LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
BasicTargetTransformInfo.cpp
Go to the documentation of this file.
1 //===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file provides the implementation of a basic TargetTransformInfo pass
11 /// predicated on the target abstractions present in the target independent
12 /// code generator. It uses these (primarily TargetLowering) to model as much
13 /// of the TTI query interface as possible. It is included by most targets so
14 /// that they can specialize only a small subset of the query space.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #define DEBUG_TYPE "basictti"
19 #include "llvm/CodeGen/Passes.h"
22 #include <utility>
23 
24 using namespace llvm;
25 
26 namespace {
27 
28 class BasicTTI : public ImmutablePass, public TargetTransformInfo {
29  const TargetMachine *TM;
30 
31  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
32  /// are set if the result needs to be inserted and/or extracted from vectors.
33  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
34 
35  const TargetLoweringBase *getTLI() const { return TM->getTargetLowering(); }
36 
37 public:
38  BasicTTI() : ImmutablePass(ID), TM(0) {
39  llvm_unreachable("This pass cannot be directly constructed");
40  }
41 
42  BasicTTI(const TargetMachine *TM) : ImmutablePass(ID), TM(TM) {
44  }
45 
46  virtual void initializePass() {
47  pushTTIStack(this);
48  }
49 
50  virtual void finalizePass() {
51  popTTIStack();
52  }
53 
54  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
56  }
57 
58  /// Pass identification.
59  static char ID;
60 
61  /// Provide necessary pointer adjustments for the two base classes.
62  virtual void *getAdjustedAnalysisPointer(const void *ID) {
63  if (ID == &TargetTransformInfo::ID)
64  return (TargetTransformInfo*)this;
65  return this;
66  }
67 
68  virtual bool hasBranchDivergence() const;
69 
70  /// \name Scalar TTI Implementations
71  /// @{
72 
73  virtual bool isLegalAddImmediate(int64_t imm) const;
74  virtual bool isLegalICmpImmediate(int64_t imm) const;
75  virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
76  int64_t BaseOffset, bool HasBaseReg,
77  int64_t Scale) const;
78  virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
79  int64_t BaseOffset, bool HasBaseReg,
80  int64_t Scale) const;
81  virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
82  virtual bool isTypeLegal(Type *Ty) const;
83  virtual unsigned getJumpBufAlignment() const;
84  virtual unsigned getJumpBufSize() const;
85  virtual bool shouldBuildLookupTables() const;
86  virtual bool haveFastSqrt(Type *Ty) const;
87  virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const;
88 
89  /// @}
90 
91  /// \name Vector TTI Implementations
92  /// @{
93 
94  virtual unsigned getNumberOfRegisters(bool Vector) const;
95  virtual unsigned getMaximumUnrollFactor() const;
96  virtual unsigned getRegisterBitWidth(bool Vector) const;
97  virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
98  OperandValueKind,
99  OperandValueKind) const;
100  virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
101  int Index, Type *SubTp) const;
102  virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
103  Type *Src) const;
104  virtual unsigned getCFInstrCost(unsigned Opcode) const;
105  virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
106  Type *CondTy) const;
107  virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
108  unsigned Index) const;
109  virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
110  unsigned Alignment,
111  unsigned AddressSpace) const;
112  virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
113  ArrayRef<Type*> Tys) const;
114  virtual unsigned getNumberOfParts(Type *Tp) const;
115  virtual unsigned getAddressComputationCost(Type *Ty, bool IsComplex) const;
116  virtual unsigned getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwise) const;
117 
118  /// @}
119 };
120 
121 }
122 
123 INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
124  "Target independent code generator's TTI", true, true, false)
125 char BasicTTI::ID = 0;
126 
129  return new BasicTTI(TM);
130 }
131 
132 bool BasicTTI::hasBranchDivergence() const { return false; }
133 
134 bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
135  return getTLI()->isLegalAddImmediate(imm);
136 }
137 
138 bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
139  return getTLI()->isLegalICmpImmediate(imm);
140 }
141 
142 bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
143  int64_t BaseOffset, bool HasBaseReg,
144  int64_t Scale) const {
146  AM.BaseGV = BaseGV;
147  AM.BaseOffs = BaseOffset;
148  AM.HasBaseReg = HasBaseReg;
149  AM.Scale = Scale;
150  return getTLI()->isLegalAddressingMode(AM, Ty);
151 }
152 
154  int64_t BaseOffset, bool HasBaseReg,
155  int64_t Scale) const {
157  AM.BaseGV = BaseGV;
158  AM.BaseOffs = BaseOffset;
159  AM.HasBaseReg = HasBaseReg;
160  AM.Scale = Scale;
161  return getTLI()->getScalingFactorCost(AM, Ty);
162 }
163 
164 bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
165  return getTLI()->isTruncateFree(Ty1, Ty2);
166 }
167 
168 bool BasicTTI::isTypeLegal(Type *Ty) const {
169  EVT T = getTLI()->getValueType(Ty);
170  return getTLI()->isTypeLegal(T);
171 }
172 
173 unsigned BasicTTI::getJumpBufAlignment() const {
174  return getTLI()->getJumpBufAlignment();
175 }
176 
177 unsigned BasicTTI::getJumpBufSize() const {
178  return getTLI()->getJumpBufSize();
179 }
180 
181 bool BasicTTI::shouldBuildLookupTables() const {
182  const TargetLoweringBase *TLI = getTLI();
183  return TLI->supportJumpTables() &&
186 }
187 
188 bool BasicTTI::haveFastSqrt(Type *Ty) const {
189  const TargetLoweringBase *TLI = getTLI();
190  EVT VT = TLI->getValueType(Ty);
191  return TLI->isTypeLegal(VT) && TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
192 }
193 
194 void BasicTTI::getUnrollingPreferences(Loop *, UnrollingPreferences &) const { }
195 
196 //===----------------------------------------------------------------------===//
197 //
198 // Calls used by the vectorizers.
199 //
200 //===----------------------------------------------------------------------===//
201 
202 unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
203  bool Extract) const {
204  assert (Ty->isVectorTy() && "Can only scalarize vectors");
205  unsigned Cost = 0;
206 
207  for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
208  if (Insert)
209  Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
210  if (Extract)
211  Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
212  }
213 
214  return Cost;
215 }
216 
217 unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
218  return 1;
219 }
220 
221 unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
222  return 32;
223 }
224 
225 unsigned BasicTTI::getMaximumUnrollFactor() const {
226  return 1;
227 }
228 
229 unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
230  OperandValueKind,
231  OperandValueKind) const {
232  // Check if any of the operands are vector operands.
233  const TargetLoweringBase *TLI = getTLI();
234  int ISD = TLI->InstructionOpcodeToISD(Opcode);
235  assert(ISD && "Invalid opcode");
236 
237  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
238 
239  bool IsFloat = Ty->getScalarType()->isFloatingPointTy();
240  // Assume that floating point arithmetic operations cost twice as much as
241  // integer operations.
242  unsigned OpCost = (IsFloat ? 2 : 1);
243 
244  if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
245  // The operation is legal. Assume it costs 1.
246  // If the type is split to multiple registers, assume that there is some
247  // overhead to this.
248  // TODO: Once we have extract/insert subvector cost we need to use them.
249  if (LT.first > 1)
250  return LT.first * 2 * OpCost;
251  return LT.first * 1 * OpCost;
252  }
253 
254  if (!TLI->isOperationExpand(ISD, LT.second)) {
255  // If the operation is custom lowered then assume
256  // thare the code is twice as expensive.
257  return LT.first * 2 * OpCost;
258  }
259 
260  // Else, assume that we need to scalarize this op.
261  if (Ty->isVectorTy()) {
262  unsigned Num = Ty->getVectorNumElements();
263  unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
264  // return the cost of multiple scalar invocation plus the cost of inserting
265  // and extracting the values.
266  return getScalarizationOverhead(Ty, true, true) + Num * Cost;
267  }
268 
269  // We don't know anything about this scalar instruction.
270  return OpCost;
271 }
272 
273 unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
274  Type *SubTp) const {
275  return 1;
276 }
277 
278 unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
279  Type *Src) const {
280  const TargetLoweringBase *TLI = getTLI();
281  int ISD = TLI->InstructionOpcodeToISD(Opcode);
282  assert(ISD && "Invalid opcode");
283 
284  std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
285  std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
286 
287  // Check for NOOP conversions.
288  if (SrcLT.first == DstLT.first &&
289  SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
290 
291  // Bitcast between types that are legalized to the same type are free.
292  if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
293  return 0;
294  }
295 
296  if (Opcode == Instruction::Trunc &&
297  TLI->isTruncateFree(SrcLT.second, DstLT.second))
298  return 0;
299 
300  if (Opcode == Instruction::ZExt &&
301  TLI->isZExtFree(SrcLT.second, DstLT.second))
302  return 0;
303 
304  // If the cast is marked as legal (or promote) then assume low cost.
305  if (TLI->isOperationLegalOrPromote(ISD, DstLT.second))
306  return 1;
307 
308  // Handle scalar conversions.
309  if (!Src->isVectorTy() && !Dst->isVectorTy()) {
310 
311  // Scalar bitcasts are usually free.
312  if (Opcode == Instruction::BitCast)
313  return 0;
314 
315  // Just check the op cost. If the operation is legal then assume it costs 1.
316  if (!TLI->isOperationExpand(ISD, DstLT.second))
317  return 1;
318 
319  // Assume that illegal scalar instruction are expensive.
320  return 4;
321  }
322 
323  // Check vector-to-vector casts.
324  if (Dst->isVectorTy() && Src->isVectorTy()) {
325 
326  // If the cast is between same-sized registers, then the check is simple.
327  if (SrcLT.first == DstLT.first &&
328  SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
329 
330  // Assume that Zext is done using AND.
331  if (Opcode == Instruction::ZExt)
332  return 1;
333 
334  // Assume that sext is done using SHL and SRA.
335  if (Opcode == Instruction::SExt)
336  return 2;
337 
338  // Just check the op cost. If the operation is legal then assume it costs
339  // 1 and multiply by the type-legalization overhead.
340  if (!TLI->isOperationExpand(ISD, DstLT.second))
341  return SrcLT.first * 1;
342  }
343 
344  // If we are converting vectors and the operation is illegal, or
345  // if the vectors are legalized to different types, estimate the
346  // scalarization costs.
347  unsigned Num = Dst->getVectorNumElements();
348  unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
349  Src->getScalarType());
350 
351  // Return the cost of multiple scalar invocation plus the cost of
352  // inserting and extracting the values.
353  return getScalarizationOverhead(Dst, true, true) + Num * Cost;
354  }
355 
356  // We already handled vector-to-vector and scalar-to-scalar conversions. This
357  // is where we handle bitcast between vectors and scalars. We need to assume
358  // that the conversion is scalarized in one way or another.
359  if (Opcode == Instruction::BitCast)
360  // Illegal bitcasts are done by storing and loading from a stack slot.
361  return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
362  (Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
363 
364  llvm_unreachable("Unhandled cast");
365  }
366 
367 unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
368  // Branches are assumed to be predicted.
369  return 0;
370 }
371 
372 unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
373  Type *CondTy) const {
374  const TargetLoweringBase *TLI = getTLI();
375  int ISD = TLI->InstructionOpcodeToISD(Opcode);
376  assert(ISD && "Invalid opcode");
377 
378  // Selects on vectors are actually vector selects.
379  if (ISD == ISD::SELECT) {
380  assert(CondTy && "CondTy must exist");
381  if (CondTy->isVectorTy())
382  ISD = ISD::VSELECT;
383  }
384 
385  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
386 
387  if (!TLI->isOperationExpand(ISD, LT.second)) {
388  // The operation is legal. Assume it costs 1. Multiply
389  // by the type-legalization overhead.
390  return LT.first * 1;
391  }
392 
393  // Otherwise, assume that the cast is scalarized.
394  if (ValTy->isVectorTy()) {
395  unsigned Num = ValTy->getVectorNumElements();
396  if (CondTy)
397  CondTy = CondTy->getScalarType();
398  unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
399  CondTy);
400 
401  // Return the cost of multiple scalar invocation plus the cost of inserting
402  // and extracting the values.
403  return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
404  }
405 
406  // Unknown scalar opcode.
407  return 1;
408 }
409 
410 unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
411  unsigned Index) const {
412  return 1;
413 }
414 
415 unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
416  unsigned Alignment,
417  unsigned AddressSpace) const {
418  assert(!Src->isVoidTy() && "Invalid type");
419  std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Src);
420 
421  // Assume that all loads of legal types cost 1.
422  return LT.first;
423 }
424 
425 unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy,
426  ArrayRef<Type *> Tys) const {
427  unsigned ISD = 0;
428  switch (IID) {
429  default: {
430  // Assume that we need to scalarize this intrinsic.
431  unsigned ScalarizationCost = 0;
432  unsigned ScalarCalls = 1;
433  if (RetTy->isVectorTy()) {
434  ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
435  ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
436  }
437  for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
438  if (Tys[i]->isVectorTy()) {
439  ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
440  ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
441  }
442  }
443 
444  return ScalarCalls + ScalarizationCost;
445  }
446  // Look for intrinsics that can be lowered directly or turned into a scalar
447  // intrinsic call.
448  case Intrinsic::sqrt: ISD = ISD::FSQRT; break;
449  case Intrinsic::sin: ISD = ISD::FSIN; break;
450  case Intrinsic::cos: ISD = ISD::FCOS; break;
451  case Intrinsic::exp: ISD = ISD::FEXP; break;
452  case Intrinsic::exp2: ISD = ISD::FEXP2; break;
453  case Intrinsic::log: ISD = ISD::FLOG; break;
454  case Intrinsic::log10: ISD = ISD::FLOG10; break;
455  case Intrinsic::log2: ISD = ISD::FLOG2; break;
456  case Intrinsic::fabs: ISD = ISD::FABS; break;
457  case Intrinsic::copysign: ISD = ISD::FCOPYSIGN; break;
458  case Intrinsic::floor: ISD = ISD::FFLOOR; break;
459  case Intrinsic::ceil: ISD = ISD::FCEIL; break;
460  case Intrinsic::trunc: ISD = ISD::FTRUNC; break;
462  ISD = ISD::FNEARBYINT; break;
463  case Intrinsic::rint: ISD = ISD::FRINT; break;
464  case Intrinsic::round: ISD = ISD::FROUND; break;
465  case Intrinsic::pow: ISD = ISD::FPOW; break;
466  case Intrinsic::fma: ISD = ISD::FMA; break;
467  case Intrinsic::fmuladd: ISD = ISD::FMA; break; // FIXME: mul + add?
470  return 0;
471  }
472 
473  const TargetLoweringBase *TLI = getTLI();
474  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(RetTy);
475 
476  if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
477  // The operation is legal. Assume it costs 1.
478  // If the type is split to multiple registers, assume that thre is some
479  // overhead to this.
480  // TODO: Once we have extract/insert subvector cost we need to use them.
481  if (LT.first > 1)
482  return LT.first * 2;
483  return LT.first * 1;
484  }
485 
486  if (!TLI->isOperationExpand(ISD, LT.second)) {
487  // If the operation is custom lowered then assume
488  // thare the code is twice as expensive.
489  return LT.first * 2;
490  }
491 
492  // Else, assume that we need to scalarize this intrinsic. For math builtins
493  // this will emit a costly libcall, adding call overhead and spills. Make it
494  // very expensive.
495  if (RetTy->isVectorTy()) {
496  unsigned Num = RetTy->getVectorNumElements();
497  unsigned Cost = TopTTI->getIntrinsicInstrCost(IID, RetTy->getScalarType(),
498  Tys);
499  return 10 * Cost * Num;
500  }
501 
502  // This is going to be turned into a library call, make it expensive.
503  return 10;
504 }
505 
506 unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
507  std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(Tp);
508  return LT.first;
509 }
510 
511 unsigned BasicTTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
512  return 0;
513 }
514 
515 unsigned BasicTTI::getReductionCost(unsigned Opcode, Type *Ty,
516  bool IsPairwise) const {
517  assert(Ty->isVectorTy() && "Expect a vector type");
518  unsigned NumVecElts = Ty->getVectorNumElements();
519  unsigned NumReduxLevels = Log2_32(NumVecElts);
520  unsigned ArithCost = NumReduxLevels *
521  TopTTI->getArithmeticInstrCost(Opcode, Ty);
522  // Assume the pairwise shuffles add a cost.
523  unsigned ShuffleCost =
524  NumReduxLevels * (IsPairwise + 1) *
525  TopTTI->getShuffleCost(SK_ExtractSubvector, Ty, NumVecElts / 2, Ty);
526  return ShuffleCost + ArithCost + getScalarizationOverhead(Ty, false, true);
527 }
static PassRegistry * getPassRegistry()
ImmutablePass * createBasicTargetTransformInfoPass(const TargetMachine *TM)
Create a basic TargetTransformInfo analysis pass.
virtual bool isZExtFree(Type *, Type *) const
bool supportJumpTables() const
Return whether the target can generate code for jump tables.
EVT getValueType(Type *Ty, bool AllowUnknown=false) const
#define llvm_unreachable(msg)
void initializeBasicTTIPass(PassRegistry &)
static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, const LSRUse &LU, const Formula &F)
static ConstantInt * ExtractElement(Constant *V, Constant *Idx)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define false
Definition: ConvertUTF.c:64
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
bool isFloatingPointTy() const
Definition: Type.h:162
bool isOperationLegalOrPromote(unsigned Op, EVT VT) const
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
bool isTypeLegal(EVT VT) const
#define true
Definition: ConvertUTF.c:65
bool isVectorTy() const
Definition: Type.h:229
bool isOperationLegalOrCustom(unsigned Op, EVT VT) const
virtual bool isTruncateFree(Type *, Type *) const
static char ID
Analysis group identification.
#define INITIALIZE_AG_PASS(passName, agName, arg, name, cfg, analysis, def)
Definition: PassSupport.h:268
unsigned getVectorNumElements() const
Definition: Type.cpp:214
AddressSpace
Definition: NVPTXBaseInfo.h:22
unsigned Log2_32(uint32_t Value)
Definition: MathExtras.h:443
virtual void getAnalysisUsage(AnalysisUsage &AU) const
All pass subclasses must call TargetTransformInfo::getAnalysisUsage.
const Type * getScalarType() const
Definition: Type.cpp:51
bool isOperationExpand(unsigned Op, EVT VT) const
std::pair< unsigned, MVT > getTypeLegalizationCost(Type *Ty) const
Estimate the cost of type-legalization and the legalized type.
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140