Value.cpp:385
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
void setPreservesCFG()
Definition: Pass.cpp:249
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
static void FindUnconditionalPreds(SmallVectorImpl< BasicBlock * > &Blocks, BasicBlock *BB, DominatorTree *DT)
Value * getArgOperand(unsigned i) const
bool isPowerOf2_64(uint64_t Value)
Definition: MathExtras.h:360
Location getLocation(const LoadInst *LI)
void setLength(Value *L)
Instruction * getInst() const
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:156
StringRef getName(LibFunc::Func F) const
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
const Value * Ptr
Ptr - The address of the start of the location.
bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc...
static uint64_t const UnknownSize
Definition: AliasAnalysis.h:84
bool use_empty() const
Definition: Value.h:149
LLVM Value Representation.
Definition: Value.h:66
bool remove_if(UnaryPredicate P)
Remove items from the set vector based on a predicate function.
Definition: SetVector.h:143
static bool isRemovable(Instruction *I)
#define DEBUG(X)
Definition: Debug.h:97
char *strcpy(char *s1, const char *s2);
const TargetLibraryInfo * getTargetLibraryInfo() const
Definition: AliasAnalysis.h:94
static AliasAnalysis::Location getLocForWrite(Instruction *Inst, AliasAnalysis &AA)
bool getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout *DL, const TargetLibraryInfo *TLI, bool RoundToAlign=false)
Compute the size of the object pointed by Ptr. Returns true and the object size in Size if successful...
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
void removeInstruction(Instruction *InstToRemove)
char *strncpy(char *s1, const char *s2, size_t n);