LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
InstCombineCompares.cpp
Go to the documentation of this file.
1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitICmp and visitFCmp functions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/IntrinsicInst.h"
24 using namespace llvm;
25 using namespace PatternMatch;
26 
28  return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
29 }
30 
31 /// AddOne - Add one to a ConstantInt
33  return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
34 }
35 /// SubOne - Subtract one from a ConstantInt
37  return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
38 }
39 
41  return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
42 }
43 
44 static bool HasAddOverflow(ConstantInt *Result,
45  ConstantInt *In1, ConstantInt *In2,
46  bool IsSigned) {
47  if (!IsSigned)
48  return Result->getValue().ult(In1->getValue());
49 
50  if (In2->isNegative())
51  return Result->getValue().sgt(In1->getValue());
52  return Result->getValue().slt(In1->getValue());
53 }
54 
55 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
56 /// overflowed for this type.
57 static bool AddWithOverflow(Constant *&Result, Constant *In1,
58  Constant *In2, bool IsSigned = false) {
59  Result = ConstantExpr::getAdd(In1, In2);
60 
61  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
62  for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
64  if (HasAddOverflow(ExtractElement(Result, Idx),
65  ExtractElement(In1, Idx),
66  ExtractElement(In2, Idx),
67  IsSigned))
68  return true;
69  }
70  return false;
71  }
72 
73  return HasAddOverflow(cast<ConstantInt>(Result),
74  cast<ConstantInt>(In1), cast<ConstantInt>(In2),
75  IsSigned);
76 }
77 
78 static bool HasSubOverflow(ConstantInt *Result,
79  ConstantInt *In1, ConstantInt *In2,
80  bool IsSigned) {
81  if (!IsSigned)
82  return Result->getValue().ugt(In1->getValue());
83 
84  if (In2->isNegative())
85  return Result->getValue().slt(In1->getValue());
86 
87  return Result->getValue().sgt(In1->getValue());
88 }
89 
90 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
91 /// overflowed for this type.
92 static bool SubWithOverflow(Constant *&Result, Constant *In1,
93  Constant *In2, bool IsSigned = false) {
94  Result = ConstantExpr::getSub(In1, In2);
95 
96  if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
97  for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
99  if (HasSubOverflow(ExtractElement(Result, Idx),
100  ExtractElement(In1, Idx),
101  ExtractElement(In2, Idx),
102  IsSigned))
103  return true;
104  }
105  return false;
106  }
107 
108  return HasSubOverflow(cast<ConstantInt>(Result),
109  cast<ConstantInt>(In1), cast<ConstantInt>(In2),
110  IsSigned);
111 }
112 
113 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
114 /// comparison only checks the sign bit. If it only checks the sign bit, set
115 /// TrueIfSigned if the result of the comparison is true when the input value is
116 /// signed.
118  bool &TrueIfSigned) {
119  switch (pred) {
120  case ICmpInst::ICMP_SLT: // True if LHS s< 0
121  TrueIfSigned = true;
122  return RHS->isZero();
123  case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
124  TrueIfSigned = true;
125  return RHS->isAllOnesValue();
126  case ICmpInst::ICMP_SGT: // True if LHS s> -1
127  TrueIfSigned = false;
128  return RHS->isAllOnesValue();
129  case ICmpInst::ICMP_UGT:
130  // True if LHS u> RHS and RHS == high-bit-mask - 1
131  TrueIfSigned = true;
132  return RHS->isMaxValue(true);
133  case ICmpInst::ICMP_UGE:
134  // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135  TrueIfSigned = true;
136  return RHS->getValue().isSignBit();
137  default:
138  return false;
139  }
140 }
141 
142 /// Returns true if the exploded icmp can be expressed as a signed comparison
143 /// to zero and updates the predicate accordingly.
144 /// The signedness of the comparison is preserved.
145 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
146  if (!ICmpInst::isSigned(pred))
147  return false;
148 
149  if (RHS->isZero())
150  return ICmpInst::isRelational(pred);
151 
152  if (RHS->isOne()) {
153  if (pred == ICmpInst::ICMP_SLT) {
154  pred = ICmpInst::ICMP_SLE;
155  return true;
156  }
157  } else if (RHS->isAllOnesValue()) {
158  if (pred == ICmpInst::ICMP_SGT) {
159  pred = ICmpInst::ICMP_SGE;
160  return true;
161  }
162  }
163 
164  return false;
165 }
166 
167 // isHighOnes - Return true if the constant is of the form 1+0+.
168 // This is the same as lowones(~X).
169 static bool isHighOnes(const ConstantInt *CI) {
170  return (~CI->getValue() + 1).isPowerOf2();
171 }
172 
173 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
174 /// set of known zero and one bits, compute the maximum and minimum values that
175 /// could have the specified known zero and known one bits, returning them in
176 /// min/max.
177 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
178  const APInt& KnownOne,
179  APInt& Min, APInt& Max) {
180  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
181  KnownZero.getBitWidth() == Min.getBitWidth() &&
182  KnownZero.getBitWidth() == Max.getBitWidth() &&
183  "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
184  APInt UnknownBits = ~(KnownZero|KnownOne);
185 
186  // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
187  // bit if it is unknown.
188  Min = KnownOne;
189  Max = KnownOne|UnknownBits;
190 
191  if (UnknownBits.isNegative()) { // Sign bit is unknown
192  Min.setBit(Min.getBitWidth()-1);
193  Max.clearBit(Max.getBitWidth()-1);
194  }
195 }
196 
197 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
198 // a set of known zero and one bits, compute the maximum and minimum values that
199 // could have the specified known zero and known one bits, returning them in
200 // min/max.
201 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
202  const APInt &KnownOne,
203  APInt &Min, APInt &Max) {
204  assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
205  KnownZero.getBitWidth() == Min.getBitWidth() &&
206  KnownZero.getBitWidth() == Max.getBitWidth() &&
207  "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
208  APInt UnknownBits = ~(KnownZero|KnownOne);
209 
210  // The minimum value is when the unknown bits are all zeros.
211  Min = KnownOne;
212  // The maximum value is when the unknown bits are all ones.
213  Max = KnownOne|UnknownBits;
214 }
215 
216 
217 
218 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
219 /// cmp pred (load (gep GV, ...)), cmpcst
220 /// where GV is a global variable with a constant initializer. Try to simplify
221 /// this into some simple computation that does not need the load. For example
222 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
223 ///
224 /// If AndCst is non-null, then the loaded value is masked with that constant
225 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
228  CmpInst &ICI, ConstantInt *AndCst) {
229  // We need TD information to know the pointer size unless this is inbounds.
230  if (!GEP->isInBounds() && TD == 0)
231  return 0;
232 
233  Constant *Init = GV->getInitializer();
234  if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
235  return 0;
236 
237  uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
238  if (ArrayElementCount > 1024) return 0; // Don't blow up on huge arrays.
239 
240  // There are many forms of this optimization we can handle, for now, just do
241  // the simple index into a single-dimensional array.
242  //
243  // Require: GEP GV, 0, i {{, constant indices}}
244  if (GEP->getNumOperands() < 3 ||
245  !isa<ConstantInt>(GEP->getOperand(1)) ||
246  !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
247  isa<Constant>(GEP->getOperand(2)))
248  return 0;
249 
250  // Check that indices after the variable are constants and in-range for the
251  // type they index. Collect the indices. This is typically for arrays of
252  // structs.
253  SmallVector<unsigned, 4> LaterIndices;
254 
255  Type *EltTy = Init->getType()->getArrayElementType();
256  for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
257  ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
258  if (Idx == 0) return 0; // Variable index.
259 
260  uint64_t IdxVal = Idx->getZExtValue();
261  if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
262 
263  if (StructType *STy = dyn_cast<StructType>(EltTy))
264  EltTy = STy->getElementType(IdxVal);
265  else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
266  if (IdxVal >= ATy->getNumElements()) return 0;
267  EltTy = ATy->getElementType();
268  } else {
269  return 0; // Unknown type.
270  }
271 
272  LaterIndices.push_back(IdxVal);
273  }
274 
275  enum { Overdefined = -3, Undefined = -2 };
276 
277  // Variables for our state machines.
278 
279  // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
280  // "i == 47 | i == 87", where 47 is the first index the condition is true for,
281  // and 87 is the second (and last) index. FirstTrueElement is -2 when
282  // undefined, otherwise set to the first true element. SecondTrueElement is
283  // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
284  int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
285 
286  // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
287  // form "i != 47 & i != 87". Same state transitions as for true elements.
288  int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
289 
290  /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
291  /// define a state machine that triggers for ranges of values that the index
292  /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
293  /// This is -2 when undefined, -3 when overdefined, and otherwise the last
294  /// index in the range (inclusive). We use -2 for undefined here because we
295  /// use relative comparisons and don't want 0-1 to match -1.
296  int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
297 
298  // MagicBitvector - This is a magic bitvector where we set a bit if the
299  // comparison is true for element 'i'. If there are 64 elements or less in
300  // the array, this will fully represent all the comparison results.
301  uint64_t MagicBitvector = 0;
302 
303 
304  // Scan the array and see if one of our patterns matches.
305  Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
306  for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
307  Constant *Elt = Init->getAggregateElement(i);
308  if (Elt == 0) return 0;
309 
310  // If this is indexing an array of structures, get the structure element.
311  if (!LaterIndices.empty())
312  Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
313 
314  // If the element is masked, handle it.
315  if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
316 
317  // Find out if the comparison would be true or false for the i'th element.
319  CompareRHS, TD, TLI);
320  // If the result is undef for this element, ignore it.
321  if (isa<UndefValue>(C)) {
322  // Extend range state machines to cover this element in case there is an
323  // undef in the middle of the range.
324  if (TrueRangeEnd == (int)i-1)
325  TrueRangeEnd = i;
326  if (FalseRangeEnd == (int)i-1)
327  FalseRangeEnd = i;
328  continue;
329  }
330 
331  // If we can't compute the result for any of the elements, we have to give
332  // up evaluating the entire conditional.
333  if (!isa<ConstantInt>(C)) return 0;
334 
335  // Otherwise, we know if the comparison is true or false for this element,
336  // update our state machines.
337  bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
338 
339  // State machine for single/double/range index comparison.
340  if (IsTrueForElt) {
341  // Update the TrueElement state machine.
342  if (FirstTrueElement == Undefined)
343  FirstTrueElement = TrueRangeEnd = i; // First true element.
344  else {
345  // Update double-compare state machine.
346  if (SecondTrueElement == Undefined)
347  SecondTrueElement = i;
348  else
349  SecondTrueElement = Overdefined;
350 
351  // Update range state machine.
352  if (TrueRangeEnd == (int)i-1)
353  TrueRangeEnd = i;
354  else
355  TrueRangeEnd = Overdefined;
356  }
357  } else {
358  // Update the FalseElement state machine.
359  if (FirstFalseElement == Undefined)
360  FirstFalseElement = FalseRangeEnd = i; // First false element.
361  else {
362  // Update double-compare state machine.
363  if (SecondFalseElement == Undefined)
364  SecondFalseElement = i;
365  else
366  SecondFalseElement = Overdefined;
367 
368  // Update range state machine.
369  if (FalseRangeEnd == (int)i-1)
370  FalseRangeEnd = i;
371  else
372  FalseRangeEnd = Overdefined;
373  }
374  }
375 
376 
377  // If this element is in range, update our magic bitvector.
378  if (i < 64 && IsTrueForElt)
379  MagicBitvector |= 1ULL << i;
380 
381  // If all of our states become overdefined, bail out early. Since the
382  // predicate is expensive, only check it every 8 elements. This is only
383  // really useful for really huge arrays.
384  if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
385  SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
386  FalseRangeEnd == Overdefined)
387  return 0;
388  }
389 
390  // Now that we've scanned the entire array, emit our new comparison(s). We
391  // order the state machines in complexity of the generated code.
392  Value *Idx = GEP->getOperand(2);
393 
394  // If the index is larger than the pointer size of the target, truncate the
395  // index down like the GEP would do implicitly. We don't have to do this for
396  // an inbounds GEP because the index can't be out of range.
397  if (!GEP->isInBounds()) {
398  Type *IntPtrTy = TD->getIntPtrType(GEP->getType());
399  unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
400  if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
401  Idx = Builder->CreateTrunc(Idx, IntPtrTy);
402  }
403 
404  // If the comparison is only true for one or two elements, emit direct
405  // comparisons.
406  if (SecondTrueElement != Overdefined) {
407  // None true -> false.
408  if (FirstTrueElement == Undefined)
409  return ReplaceInstUsesWith(ICI, Builder->getFalse());
410 
411  Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
412 
413  // True for one element -> 'i == 47'.
414  if (SecondTrueElement == Undefined)
415  return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
416 
417  // True for two elements -> 'i == 47 | i == 72'.
418  Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
419  Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
420  Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
421  return BinaryOperator::CreateOr(C1, C2);
422  }
423 
424  // If the comparison is only false for one or two elements, emit direct
425  // comparisons.
426  if (SecondFalseElement != Overdefined) {
427  // None false -> true.
428  if (FirstFalseElement == Undefined)
429  return ReplaceInstUsesWith(ICI, Builder->getTrue());
430 
431  Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
432 
433  // False for one element -> 'i != 47'.
434  if (SecondFalseElement == Undefined)
435  return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
436 
437  // False for two elements -> 'i != 47 & i != 72'.
438  Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
439  Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
440  Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
441  return BinaryOperator::CreateAnd(C1, C2);
442  }
443 
444  // If the comparison can be replaced with a range comparison for the elements
445  // where it is true, emit the range check.
446  if (TrueRangeEnd != Overdefined) {
447  assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
448 
449  // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
450  if (FirstTrueElement) {
451  Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
452  Idx = Builder->CreateAdd(Idx, Offs);
453  }
454 
455  Value *End = ConstantInt::get(Idx->getType(),
456  TrueRangeEnd-FirstTrueElement+1);
457  return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
458  }
459 
460  // False range check.
461  if (FalseRangeEnd != Overdefined) {
462  assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
463  // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
464  if (FirstFalseElement) {
465  Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
466  Idx = Builder->CreateAdd(Idx, Offs);
467  }
468 
469  Value *End = ConstantInt::get(Idx->getType(),
470  FalseRangeEnd-FirstFalseElement);
471  return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
472  }
473 
474 
475  // If a magic bitvector captures the entire comparison state
476  // of this load, replace it with computation that does:
477  // ((magic_cst >> i) & 1) != 0
478  {
479  Type *Ty = 0;
480 
481  // Look for an appropriate type:
482  // - The type of Idx if the magic fits
483  // - The smallest fitting legal type if we have a DataLayout
484  // - Default to i32
485  if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
486  Ty = Idx->getType();
487  else if (TD)
488  Ty = TD->getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
489  else if (ArrayElementCount <= 32)
490  Ty = Type::getInt32Ty(Init->getContext());
491 
492  if (Ty != 0) {
493  Value *V = Builder->CreateIntCast(Idx, Ty, false);
494  V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
495  V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
496  return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
497  }
498  }
499 
500  return 0;
501 }
502 
503 
504 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
505 /// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
506 /// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
507 /// be complex, and scales are involved. The above expression would also be
508 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
509 /// This later form is less amenable to optimization though, and we are allowed
510 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
511 ///
512 /// If we can't emit an optimized form for this expression, this returns null.
513 ///
515  DataLayout &TD = *IC.getDataLayout();
517 
518  // Check to see if this gep only has a single variable index. If so, and if
519  // any constant indices are a multiple of its scale, then we can compute this
520  // in terms of the scale of the variable index. For example, if the GEP
521  // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
522  // because the expression will cross zero at the same point.
523  unsigned i, e = GEP->getNumOperands();
524  int64_t Offset = 0;
525  for (i = 1; i != e; ++i, ++GTI) {
526  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
527  // Compute the aggregate offset of constant indices.
528  if (CI->isZero()) continue;
529 
530  // Handle a struct index, which adds its field offset to the pointer.
531  if (StructType *STy = dyn_cast<StructType>(*GTI)) {
532  Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
533  } else {
534  uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
535  Offset += Size*CI->getSExtValue();
536  }
537  } else {
538  // Found our variable index.
539  break;
540  }
541  }
542 
543  // If there are no variable indices, we must have a constant offset, just
544  // evaluate it the general way.
545  if (i == e) return 0;
546 
547  Value *VariableIdx = GEP->getOperand(i);
548  // Determine the scale factor of the variable element. For example, this is
549  // 4 if the variable index is into an array of i32.
550  uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
551 
552  // Verify that there are no other variable indices. If so, emit the hard way.
553  for (++i, ++GTI; i != e; ++i, ++GTI) {
554  ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
555  if (!CI) return 0;
556 
557  // Compute the aggregate offset of constant indices.
558  if (CI->isZero()) continue;
559 
560  // Handle a struct index, which adds its field offset to the pointer.
561  if (StructType *STy = dyn_cast<StructType>(*GTI)) {
562  Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
563  } else {
564  uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
565  Offset += Size*CI->getSExtValue();
566  }
567  }
568 
569 
570 
571  // Okay, we know we have a single variable index, which must be a
572  // pointer/array/vector index. If there is no offset, life is simple, return
573  // the index.
574  Type *IntPtrTy = TD.getIntPtrType(GEP->getOperand(0)->getType());
575  unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
576  if (Offset == 0) {
577  // Cast to intptrty in case a truncation occurs. If an extension is needed,
578  // we don't need to bother extending: the extension won't affect where the
579  // computation crosses zero.
580  if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
581  VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
582  }
583  return VariableIdx;
584  }
585 
586  // Otherwise, there is an index. The computation we will do will be modulo
587  // the pointer size, so get it.
588  uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
589 
590  Offset &= PtrSizeMask;
591  VariableScale &= PtrSizeMask;
592 
593  // To do this transformation, any constant index must be a multiple of the
594  // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
595  // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
596  // multiple of the variable scale.
597  int64_t NewOffs = Offset / (int64_t)VariableScale;
598  if (Offset != NewOffs*(int64_t)VariableScale)
599  return 0;
600 
601  // Okay, we can do this evaluation. Start by converting the index to intptr.
602  if (VariableIdx->getType() != IntPtrTy)
603  VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
604  true /*Signed*/);
605  Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
606  return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
607 }
608 
609 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
610 /// else. At this point we know that the GEP is on the LHS of the comparison.
612  ICmpInst::Predicate Cond,
613  Instruction &I) {
614  // Don't transform signed compares of GEPs into index compares. Even if the
615  // GEP is inbounds, the final add of the base pointer can have signed overflow
616  // and would change the result of the icmp.
617  // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
618  // the maximum signed value for the pointer type.
619  if (ICmpInst::isSigned(Cond))
620  return 0;
621 
622  // Look through bitcasts.
623  if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
624  RHS = BCI->getOperand(0);
625 
626  Value *PtrBase = GEPLHS->getOperand(0);
627  if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
628  // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
629  // This transformation (ignoring the base and scales) is valid because we
630  // know pointers can't overflow since the gep is inbounds. See if we can
631  // output an optimized form.
632  Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
633 
634  // If not, synthesize the offset the hard way.
635  if (Offset == 0)
636  Offset = EmitGEPOffset(GEPLHS);
637  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
638  Constant::getNullValue(Offset->getType()));
639  } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
640  // If the base pointers are different, but the indices are the same, just
641  // compare the base pointer.
642  if (PtrBase != GEPRHS->getOperand(0)) {
643  bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
644  IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
645  GEPRHS->getOperand(0)->getType();
646  if (IndicesTheSame)
647  for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
648  if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
649  IndicesTheSame = false;
650  break;
651  }
652 
653  // If all indices are the same, just compare the base pointers.
654  if (IndicesTheSame)
655  return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
656 
657  // If we're comparing GEPs with two base pointers that only differ in type
658  // and both GEPs have only constant indices or just one use, then fold
659  // the compare with the adjusted indices.
660  if (TD && GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
661  (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
662  (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
663  PtrBase->stripPointerCasts() ==
664  GEPRHS->getOperand(0)->stripPointerCasts()) {
665  Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
666  EmitGEPOffset(GEPLHS),
667  EmitGEPOffset(GEPRHS));
668  return ReplaceInstUsesWith(I, Cmp);
669  }
670 
671  // Otherwise, the base pointers are different and the indices are
672  // different, bail out.
673  return 0;
674  }
675 
676  // If one of the GEPs has all zero indices, recurse.
677  bool AllZeros = true;
678  for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
679  if (!isa<Constant>(GEPLHS->getOperand(i)) ||
680  !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
681  AllZeros = false;
682  break;
683  }
684  if (AllZeros)
685  return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
687 
688  // If the other GEP has all zero indices, recurse.
689  AllZeros = true;
690  for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
691  if (!isa<Constant>(GEPRHS->getOperand(i)) ||
692  !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
693  AllZeros = false;
694  break;
695  }
696  if (AllZeros)
697  return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
698 
699  bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
700  if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
701  // If the GEPs only differ by one index, compare it.
702  unsigned NumDifferences = 0; // Keep track of # differences.
703  unsigned DiffOperand = 0; // The operand that differs.
704  for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
705  if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
706  if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
707  GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
708  // Irreconcilable differences.
709  NumDifferences = 2;
710  break;
711  } else {
712  if (NumDifferences++) break;
713  DiffOperand = i;
714  }
715  }
716 
717  if (NumDifferences == 0) // SAME GEP?
718  return ReplaceInstUsesWith(I, // No comparison is needed here.
719  Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
720 
721  else if (NumDifferences == 1 && GEPsInBounds) {
722  Value *LHSV = GEPLHS->getOperand(DiffOperand);
723  Value *RHSV = GEPRHS->getOperand(DiffOperand);
724  // Make sure we do a signed comparison here.
725  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
726  }
727  }
728 
729  // Only lower this if the icmp is the only user of the GEP or if we expect
730  // the result to fold to a constant!
731  if (TD &&
732  GEPsInBounds &&
733  (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
734  (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
735  // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
736  Value *L = EmitGEPOffset(GEPLHS);
737  Value *R = EmitGEPOffset(GEPRHS);
738  return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
739  }
740  }
741  return 0;
742 }
743 
744 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
746  Value *X, ConstantInt *CI,
747  ICmpInst::Predicate Pred) {
748  // If we have X+0, exit early (simplifying logic below) and let it get folded
749  // elsewhere. icmp X+0, X -> icmp X, X
750  if (CI->isZero()) {
751  bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
752  return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
753  }
754 
755  // (X+4) == X -> false.
756  if (Pred == ICmpInst::ICMP_EQ)
757  return ReplaceInstUsesWith(ICI, Builder->getFalse());
758 
759  // (X+4) != X -> true.
760  if (Pred == ICmpInst::ICMP_NE)
761  return ReplaceInstUsesWith(ICI, Builder->getTrue());
762 
763  // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
764  // so the values can never be equal. Similarly for all other "or equals"
765  // operators.
766 
767  // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
768  // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
769  // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
770  if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
771  Value *R =
773  return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
774  }
775 
776  // (X+1) >u X --> X <u (0-1) --> X != 255
777  // (X+2) >u X --> X <u (0-2) --> X <u 254
778  // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
779  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
781 
782  unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
784  APInt::getSignedMaxValue(BitWidth));
785 
786  // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
787  // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
788  // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
789  // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
790  // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
791  // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
792  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
793  return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
794 
795  // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
796  // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
797  // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
798  // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
799  // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
800  // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
801 
802  assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
803  Constant *C = Builder->getInt(CI->getValue()-1);
804  return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
805 }
806 
807 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
808 /// and CmpRHS are both known to be integer constants.
810  ConstantInt *DivRHS) {
811  ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
812  const APInt &CmpRHSV = CmpRHS->getValue();
813 
814  // FIXME: If the operand types don't match the type of the divide
815  // then don't attempt this transform. The code below doesn't have the
816  // logic to deal with a signed divide and an unsigned compare (and
817  // vice versa). This is because (x /s C1) <s C2 produces different
818  // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
819  // (x /u C1) <u C2. Simply casting the operands and result won't
820  // work. :( The if statement below tests that condition and bails
821  // if it finds it.
822  bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
823  if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
824  return 0;
825  if (DivRHS->isZero())
826  return 0; // The ProdOV computation fails on divide by zero.
827  if (DivIsSigned && DivRHS->isAllOnesValue())
828  return 0; // The overflow computation also screws up here
829  if (DivRHS->isOne()) {
830  // This eliminates some funny cases with INT_MIN.
831  ICI.setOperand(0, DivI->getOperand(0)); // X/1 == X.
832  return &ICI;
833  }
834 
835  // Compute Prod = CI * DivRHS. We are essentially solving an equation
836  // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
837  // C2 (CI). By solving for X we can turn this into a range check
838  // instead of computing a divide.
839  Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
840 
841  // Determine if the product overflows by seeing if the product is
842  // not equal to the divide. Make sure we do the same kind of divide
843  // as in the LHS instruction that we're folding.
844  bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
845  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
846 
847  // Get the ICmp opcode
848  ICmpInst::Predicate Pred = ICI.getPredicate();
849 
850  /// If the division is known to be exact, then there is no remainder from the
851  /// divide, so the covered range size is unit, otherwise it is the divisor.
852  ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
853 
854  // Figure out the interval that is being checked. For example, a comparison
855  // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
856  // Compute this interval based on the constants involved and the signedness of
857  // the compare/divide. This computes a half-open interval, keeping track of
858  // whether either value in the interval overflows. After analysis each
859  // overflow variable is set to 0 if it's corresponding bound variable is valid
860  // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
861  int LoOverflow = 0, HiOverflow = 0;
862  Constant *LoBound = 0, *HiBound = 0;
863 
864  if (!DivIsSigned) { // udiv
865  // e.g. X/5 op 3 --> [15, 20)
866  LoBound = Prod;
867  HiOverflow = LoOverflow = ProdOV;
868  if (!HiOverflow) {
869  // If this is not an exact divide, then many values in the range collapse
870  // to the same result value.
871  HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
872  }
873 
874  } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
875  if (CmpRHSV == 0) { // (X / pos) op 0
876  // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
877  LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
878  HiBound = RangeSize;
879  } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
880  LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
881  HiOverflow = LoOverflow = ProdOV;
882  if (!HiOverflow)
883  HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
884  } else { // (X / pos) op neg
885  // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
886  HiBound = AddOne(Prod);
887  LoOverflow = HiOverflow = ProdOV ? -1 : 0;
888  if (!LoOverflow) {
889  ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
890  LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
891  }
892  }
893  } else if (DivRHS->isNegative()) { // Divisor is < 0.
894  if (DivI->isExact())
895  RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
896  if (CmpRHSV == 0) { // (X / neg) op 0
897  // e.g. X/-5 op 0 --> [-4, 5)
898  LoBound = AddOne(RangeSize);
899  HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
900  if (HiBound == DivRHS) { // -INTMIN = INTMIN
901  HiOverflow = 1; // [INTMIN+1, overflow)
902  HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
903  }
904  } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
905  // e.g. X/-5 op 3 --> [-19, -14)
906  HiBound = AddOne(Prod);
907  HiOverflow = LoOverflow = ProdOV ? -1 : 0;
908  if (!LoOverflow)
909  LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
910  } else { // (X / neg) op neg
911  LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
912  LoOverflow = HiOverflow = ProdOV;
913  if (!HiOverflow)
914  HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
915  }
916 
917  // Dividing by a negative swaps the condition. LT <-> GT
918  Pred = ICmpInst::getSwappedPredicate(Pred);
919  }
920 
921  Value *X = DivI->getOperand(0);
922  switch (Pred) {
923  default: llvm_unreachable("Unhandled icmp opcode!");
924  case ICmpInst::ICMP_EQ:
925  if (LoOverflow && HiOverflow)
926  return ReplaceInstUsesWith(ICI, Builder->getFalse());
927  if (HiOverflow)
928  return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
929  ICmpInst::ICMP_UGE, X, LoBound);
930  if (LoOverflow)
931  return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
932  ICmpInst::ICMP_ULT, X, HiBound);
933  return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
934  DivIsSigned, true));
935  case ICmpInst::ICMP_NE:
936  if (LoOverflow && HiOverflow)
937  return ReplaceInstUsesWith(ICI, Builder->getTrue());
938  if (HiOverflow)
939  return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
940  ICmpInst::ICMP_ULT, X, LoBound);
941  if (LoOverflow)
942  return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
943  ICmpInst::ICMP_UGE, X, HiBound);
944  return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
945  DivIsSigned, false));
946  case ICmpInst::ICMP_ULT:
947  case ICmpInst::ICMP_SLT:
948  if (LoOverflow == +1) // Low bound is greater than input range.
949  return ReplaceInstUsesWith(ICI, Builder->getTrue());
950  if (LoOverflow == -1) // Low bound is less than input range.
951  return ReplaceInstUsesWith(ICI, Builder->getFalse());
952  return new ICmpInst(Pred, X, LoBound);
953  case ICmpInst::ICMP_UGT:
954  case ICmpInst::ICMP_SGT:
955  if (HiOverflow == +1) // High bound greater than input range.
956  return ReplaceInstUsesWith(ICI, Builder->getFalse());
957  if (HiOverflow == -1) // High bound less than input range.
958  return ReplaceInstUsesWith(ICI, Builder->getTrue());
959  if (Pred == ICmpInst::ICMP_UGT)
960  return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
961  return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
962  }
963 }
964 
965 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
967  ConstantInt *ShAmt) {
968  const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
969 
970  // Check that the shift amount is in range. If not, don't perform
971  // undefined shifts. When the shift is visited it will be
972  // simplified.
973  uint32_t TypeBits = CmpRHSV.getBitWidth();
974  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
975  if (ShAmtVal >= TypeBits || ShAmtVal == 0)
976  return 0;
977 
978  if (!ICI.isEquality()) {
979  // If we have an unsigned comparison and an ashr, we can't simplify this.
980  // Similarly for signed comparisons with lshr.
981  if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
982  return 0;
983 
984  // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
985  // by a power of 2. Since we already have logic to simplify these,
986  // transform to div and then simplify the resultant comparison.
987  if (Shr->getOpcode() == Instruction::AShr &&
988  (!Shr->isExact() || ShAmtVal == TypeBits - 1))
989  return 0;
990 
991  // Revisit the shift (to delete it).
992  Worklist.Add(Shr);
993 
994  Constant *DivCst =
995  ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
996 
997  Value *Tmp =
998  Shr->getOpcode() == Instruction::AShr ?
999  Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
1000  Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
1001 
1002  ICI.setOperand(0, Tmp);
1003 
1004  // If the builder folded the binop, just return it.
1005  BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
1006  if (TheDiv == 0)
1007  return &ICI;
1008 
1009  // Otherwise, fold this div/compare.
1010  assert(TheDiv->getOpcode() == Instruction::SDiv ||
1011  TheDiv->getOpcode() == Instruction::UDiv);
1012 
1013  Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
1014  assert(Res && "This div/cst should have folded!");
1015  return Res;
1016  }
1017 
1018 
1019  // If we are comparing against bits always shifted out, the
1020  // comparison cannot succeed.
1021  APInt Comp = CmpRHSV << ShAmtVal;
1022  ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
1023  if (Shr->getOpcode() == Instruction::LShr)
1024  Comp = Comp.lshr(ShAmtVal);
1025  else
1026  Comp = Comp.ashr(ShAmtVal);
1027 
1028  if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
1029  bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1030  Constant *Cst = Builder->getInt1(IsICMP_NE);
1031  return ReplaceInstUsesWith(ICI, Cst);
1032  }
1033 
1034  // Otherwise, check to see if the bits shifted out are known to be zero.
1035  // If so, we can compare against the unshifted value:
1036  // (X & 4) >> 1 == 2 --> (X & 4) == 4.
1037  if (Shr->hasOneUse() && Shr->isExact())
1038  return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
1039 
1040  if (Shr->hasOneUse()) {
1041  // Otherwise strength reduce the shift into an and.
1042  APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1043  Constant *Mask = Builder->getInt(Val);
1044 
1045  Value *And = Builder->CreateAnd(Shr->getOperand(0),
1046  Mask, Shr->getName()+".mask");
1047  return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
1048  }
1049  return 0;
1050 }
1051 
1052 
1053 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
1054 ///
1056  Instruction *LHSI,
1057  ConstantInt *RHS) {
1058  const APInt &RHSV = RHS->getValue();
1059 
1060  switch (LHSI->getOpcode()) {
1061  case Instruction::Trunc:
1062  if (ICI.isEquality() && LHSI->hasOneUse()) {
1063  // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1064  // of the high bits truncated out of x are known.
1065  unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
1066  SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
1067  APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
1068  ComputeMaskedBits(LHSI->getOperand(0), KnownZero, KnownOne);
1069 
1070  // If all the high bits are known, we can do this xform.
1071  if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
1072  // Pull in the high bits from known-ones set.
1073  APInt NewRHS = RHS->getValue().zext(SrcBits);
1074  NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
1075  return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1076  Builder->getInt(NewRHS));
1077  }
1078  }
1079  break;
1080 
1081  case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
1082  if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1083  // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1084  // fold the xor.
1085  if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
1086  (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
1087  Value *CompareVal = LHSI->getOperand(0);
1088 
1089  // If the sign bit of the XorCST is not set, there is no change to
1090  // the operation, just stop using the Xor.
1091  if (!XorCST->isNegative()) {
1092  ICI.setOperand(0, CompareVal);
1093  Worklist.Add(LHSI);
1094  return &ICI;
1095  }
1096 
1097  // Was the old condition true if the operand is positive?
1098  bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
1099 
1100  // If so, the new one isn't.
1101  isTrueIfPositive ^= true;
1102 
1103  if (isTrueIfPositive)
1104  return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
1105  SubOne(RHS));
1106  else
1107  return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
1108  AddOne(RHS));
1109  }
1110 
1111  if (LHSI->hasOneUse()) {
1112  // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
1113  if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
1114  const APInt &SignBit = XorCST->getValue();
1115  ICmpInst::Predicate Pred = ICI.isSigned()
1116  ? ICI.getUnsignedPredicate()
1117  : ICI.getSignedPredicate();
1118  return new ICmpInst(Pred, LHSI->getOperand(0),
1119  Builder->getInt(RHSV ^ SignBit));
1120  }
1121 
1122  // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1123  if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
1124  const APInt &NotSignBit = XorCST->getValue();
1125  ICmpInst::Predicate Pred = ICI.isSigned()
1126  ? ICI.getUnsignedPredicate()
1127  : ICI.getSignedPredicate();
1128  Pred = ICI.getSwappedPredicate(Pred);
1129  return new ICmpInst(Pred, LHSI->getOperand(0),
1130  Builder->getInt(RHSV ^ NotSignBit));
1131  }
1132  }
1133 
1134  // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
1135  // iff -C is a power of 2
1136  if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
1137  XorCST->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
1138  return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCST);
1139 
1140  // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
1141  // iff -C is a power of 2
1142  if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
1143  XorCST->getValue() == -RHSV && RHSV.isPowerOf2())
1144  return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCST);
1145  }
1146  break;
1147  case Instruction::And: // (icmp pred (and X, AndCST), RHS)
1148  if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1149  LHSI->getOperand(0)->hasOneUse()) {
1150  ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1151 
1152  // If the LHS is an AND of a truncating cast, we can widen the
1153  // and/compare to be the input width without changing the value
1154  // produced, eliminating a cast.
1155  if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1156  // We can do this transformation if either the AND constant does not
1157  // have its sign bit set or if it is an equality comparison.
1158  // Extending a relational comparison when we're checking the sign
1159  // bit would not work.
1160  if (ICI.isEquality() ||
1161  (!AndCST->isNegative() && RHSV.isNonNegative())) {
1162  Value *NewAnd =
1163  Builder->CreateAnd(Cast->getOperand(0),
1164  ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
1165  NewAnd->takeName(LHSI);
1166  return new ICmpInst(ICI.getPredicate(), NewAnd,
1167  ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
1168  }
1169  }
1170 
1171  // If the LHS is an AND of a zext, and we have an equality compare, we can
1172  // shrink the and/compare to the smaller type, eliminating the cast.
1173  if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
1174  IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
1175  // Make sure we don't compare the upper bits, SimplifyDemandedBits
1176  // should fold the icmp to true/false in that case.
1177  if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
1178  Value *NewAnd =
1179  Builder->CreateAnd(Cast->getOperand(0),
1180  ConstantExpr::getTrunc(AndCST, Ty));
1181  NewAnd->takeName(LHSI);
1182  return new ICmpInst(ICI.getPredicate(), NewAnd,
1183  ConstantExpr::getTrunc(RHS, Ty));
1184  }
1185  }
1186 
1187  // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1188  // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1189  // happens a LOT in code produced by the C front-end, for bitfield
1190  // access.
1191  BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1192  if (Shift && !Shift->isShift())
1193  Shift = 0;
1194 
1195  ConstantInt *ShAmt;
1196  ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1197  Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
1198  Type *AndTy = AndCST->getType(); // Type of the and.
1199 
1200  // We can fold this as long as we can't shift unknown bits
1201  // into the mask. This can only happen with signed shift
1202  // rights, as they sign-extend.
1203  if (ShAmt) {
1204  bool CanFold = Shift->isLogicalShift();
1205  if (!CanFold) {
1206  // To test for the bad case of the signed shr, see if any
1207  // of the bits shifted in could be tested after the mask.
1208  uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1209  int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1210 
1211  uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1212  if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1213  AndCST->getValue()) == 0)
1214  CanFold = true;
1215  }
1216 
1217  if (CanFold) {
1218  Constant *NewCst;
1219  if (Shift->getOpcode() == Instruction::Shl)
1220  NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1221  else
1222  NewCst = ConstantExpr::getShl(RHS, ShAmt);
1223 
1224  // Check to see if we are shifting out any of the bits being
1225  // compared.
1226  if (ConstantExpr::get(Shift->getOpcode(),
1227  NewCst, ShAmt) != RHS) {
1228  // If we shifted bits out, the fold is not going to work out.
1229  // As a special case, check to see if this means that the
1230  // result is always true or false now.
1231  if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1232  return ReplaceInstUsesWith(ICI, Builder->getFalse());
1233  if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1234  return ReplaceInstUsesWith(ICI, Builder->getTrue());
1235  } else {
1236  ICI.setOperand(1, NewCst);
1237  Constant *NewAndCST;
1238  if (Shift->getOpcode() == Instruction::Shl)
1239  NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1240  else
1241  NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1242  LHSI->setOperand(1, NewAndCST);
1243  LHSI->setOperand(0, Shift->getOperand(0));
1244  Worklist.Add(Shift); // Shift is dead.
1245  return &ICI;
1246  }
1247  }
1248  }
1249 
1250  // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1251  // preferable because it allows the C<<Y expression to be hoisted out
1252  // of a loop if Y is invariant and X is not.
1253  if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1254  ICI.isEquality() && !Shift->isArithmeticShift() &&
1255  !isa<Constant>(Shift->getOperand(0))) {
1256  // Compute C << Y.
1257  Value *NS;
1258  if (Shift->getOpcode() == Instruction::LShr) {
1259  NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
1260  } else {
1261  // Insert a logical shift.
1262  NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
1263  }
1264 
1265  // Compute X & (C << Y).
1266  Value *NewAnd =
1267  Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1268 
1269  ICI.setOperand(0, NewAnd);
1270  return &ICI;
1271  }
1272 
1273  // Replace ((X & AndCST) > RHSV) with ((X & AndCST) != 0), if any
1274  // bit set in (X & AndCST) will produce a result greater than RHSV.
1275  if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
1276  unsigned NTZ = AndCST->getValue().countTrailingZeros();
1277  if ((NTZ < AndCST->getBitWidth()) &&
1278  APInt::getOneBitSet(AndCST->getBitWidth(), NTZ).ugt(RHSV))
1279  return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
1281  }
1282  }
1283 
1284  // Try to optimize things like "A[i]&42 == 0" to index computations.
1285  if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1286  if (GetElementPtrInst *GEP =
1287  dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1288  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1289  if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1290  !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1291  ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1292  if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1293  return Res;
1294  }
1295  }
1296 
1297  // X & -C == -C -> X > u ~C
1298  // X & -C != -C -> X <= u ~C
1299  // iff C is a power of 2
1300  if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
1301  return new ICmpInst(
1304  LHSI->getOperand(0), SubOne(RHS));
1305  break;
1306 
1307  case Instruction::Or: {
1308  if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1309  break;
1310  Value *P, *Q;
1311  if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1312  // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1313  // -> and (icmp eq P, null), (icmp eq Q, null).
1314  Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1316  Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1318  Instruction *Op;
1319  if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1320  Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1321  else
1322  Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1323  return Op;
1324  }
1325  break;
1326  }
1327 
1328  case Instruction::Mul: { // (icmp pred (mul X, Val), CI)
1329  ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1330  if (!Val) break;
1331 
1332  // If this is a signed comparison to 0 and the mul is sign preserving,
1333  // use the mul LHS operand instead.
1334  ICmpInst::Predicate pred = ICI.getPredicate();
1335  if (isSignTest(pred, RHS) && !Val->isZero() &&
1336  cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1337  return new ICmpInst(Val->isNegative() ?
1338  ICmpInst::getSwappedPredicate(pred) : pred,
1339  LHSI->getOperand(0),
1341 
1342  break;
1343  }
1344 
1345  case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
1346  uint32_t TypeBits = RHSV.getBitWidth();
1347  ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1348  if (!ShAmt) {
1349  Value *X;
1350  // (1 << X) pred P2 -> X pred Log2(P2)
1351  if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
1352  bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
1353  ICmpInst::Predicate Pred = ICI.getPredicate();
1354  if (ICI.isUnsigned()) {
1355  if (!RHSVIsPowerOf2) {
1356  // (1 << X) < 30 -> X <= 4
1357  // (1 << X) <= 30 -> X <= 4
1358  // (1 << X) >= 30 -> X > 4
1359  // (1 << X) > 30 -> X > 4
1360  if (Pred == ICmpInst::ICMP_ULT)
1361  Pred = ICmpInst::ICMP_ULE;
1362  else if (Pred == ICmpInst::ICMP_UGE)
1363  Pred = ICmpInst::ICMP_UGT;
1364  }
1365  unsigned RHSLog2 = RHSV.logBase2();
1366 
1367  // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
1368  // (1 << X) > 2147483648 -> X > 31 -> false
1369  // (1 << X) <= 2147483648 -> X <= 31 -> true
1370  // (1 << X) < 2147483648 -> X < 31 -> X != 31
1371  if (RHSLog2 == TypeBits-1) {
1372  if (Pred == ICmpInst::ICMP_UGE)
1373  Pred = ICmpInst::ICMP_EQ;
1374  else if (Pred == ICmpInst::ICMP_UGT)
1375  return ReplaceInstUsesWith(ICI, Builder->getFalse());
1376  else if (Pred == ICmpInst::ICMP_ULE)
1377  return ReplaceInstUsesWith(ICI, Builder->getTrue());
1378  else if (Pred == ICmpInst::ICMP_ULT)
1379  Pred = ICmpInst::ICMP_NE;
1380  }
1381 
1382  return new ICmpInst(Pred, X,
1383  ConstantInt::get(RHS->getType(), RHSLog2));
1384  } else if (ICI.isSigned()) {
1385  if (RHSV.isAllOnesValue()) {
1386  // (1 << X) <= -1 -> X == 31
1387  if (Pred == ICmpInst::ICMP_SLE)
1388  return new ICmpInst(ICmpInst::ICMP_EQ, X,
1389  ConstantInt::get(RHS->getType(), TypeBits-1));
1390 
1391  // (1 << X) > -1 -> X != 31
1392  if (Pred == ICmpInst::ICMP_SGT)
1393  return new ICmpInst(ICmpInst::ICMP_NE, X,
1394  ConstantInt::get(RHS->getType(), TypeBits-1));
1395  } else if (!RHSV) {
1396  // (1 << X) < 0 -> X == 31
1397  // (1 << X) <= 0 -> X == 31
1398  if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1399  return new ICmpInst(ICmpInst::ICMP_EQ, X,
1400  ConstantInt::get(RHS->getType(), TypeBits-1));
1401 
1402  // (1 << X) >= 0 -> X != 31
1403  // (1 << X) > 0 -> X != 31
1404  if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
1405  return new ICmpInst(ICmpInst::ICMP_NE, X,
1406  ConstantInt::get(RHS->getType(), TypeBits-1));
1407  }
1408  } else if (ICI.isEquality()) {
1409  if (RHSVIsPowerOf2)
1410  return new ICmpInst(
1411  Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
1412 
1413  return ReplaceInstUsesWith(
1414  ICI, Pred == ICmpInst::ICMP_EQ ? Builder->getFalse()
1415  : Builder->getTrue());
1416  }
1417  }
1418  break;
1419  }
1420 
1421  // Check that the shift amount is in range. If not, don't perform
1422  // undefined shifts. When the shift is visited it will be
1423  // simplified.
1424  if (ShAmt->uge(TypeBits))
1425  break;
1426 
1427  if (ICI.isEquality()) {
1428  // If we are comparing against bits always shifted out, the
1429  // comparison cannot succeed.
1430  Constant *Comp =
1432  ShAmt);
1433  if (Comp != RHS) {// Comparing against a bit that we know is zero.
1434  bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1435  Constant *Cst = Builder->getInt1(IsICMP_NE);
1436  return ReplaceInstUsesWith(ICI, Cst);
1437  }
1438 
1439  // If the shift is NUW, then it is just shifting out zeros, no need for an
1440  // AND.
1441  if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1442  return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1443  ConstantExpr::getLShr(RHS, ShAmt));
1444 
1445  // If the shift is NSW and we compare to 0, then it is just shifting out
1446  // sign bits, no need for an AND either.
1447  if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
1448  return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1449  ConstantExpr::getLShr(RHS, ShAmt));
1450 
1451  if (LHSI->hasOneUse()) {
1452  // Otherwise strength reduce the shift into an and.
1453  uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1454  Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
1455  TypeBits - ShAmtVal));
1456 
1457  Value *And =
1458  Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1459  return new ICmpInst(ICI.getPredicate(), And,
1460  ConstantExpr::getLShr(RHS, ShAmt));
1461  }
1462  }
1463 
1464  // If this is a signed comparison to 0 and the shift is sign preserving,
1465  // use the shift LHS operand instead.
1466  ICmpInst::Predicate pred = ICI.getPredicate();
1467  if (isSignTest(pred, RHS) &&
1468  cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
1469  return new ICmpInst(pred,
1470  LHSI->getOperand(0),
1472 
1473  // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1474  bool TrueIfSigned = false;
1475  if (LHSI->hasOneUse() &&
1476  isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1477  // (X << 31) <s 0 --> (X&1) != 0
1478  Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
1479  APInt::getOneBitSet(TypeBits,
1480  TypeBits-ShAmt->getZExtValue()-1));
1481  Value *And =
1482  Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1483  return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1484  And, Constant::getNullValue(And->getType()));
1485  }
1486 
1487  // Transform (icmp pred iM (shl iM %v, N), CI)
1488  // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
1489  // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
1490  // This enables to get rid of the shift in favor of a trunc which can be
1491  // free on the target. It has the additional benefit of comparing to a
1492  // smaller constant, which will be target friendly.
1493  unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
1494  if (LHSI->hasOneUse() &&
1495  Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
1496  Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
1499  ConstantInt::get(RHS->getType(), Amt)),
1500  NTy);
1501  return new ICmpInst(ICI.getPredicate(),
1502  Builder->CreateTrunc(LHSI->getOperand(0), NTy),
1503  NCI);
1504  }
1505 
1506  break;
1507  }
1508 
1509  case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
1510  case Instruction::AShr: {
1511  // Handle equality comparisons of shift-by-constant.
1512  BinaryOperator *BO = cast<BinaryOperator>(LHSI);
1513  if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
1514  if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
1515  return Res;
1516  }
1517 
1518  // Handle exact shr's.
1519  if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
1520  if (RHSV.isMinValue())
1521  return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
1522  }
1523  break;
1524  }
1525 
1526  case Instruction::SDiv:
1527  case Instruction::UDiv:
1528  // Fold: icmp pred ([us]div X, C1), C2 -> range test
1529  // Fold this div into the comparison, producing a range check.
1530  // Determine, based on the divide type, what the range is being
1531  // checked. If there is an overflow on the low or high side, remember
1532  // it, otherwise compute the range [low, hi) bounding the new value.
1533  // See: InsertRangeTest above for the kinds of replacements possible.
1534  if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1535  if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1536  DivRHS))
1537  return R;
1538  break;
1539 
1540  case Instruction::Sub: {
1541  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
1542  if (!LHSC) break;
1543  const APInt &LHSV = LHSC->getValue();
1544 
1545  // C1-X <u C2 -> (X|(C2-1)) == C1
1546  // iff C1 & (C2-1) == C2-1
1547  // C2 is a power of 2
1548  if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1549  RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
1550  return new ICmpInst(ICmpInst::ICMP_EQ,
1551  Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
1552  LHSC);
1553 
1554  // C1-X >u C2 -> (X|C2) != C1
1555  // iff C1 & C2 == C2
1556  // C2+1 is a power of 2
1557  if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1558  (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
1559  return new ICmpInst(ICmpInst::ICMP_NE,
1560  Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
1561  break;
1562  }
1563 
1564  case Instruction::Add:
1565  // Fold: icmp pred (add X, C1), C2
1566  if (!ICI.isEquality()) {
1567  ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1568  if (!LHSC) break;
1569  const APInt &LHSV = LHSC->getValue();
1570 
1571  ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1572  .subtract(LHSV);
1573 
1574  if (ICI.isSigned()) {
1575  if (CR.getLower().isSignBit()) {
1576  return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1577  Builder->getInt(CR.getUpper()));
1578  } else if (CR.getUpper().isSignBit()) {
1579  return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1580  Builder->getInt(CR.getLower()));
1581  }
1582  } else {
1583  if (CR.getLower().isMinValue()) {
1584  return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1585  Builder->getInt(CR.getUpper()));
1586  } else if (CR.getUpper().isMinValue()) {
1587  return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1588  Builder->getInt(CR.getLower()));
1589  }
1590  }
1591 
1592  // X-C1 <u C2 -> (X & -C2) == C1
1593  // iff C1 & (C2-1) == 0
1594  // C2 is a power of 2
1595  if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
1596  RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
1597  return new ICmpInst(ICmpInst::ICMP_EQ,
1598  Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
1599  ConstantExpr::getNeg(LHSC));
1600 
1601  // X-C1 >u C2 -> (X & ~C2) != C1
1602  // iff C1 & C2 == 0
1603  // C2+1 is a power of 2
1604  if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
1605  (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
1606  return new ICmpInst(ICmpInst::ICMP_NE,
1607  Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
1608  ConstantExpr::getNeg(LHSC));
1609  }
1610  break;
1611  }
1612 
1613  // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1614  if (ICI.isEquality()) {
1615  bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1616 
1617  // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1618  // the second operand is a constant, simplify a bit.
1619  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1620  switch (BO->getOpcode()) {
1621  case Instruction::SRem:
1622  // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1623  if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1624  const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
1625  if (V.sgt(1) && V.isPowerOf2()) {
1626  Value *NewRem =
1627  Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1628  BO->getName());
1629  return new ICmpInst(ICI.getPredicate(), NewRem,
1630  Constant::getNullValue(BO->getType()));
1631  }
1632  }
1633  break;
1634  case Instruction::Add:
1635  // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1636  if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1637  if (BO->hasOneUse())
1638  return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1639  ConstantExpr::getSub(RHS, BOp1C));
1640  } else if (RHSV == 0) {
1641  // Replace ((add A, B) != 0) with (A != -B) if A or B is
1642  // efficiently invertible, or if the add has just this one use.
1643  Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1644 
1645  if (Value *NegVal = dyn_castNegVal(BOp1))
1646  return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1647  if (Value *NegVal = dyn_castNegVal(BOp0))
1648  return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1649  if (BO->hasOneUse()) {
1650  Value *Neg = Builder->CreateNeg(BOp1);
1651  Neg->takeName(BO);
1652  return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1653  }
1654  }
1655  break;
1656  case Instruction::Xor:
1657  // For the xor case, we can xor two constants together, eliminating
1658  // the explicit xor.
1659  if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
1660  return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1661  ConstantExpr::getXor(RHS, BOC));
1662  } else if (RHSV == 0) {
1663  // Replace ((xor A, B) != 0) with (A != B)
1664  return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1665  BO->getOperand(1));
1666  }
1667  break;
1668  case Instruction::Sub:
1669  // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
1670  if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
1671  if (BO->hasOneUse())
1672  return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
1673  ConstantExpr::getSub(BOp0C, RHS));
1674  } else if (RHSV == 0) {
1675  // Replace ((sub A, B) != 0) with (A != B)
1676  return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1677  BO->getOperand(1));
1678  }
1679  break;
1680  case Instruction::Or:
1681  // If bits are being or'd in that are not present in the constant we
1682  // are comparing against, then the comparison could never succeed!
1683  if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1684  Constant *NotCI = ConstantExpr::getNot(RHS);
1685  if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1686  return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1687  }
1688  break;
1689 
1690  case Instruction::And:
1691  if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1692  // If bits are being compared against that are and'd out, then the
1693  // comparison can never succeed!
1694  if ((RHSV & ~BOC->getValue()) != 0)
1695  return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
1696 
1697  // If we have ((X & C) == C), turn it into ((X & C) != 0).
1698  if (RHS == BOC && RHSV.isPowerOf2())
1699  return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1700  ICmpInst::ICMP_NE, LHSI,
1702 
1703  // Don't perform the following transforms if the AND has multiple uses
1704  if (!BO->hasOneUse())
1705  break;
1706 
1707  // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1708  if (BOC->getValue().isSignBit()) {
1709  Value *X = BO->getOperand(0);
1710  Constant *Zero = Constant::getNullValue(X->getType());
1711  ICmpInst::Predicate pred = isICMP_NE ?
1713  return new ICmpInst(pred, X, Zero);
1714  }
1715 
1716  // ((X & ~7) == 0) --> X < 8
1717  if (RHSV == 0 && isHighOnes(BOC)) {
1718  Value *X = BO->getOperand(0);
1719  Constant *NegX = ConstantExpr::getNeg(BOC);
1720  ICmpInst::Predicate pred = isICMP_NE ?
1722  return new ICmpInst(pred, X, NegX);
1723  }
1724  }
1725  break;
1726  case Instruction::Mul:
1727  if (RHSV == 0 && BO->hasNoSignedWrap()) {
1728  if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1729  // The trivial case (mul X, 0) is handled by InstSimplify
1730  // General case : (mul X, C) != 0 iff X != 0
1731  // (mul X, C) == 0 iff X == 0
1732  if (!BOC->isZero())
1733  return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1735  }
1736  }
1737  break;
1738  default: break;
1739  }
1740  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1741  // Handle icmp {eq|ne} <intrinsic>, intcst.
1742  switch (II->getIntrinsicID()) {
1743  case Intrinsic::bswap:
1744  Worklist.Add(II);
1745  ICI.setOperand(0, II->getArgOperand(0));
1746  ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
1747  return &ICI;
1748  case Intrinsic::ctlz:
1749  case Intrinsic::cttz:
1750  // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1751  if (RHSV == RHS->getType()->getBitWidth()) {
1752  Worklist.Add(II);
1753  ICI.setOperand(0, II->getArgOperand(0));
1754  ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1755  return &ICI;
1756  }
1757  break;
1758  case Intrinsic::ctpop:
1759  // popcount(A) == 0 -> A == 0 and likewise for !=
1760  if (RHS->isZero()) {
1761  Worklist.Add(II);
1762  ICI.setOperand(0, II->getArgOperand(0));
1763  ICI.setOperand(1, RHS);
1764  return &ICI;
1765  }
1766  break;
1767  default:
1768  break;
1769  }
1770  }
1771  }
1772  return 0;
1773 }
1774 
1775 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1776 /// We only handle extending casts so far.
1777 ///
1779  const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1780  Value *LHSCIOp = LHSCI->getOperand(0);
1781  Type *SrcTy = LHSCIOp->getType();
1782  Type *DestTy = LHSCI->getType();
1783  Value *RHSCIOp;
1784 
1785  // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1786  // integer type is the same size as the pointer type.
1787  if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1788  TD->getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
1789  Value *RHSOp = 0;
1790  if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1791  RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1792  } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1793  RHSOp = RHSC->getOperand(0);
1794  // If the pointer types don't match, insert a bitcast.
1795  if (LHSCIOp->getType() != RHSOp->getType())
1796  RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1797  }
1798 
1799  if (RHSOp)
1800  return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1801  }
1802 
1803  // The code below only handles extension cast instructions, so far.
1804  // Enforce this.
1805  if (LHSCI->getOpcode() != Instruction::ZExt &&
1806  LHSCI->getOpcode() != Instruction::SExt)
1807  return 0;
1808 
1809  bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1810  bool isSignedCmp = ICI.isSigned();
1811 
1812  if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1813  // Not an extension from the same type?
1814  RHSCIOp = CI->getOperand(0);
1815  if (RHSCIOp->getType() != LHSCIOp->getType())
1816  return 0;
1817 
1818  // If the signedness of the two casts doesn't agree (i.e. one is a sext
1819  // and the other is a zext), then we can't handle this.
1820  if (CI->getOpcode() != LHSCI->getOpcode())
1821  return 0;
1822 
1823  // Deal with equality cases early.
1824  if (ICI.isEquality())
1825  return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1826 
1827  // A signed comparison of sign extended values simplifies into a
1828  // signed comparison.
1829  if (isSignedCmp && isSignedExt)
1830  return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1831 
1832  // The other three cases all fold into an unsigned comparison.
1833  return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1834  }
1835 
1836  // If we aren't dealing with a constant on the RHS, exit early
1837  ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1838  if (!CI)
1839  return 0;
1840 
1841  // Compute the constant that would happen if we truncated to SrcTy then
1842  // reextended to DestTy.
1843  Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1844  Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1845  Res1, DestTy);
1846 
1847  // If the re-extended constant didn't change...
1848  if (Res2 == CI) {
1849  // Deal with equality cases early.
1850  if (ICI.isEquality())
1851  return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1852 
1853  // A signed comparison of sign extended values simplifies into a
1854  // signed comparison.
1855  if (isSignedExt && isSignedCmp)
1856  return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1857 
1858  // The other three cases all fold into an unsigned comparison.
1859  return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1860  }
1861 
1862  // The re-extended constant changed so the constant cannot be represented
1863  // in the shorter type. Consequently, we cannot emit a simple comparison.
1864  // All the cases that fold to true or false will have already been handled
1865  // by SimplifyICmpInst, so only deal with the tricky case.
1866 
1867  if (isSignedCmp || !isSignedExt)
1868  return 0;
1869 
1870  // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1871  // should have been folded away previously and not enter in here.
1872 
1873  // We're performing an unsigned comp with a sign extended value.
1874  // This is true if the input is >= 0. [aka >s -1]
1875  Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1876  Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
1877 
1878  // Finally, return the value computed.
1879  if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
1880  return ReplaceInstUsesWith(ICI, Result);
1881 
1882  assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
1883  return BinaryOperator::CreateNot(Result);
1884 }
1885 
1886 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1887 /// I = icmp ugt (add (add A, B), CI2), CI1
1888 /// If this is of the form:
1889 /// sum = a + b
1890 /// if (sum+128 >u 255)
1891 /// Then replace it with llvm.sadd.with.overflow.i8.
1892 ///
1894  ConstantInt *CI2, ConstantInt *CI1,
1895  InstCombiner &IC) {
1896  // The transformation we're trying to do here is to transform this into an
1897  // llvm.sadd.with.overflow. To do this, we have to replace the original add
1898  // with a narrower add, and discard the add-with-constant that is part of the
1899  // range check (if we can't eliminate it, this isn't profitable).
1900 
1901  // In order to eliminate the add-with-constant, the compare can be its only
1902  // use.
1903  Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1904  if (!AddWithCst->hasOneUse()) return 0;
1905 
1906  // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1907  if (!CI2->getValue().isPowerOf2()) return 0;
1908  unsigned NewWidth = CI2->getValue().countTrailingZeros();
1909  if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1910 
1911  // The width of the new add formed is 1 more than the bias.
1912  ++NewWidth;
1913 
1914  // Check to see that CI1 is an all-ones value with NewWidth bits.
1915  if (CI1->getBitWidth() == NewWidth ||
1916  CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1917  return 0;
1918 
1919  // This is only really a signed overflow check if the inputs have been
1920  // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1921  // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1922  unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1923  if (IC.ComputeNumSignBits(A) < NeededSignBits ||
1924  IC.ComputeNumSignBits(B) < NeededSignBits)
1925  return 0;
1926 
1927  // In order to replace the original add with a narrower
1928  // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1929  // and truncates that discard the high bits of the add. Verify that this is
1930  // the case.
1931  Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1932  for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1933  UI != E; ++UI) {
1934  if (*UI == AddWithCst) continue;
1935 
1936  // Only accept truncates for now. We would really like a nice recursive
1937  // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1938  // chain to see which bits of a value are actually demanded. If the
1939  // original add had another add which was then immediately truncated, we
1940  // could still do the transformation.
1941  TruncInst *TI = dyn_cast<TruncInst>(*UI);
1942  if (TI == 0 ||
1943  TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1944  }
1945 
1946  // If the pattern matches, truncate the inputs to the narrower type and
1947  // use the sadd_with_overflow intrinsic to efficiently compute both the
1948  // result and the overflow bit.
1949  Module *M = I.getParent()->getParent()->getParent();
1950 
1951  Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1953  NewType);
1954 
1955  InstCombiner::BuilderTy *Builder = IC.Builder;
1956 
1957  // Put the new code above the original add, in case there are any uses of the
1958  // add between the add and the compare.
1959  Builder->SetInsertPoint(OrigAdd);
1960 
1961  Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1962  Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1963  CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1964  Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1965  Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
1966 
1967  // The inner add was the result of the narrow add, zero extended to the
1968  // wider type. Replace it with the result computed by the intrinsic.
1969  IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
1970 
1971  // The original icmp gets replaced with the overflow value.
1972  return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1973 }
1974 
1976  InstCombiner &IC) {
1977  // Don't bother doing this transformation for pointers, don't do it for
1978  // vectors.
1979  if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1980 
1981  // If the add is a constant expr, then we don't bother transforming it.
1982  Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1983  if (OrigAdd == 0) return 0;
1984 
1985  Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1986 
1987  // Put the new code above the original add, in case there are any uses of the
1988  // add between the add and the compare.
1989  InstCombiner::BuilderTy *Builder = IC.Builder;
1990  Builder->SetInsertPoint(OrigAdd);
1991 
1992  Module *M = I.getParent()->getParent()->getParent();
1993  Type *Ty = LHS->getType();
1995  CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1996  Value *Add = Builder->CreateExtractValue(Call, 0);
1997 
1998  IC.ReplaceInstUsesWith(*OrigAdd, Add);
1999 
2000  // The original icmp gets replaced with the overflow value.
2001  return ExtractValueInst::Create(Call, 1, "uadd.overflow");
2002 }
2003 
2004 // DemandedBitsLHSMask - When performing a comparison against a constant,
2005 // it is possible that not all the bits in the LHS are demanded. This helper
2006 // method computes the mask that IS demanded.
2008  unsigned BitWidth, bool isSignCheck) {
2009  if (isSignCheck)
2010  return APInt::getSignBit(BitWidth);
2011 
2013  if (!CI) return APInt::getAllOnesValue(BitWidth);
2014  const APInt &RHS = CI->getValue();
2015 
2016  switch (I.getPredicate()) {
2017  // For a UGT comparison, we don't care about any bits that
2018  // correspond to the trailing ones of the comparand. The value of these
2019  // bits doesn't impact the outcome of the comparison, because any value
2020  // greater than the RHS must differ in a bit higher than these due to carry.
2021  case ICmpInst::ICMP_UGT: {
2022  unsigned trailingOnes = RHS.countTrailingOnes();
2023  APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
2024  return ~lowBitsSet;
2025  }
2026 
2027  // Similarly, for a ULT comparison, we don't care about the trailing zeros.
2028  // Any value less than the RHS must differ in a higher bit because of carries.
2029  case ICmpInst::ICMP_ULT: {
2030  unsigned trailingZeros = RHS.countTrailingZeros();
2031  APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
2032  return ~lowBitsSet;
2033  }
2034 
2035  default:
2036  return APInt::getAllOnesValue(BitWidth);
2037  }
2038 
2039 }
2040 
2041 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
2042 /// should be swapped.
2043 /// The descision is based on how many times these two operands are reused
2044 /// as subtract operands and their positions in those instructions.
2045 /// The rational is that several architectures use the same instruction for
2046 /// both subtract and cmp, thus it is better if the order of those operands
2047 /// match.
2048 /// \return true if Op0 and Op1 should be swapped.
2049 static bool swapMayExposeCSEOpportunities(const Value * Op0,
2050  const Value * Op1) {
2051  // Filter out pointer value as those cannot appears directly in subtract.
2052  // FIXME: we may want to go through inttoptrs or bitcasts.
2053  if (Op0->getType()->isPointerTy())
2054  return false;
2055  // Count every uses of both Op0 and Op1 in a subtract.
2056  // Each time Op0 is the first operand, count -1: swapping is bad, the
2057  // subtract has already the same layout as the compare.
2058  // Each time Op0 is the second operand, count +1: swapping is good, the
2059  // subtract has a diffrent layout as the compare.
2060  // At the end, if the benefit is greater than 0, Op0 should come second to
2061  // expose more CSE opportunities.
2062  int GlobalSwapBenefits = 0;
2063  for (Value::const_use_iterator UI = Op0->use_begin(), UIEnd = Op0->use_end(); UI != UIEnd; ++UI) {
2064  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(*UI);
2065  if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
2066  continue;
2067  // If Op0 is the first argument, this is not beneficial to swap the
2068  // arguments.
2069  int LocalSwapBenefits = -1;
2070  unsigned Op1Idx = 1;
2071  if (BinOp->getOperand(Op1Idx) == Op0) {
2072  Op1Idx = 0;
2073  LocalSwapBenefits = 1;
2074  }
2075  if (BinOp->getOperand(Op1Idx) != Op1)
2076  continue;
2077  GlobalSwapBenefits += LocalSwapBenefits;
2078  }
2079  return GlobalSwapBenefits > 0;
2080 }
2081 
2083  bool Changed = false;
2084  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2085  unsigned Op0Cplxity = getComplexity(Op0);
2086  unsigned Op1Cplxity = getComplexity(Op1);
2087 
2088  /// Orders the operands of the compare so that they are listed from most
2089  /// complex to least complex. This puts constants before unary operators,
2090  /// before binary operators.
2091  if (Op0Cplxity < Op1Cplxity ||
2092  (Op0Cplxity == Op1Cplxity &&
2093  swapMayExposeCSEOpportunities(Op0, Op1))) {
2094  I.swapOperands();
2095  std::swap(Op0, Op1);
2096  Changed = true;
2097  }
2098 
2099  if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
2100  return ReplaceInstUsesWith(I, V);
2101 
2102  // comparing -val or val with non-zero is the same as just comparing val
2103  // ie, abs(val) != 0 -> val != 0
2104  if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
2105  {
2106  Value *Cond, *SelectTrue, *SelectFalse;
2107  if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
2108  m_Value(SelectFalse)))) {
2109  if (Value *V = dyn_castNegVal(SelectTrue)) {
2110  if (V == SelectFalse)
2111  return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2112  }
2113  else if (Value *V = dyn_castNegVal(SelectFalse)) {
2114  if (V == SelectTrue)
2115  return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
2116  }
2117  }
2118  }
2119 
2120  Type *Ty = Op0->getType();
2121 
2122  // icmp's with boolean values can always be turned into bitwise operations
2123  if (Ty->isIntegerTy(1)) {
2124  switch (I.getPredicate()) {
2125  default: llvm_unreachable("Invalid icmp instruction!");
2126  case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
2127  Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
2128  return BinaryOperator::CreateNot(Xor);
2129  }
2130  case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
2131  return BinaryOperator::CreateXor(Op0, Op1);
2132 
2133  case ICmpInst::ICMP_UGT:
2134  std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
2135  // FALL THROUGH
2136  case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
2137  Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2138  return BinaryOperator::CreateAnd(Not, Op1);
2139  }
2140  case ICmpInst::ICMP_SGT:
2141  std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
2142  // FALL THROUGH
2143  case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
2144  Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2145  return BinaryOperator::CreateAnd(Not, Op0);
2146  }
2147  case ICmpInst::ICMP_UGE:
2148  std::swap(Op0, Op1); // Change icmp uge -> icmp ule
2149  // FALL THROUGH
2150  case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
2151  Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
2152  return BinaryOperator::CreateOr(Not, Op1);
2153  }
2154  case ICmpInst::ICMP_SGE:
2155  std::swap(Op0, Op1); // Change icmp sge -> icmp sle
2156  // FALL THROUGH
2157  case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
2158  Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
2159  return BinaryOperator::CreateOr(Not, Op0);
2160  }
2161  }
2162  }
2163 
2164  unsigned BitWidth = 0;
2165  if (Ty->isIntOrIntVectorTy())
2166  BitWidth = Ty->getScalarSizeInBits();
2167  else if (TD) // Pointers require TD info to get their size.
2168  BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
2169 
2170  bool isSignBit = false;
2171 
2172  // See if we are doing a comparison with a constant.
2173  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2174  Value *A = 0, *B = 0;
2175 
2176  // Match the following pattern, which is a common idiom when writing
2177  // overflow-safe integer arithmetic function. The source performs an
2178  // addition in wider type, and explicitly checks for overflow using
2179  // comparisons against INT_MIN and INT_MAX. Simplify this by using the
2180  // sadd_with_overflow intrinsic.
2181  //
2182  // TODO: This could probably be generalized to handle other overflow-safe
2183  // operations if we worked out the formulas to compute the appropriate
2184  // magic constants.
2185  //
2186  // sum = a + b
2187  // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
2188  {
2189  ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
2190  if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2191  match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
2192  if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
2193  return Res;
2194  }
2195 
2196  // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
2197  if (I.isEquality() && CI->isZero() &&
2198  match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
2199  // (icmp cond A B) if cond is equality
2200  return new ICmpInst(I.getPredicate(), A, B);
2201  }
2202 
2203  // If we have an icmp le or icmp ge instruction, turn it into the
2204  // appropriate icmp lt or icmp gt instruction. This allows us to rely on
2205  // them being folded in the code below. The SimplifyICmpInst code has
2206  // already handled the edge cases for us, so we just assert on them.
2207  switch (I.getPredicate()) {
2208  default: break;
2209  case ICmpInst::ICMP_ULE:
2210  assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
2211  return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
2212  Builder->getInt(CI->getValue()+1));
2213  case ICmpInst::ICMP_SLE:
2214  assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
2215  return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2216  Builder->getInt(CI->getValue()+1));
2217  case ICmpInst::ICMP_UGE:
2218  assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
2219  return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
2220  Builder->getInt(CI->getValue()-1));
2221  case ICmpInst::ICMP_SGE:
2222  assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
2223  return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2224  Builder->getInt(CI->getValue()-1));
2225  }
2226 
2227  // If this comparison is a normal comparison, it demands all
2228  // bits, if it is a sign bit comparison, it only demands the sign bit.
2229  bool UnusedBit;
2230  isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
2231  }
2232 
2233  // See if we can fold the comparison based on range information we can get
2234  // by checking whether bits are known to be zero or one in the input.
2235  if (BitWidth != 0) {
2236  APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
2237  APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
2238 
2239  if (SimplifyDemandedBits(I.getOperandUse(0),
2240  DemandedBitsLHSMask(I, BitWidth, isSignBit),
2241  Op0KnownZero, Op0KnownOne, 0))
2242  return &I;
2243  if (SimplifyDemandedBits(I.getOperandUse(1),
2244  APInt::getAllOnesValue(BitWidth),
2245  Op1KnownZero, Op1KnownOne, 0))
2246  return &I;
2247 
2248  // Given the known and unknown bits, compute a range that the LHS could be
2249  // in. Compute the Min, Max and RHS values based on the known bits. For the
2250  // EQ and NE we use unsigned values.
2251  APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
2252  APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
2253  if (I.isSigned()) {
2254  ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2255  Op0Min, Op0Max);
2256  ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2257  Op1Min, Op1Max);
2258  } else {
2259  ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
2260  Op0Min, Op0Max);
2261  ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
2262  Op1Min, Op1Max);
2263  }
2264 
2265  // If Min and Max are known to be the same, then SimplifyDemandedBits
2266  // figured out that the LHS is a constant. Just constant fold this now so
2267  // that code below can assume that Min != Max.
2268  if (!isa<Constant>(Op0) && Op0Min == Op0Max)
2269  return new ICmpInst(I.getPredicate(),
2270  ConstantInt::get(Op0->getType(), Op0Min), Op1);
2271  if (!isa<Constant>(Op1) && Op1Min == Op1Max)
2272  return new ICmpInst(I.getPredicate(), Op0,
2273  ConstantInt::get(Op1->getType(), Op1Min));
2274 
2275  // Based on the range information we know about the LHS, see if we can
2276  // simplify this comparison. For example, (x&4) < 8 is always true.
2277  switch (I.getPredicate()) {
2278  default: llvm_unreachable("Unknown icmp opcode!");
2279  case ICmpInst::ICMP_EQ: {
2280  if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2281  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2282 
2283  // If all bits are known zero except for one, then we know at most one
2284  // bit is set. If the comparison is against zero, then this is a check
2285  // to see if *that* bit is set.
2286  APInt Op0KnownZeroInverted = ~Op0KnownZero;
2287  if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2288  // If the LHS is an AND with the same constant, look through it.
2289  Value *LHS = 0;
2290  ConstantInt *LHSC = 0;
2291  if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2292  LHSC->getValue() != Op0KnownZeroInverted)
2293  LHS = Op0;
2294 
2295  // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2296  // then turn "((1 << x)&8) == 0" into "x != 3".
2297  Value *X = 0;
2298  if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2299  unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2300  return new ICmpInst(ICmpInst::ICMP_NE, X,
2301  ConstantInt::get(X->getType(), CmpVal));
2302  }
2303 
2304  // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2305  // then turn "((8 >>u x)&1) == 0" into "x != 3".
2306  const APInt *CI;
2307  if (Op0KnownZeroInverted == 1 &&
2308  match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2309  return new ICmpInst(ICmpInst::ICMP_NE, X,
2311  CI->countTrailingZeros()));
2312  }
2313 
2314  break;
2315  }
2316  case ICmpInst::ICMP_NE: {
2317  if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
2318  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2319 
2320  // If all bits are known zero except for one, then we know at most one
2321  // bit is set. If the comparison is against zero, then this is a check
2322  // to see if *that* bit is set.
2323  APInt Op0KnownZeroInverted = ~Op0KnownZero;
2324  if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
2325  // If the LHS is an AND with the same constant, look through it.
2326  Value *LHS = 0;
2327  ConstantInt *LHSC = 0;
2328  if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
2329  LHSC->getValue() != Op0KnownZeroInverted)
2330  LHS = Op0;
2331 
2332  // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
2333  // then turn "((1 << x)&8) != 0" into "x == 3".
2334  Value *X = 0;
2335  if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
2336  unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
2337  return new ICmpInst(ICmpInst::ICMP_EQ, X,
2338  ConstantInt::get(X->getType(), CmpVal));
2339  }
2340 
2341  // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
2342  // then turn "((8 >>u x)&1) != 0" into "x == 3".
2343  const APInt *CI;
2344  if (Op0KnownZeroInverted == 1 &&
2345  match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
2346  return new ICmpInst(ICmpInst::ICMP_EQ, X,
2348  CI->countTrailingZeros()));
2349  }
2350 
2351  break;
2352  }
2353  case ICmpInst::ICMP_ULT:
2354  if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
2355  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2356  if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
2357  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2358  if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
2359  return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2360  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2361  if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
2362  return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2363  Builder->getInt(CI->getValue()-1));
2364 
2365  // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
2366  if (CI->isMinValue(true))
2367  return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
2369  }
2370  break;
2371  case ICmpInst::ICMP_UGT:
2372  if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
2373  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2374  if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
2375  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2376 
2377  if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
2378  return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2379  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2380  if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
2381  return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2382  Builder->getInt(CI->getValue()+1));
2383 
2384  // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2385  if (CI->isMaxValue(true))
2386  return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2388  }
2389  break;
2390  case ICmpInst::ICMP_SLT:
2391  if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
2392  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2393  if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
2394  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2395  if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
2396  return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2397  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2398  if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
2399  return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2400  Builder->getInt(CI->getValue()-1));
2401  }
2402  break;
2403  case ICmpInst::ICMP_SGT:
2404  if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
2405  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2406  if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
2407  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2408 
2409  if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
2410  return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2411  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2412  if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
2413  return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2414  Builder->getInt(CI->getValue()+1));
2415  }
2416  break;
2417  case ICmpInst::ICMP_SGE:
2418  assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2419  if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
2420  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2421  if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
2422  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2423  break;
2424  case ICmpInst::ICMP_SLE:
2425  assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2426  if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
2427  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2428  if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
2429  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2430  break;
2431  case ICmpInst::ICMP_UGE:
2432  assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2433  if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
2434  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2435  if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
2436  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2437  break;
2438  case ICmpInst::ICMP_ULE:
2439  assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2440  if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
2441  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2442  if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
2443  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2444  break;
2445  }
2446 
2447  // Turn a signed comparison into an unsigned one if both operands
2448  // are known to have the same sign.
2449  if (I.isSigned() &&
2450  ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2451  (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2452  return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2453  }
2454 
2455  // Test if the ICmpInst instruction is used exclusively by a select as
2456  // part of a minimum or maximum operation. If so, refrain from doing
2457  // any other folding. This helps out other analyses which understand
2458  // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2459  // and CodeGen. And in this case, at least one of the comparison
2460  // operands has at least one user besides the compare (the select),
2461  // which would often largely negate the benefit of folding anyway.
2462  if (I.hasOneUse())
2463  if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2464  if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2465  (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2466  return 0;
2467 
2468  // See if we are doing a comparison between a constant and an instruction that
2469  // can be folded into the comparison.
2470  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2471  // Since the RHS is a ConstantInt (CI), if the left hand side is an
2472  // instruction, see if that instruction also has constants so that the
2473  // instruction can be folded into the icmp
2474  if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2475  if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2476  return Res;
2477  }
2478 
2479  // Handle icmp with constant (but not simple integer constant) RHS
2480  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2481  if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2482  switch (LHSI->getOpcode()) {
2483  case Instruction::GetElementPtr:
2484  // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2485  if (RHSC->isNullValue() &&
2486  cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2487  return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2488  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2489  break;
2490  case Instruction::PHI:
2491  // Only fold icmp into the PHI if the phi and icmp are in the same
2492  // block. If in the same block, we're encouraging jump threading. If
2493  // not, we are just pessimizing the code by making an i1 phi.
2494  if (LHSI->getParent() == I.getParent())
2495  if (Instruction *NV = FoldOpIntoPhi(I))
2496  return NV;
2497  break;
2498  case Instruction::Select: {
2499  // If either operand of the select is a constant, we can fold the
2500  // comparison into the select arms, which will cause one to be
2501  // constant folded and the select turned into a bitwise or.
2502  Value *Op1 = 0, *Op2 = 0;
2503  if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2504  Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2505  if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2506  Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2507 
2508  // We only want to perform this transformation if it will not lead to
2509  // additional code. This is true if either both sides of the select
2510  // fold to a constant (in which case the icmp is replaced with a select
2511  // which will usually simplify) or this is the only user of the
2512  // select (in which case we are trading a select+icmp for a simpler
2513  // select+icmp).
2514  if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2515  if (!Op1)
2516  Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2517  RHSC, I.getName());
2518  if (!Op2)
2519  Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2520  RHSC, I.getName());
2521  return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2522  }
2523  break;
2524  }
2525  case Instruction::IntToPtr:
2526  // icmp pred inttoptr(X), null -> icmp pred X, 0
2527  if (RHSC->isNullValue() && TD &&
2528  TD->getIntPtrType(RHSC->getType()) ==
2529  LHSI->getOperand(0)->getType())
2530  return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2531  Constant::getNullValue(LHSI->getOperand(0)->getType()));
2532  break;
2533 
2534  case Instruction::Load:
2535  // Try to optimize things like "A[i] > 4" to index computations.
2536  if (GetElementPtrInst *GEP =
2537  dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2538  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2539  if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2540  !cast<LoadInst>(LHSI)->isVolatile())
2541  if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2542  return Res;
2543  }
2544  break;
2545  }
2546  }
2547 
2548  // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2549  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2550  if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2551  return NI;
2552  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2553  if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2555  return NI;
2556 
2557  // Test to see if the operands of the icmp are casted versions of other
2558  // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2559  // now.
2560  if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
2561  if (Op0->getType()->isPointerTy() &&
2562  (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2563  // We keep moving the cast from the left operand over to the right
2564  // operand, where it can often be eliminated completely.
2565  Op0 = CI->getOperand(0);
2566 
2567  // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2568  // so eliminate it as well.
2569  if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2570  Op1 = CI2->getOperand(0);
2571 
2572  // If Op1 is a constant, we can fold the cast into the constant.
2573  if (Op0->getType() != Op1->getType()) {
2574  if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2575  Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2576  } else {
2577  // Otherwise, cast the RHS right before the icmp
2578  Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2579  }
2580  }
2581  return new ICmpInst(I.getPredicate(), Op0, Op1);
2582  }
2583  }
2584 
2585  if (isa<CastInst>(Op0)) {
2586  // Handle the special case of: icmp (cast bool to X), <cst>
2587  // This comes up when you have code like
2588  // int X = A < B;
2589  // if (X) ...
2590  // For generality, we handle any zero-extension of any operand comparison
2591  // with a constant or another cast from the same type.
2592  if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2593  if (Instruction *R = visitICmpInstWithCastAndCast(I))
2594  return R;
2595  }
2596 
2597  // Special logic for binary operators.
2598  BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
2599  BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
2600  if (BO0 || BO1) {
2601  CmpInst::Predicate Pred = I.getPredicate();
2602  bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
2603  if (BO0 && isa<OverflowingBinaryOperator>(BO0))
2604  NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
2605  (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
2606  (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
2607  if (BO1 && isa<OverflowingBinaryOperator>(BO1))
2608  NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
2609  (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
2610  (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
2611 
2612  // Analyze the case when either Op0 or Op1 is an add instruction.
2613  // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
2614  Value *A = 0, *B = 0, *C = 0, *D = 0;
2615  if (BO0 && BO0->getOpcode() == Instruction::Add)
2616  A = BO0->getOperand(0), B = BO0->getOperand(1);
2617  if (BO1 && BO1->getOpcode() == Instruction::Add)
2618  C = BO1->getOperand(0), D = BO1->getOperand(1);
2619 
2620  // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2621  if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
2622  return new ICmpInst(Pred, A == Op1 ? B : A,
2623  Constant::getNullValue(Op1->getType()));
2624 
2625  // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2626  if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
2627  return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
2628  C == Op0 ? D : C);
2629 
2630  // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
2631  if (A && C && (A == C || A == D || B == C || B == D) &&
2632  NoOp0WrapProblem && NoOp1WrapProblem &&
2633  // Try not to increase register pressure.
2634  BO0->hasOneUse() && BO1->hasOneUse()) {
2635  // Determine Y and Z in the form icmp (X+Y), (X+Z).
2636  Value *Y, *Z;
2637  if (A == C) {
2638  // C + B == C + D -> B == D
2639  Y = B;
2640  Z = D;
2641  } else if (A == D) {
2642  // D + B == C + D -> B == C
2643  Y = B;
2644  Z = C;
2645  } else if (B == C) {
2646  // A + C == C + D -> A == D
2647  Y = A;
2648  Z = D;
2649  } else {
2650  assert(B == D);
2651  // A + D == C + D -> A == C
2652  Y = A;
2653  Z = C;
2654  }
2655  return new ICmpInst(Pred, Y, Z);
2656  }
2657 
2658  // icmp slt (X + -1), Y -> icmp sle X, Y
2659  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
2660  match(B, m_AllOnes()))
2661  return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
2662 
2663  // icmp sge (X + -1), Y -> icmp sgt X, Y
2664  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
2665  match(B, m_AllOnes()))
2666  return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
2667 
2668  // icmp sle (X + 1), Y -> icmp slt X, Y
2669  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
2670  match(B, m_One()))
2671  return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
2672 
2673  // icmp sgt (X + 1), Y -> icmp sge X, Y
2674  if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
2675  match(B, m_One()))
2676  return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
2677 
2678  // if C1 has greater magnitude than C2:
2679  // icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
2680  // s.t. C3 = C1 - C2
2681  //
2682  // if C2 has greater magnitude than C1:
2683  // icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
2684  // s.t. C3 = C2 - C1
2685  if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
2686  (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
2687  if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
2688  if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
2689  const APInt &AP1 = C1->getValue();
2690  const APInt &AP2 = C2->getValue();
2691  if (AP1.isNegative() == AP2.isNegative()) {
2692  APInt AP1Abs = C1->getValue().abs();
2693  APInt AP2Abs = C2->getValue().abs();
2694  if (AP1Abs.uge(AP2Abs)) {
2695  ConstantInt *C3 = Builder->getInt(AP1 - AP2);
2696  Value *NewAdd = Builder->CreateNSWAdd(A, C3);
2697  return new ICmpInst(Pred, NewAdd, C);
2698  } else {
2699  ConstantInt *C3 = Builder->getInt(AP2 - AP1);
2700  Value *NewAdd = Builder->CreateNSWAdd(C, C3);
2701  return new ICmpInst(Pred, A, NewAdd);
2702  }
2703  }
2704  }
2705 
2706 
2707  // Analyze the case when either Op0 or Op1 is a sub instruction.
2708  // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
2709  A = 0; B = 0; C = 0; D = 0;
2710  if (BO0 && BO0->getOpcode() == Instruction::Sub)
2711  A = BO0->getOperand(0), B = BO0->getOperand(1);
2712  if (BO1 && BO1->getOpcode() == Instruction::Sub)
2713  C = BO1->getOperand(0), D = BO1->getOperand(1);
2714 
2715  // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
2716  if (A == Op1 && NoOp0WrapProblem)
2717  return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
2718 
2719  // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
2720  if (C == Op0 && NoOp1WrapProblem)
2721  return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
2722 
2723  // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
2724  if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
2725  // Try not to increase register pressure.
2726  BO0->hasOneUse() && BO1->hasOneUse())
2727  return new ICmpInst(Pred, A, C);
2728 
2729  // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
2730  if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
2731  // Try not to increase register pressure.
2732  BO0->hasOneUse() && BO1->hasOneUse())
2733  return new ICmpInst(Pred, D, B);
2734 
2735  BinaryOperator *SRem = NULL;
2736  // icmp (srem X, Y), Y
2737  if (BO0 && BO0->getOpcode() == Instruction::SRem &&
2738  Op1 == BO0->getOperand(1))
2739  SRem = BO0;
2740  // icmp Y, (srem X, Y)
2741  else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
2742  Op0 == BO1->getOperand(1))
2743  SRem = BO1;
2744  if (SRem) {
2745  // We don't check hasOneUse to avoid increasing register pressure because
2746  // the value we use is the same value this instruction was already using.
2747  switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
2748  default: break;
2749  case ICmpInst::ICMP_EQ:
2750  return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
2751  case ICmpInst::ICMP_NE:
2752  return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
2753  case ICmpInst::ICMP_SGT:
2754  case ICmpInst::ICMP_SGE:
2755  return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
2757  case ICmpInst::ICMP_SLT:
2758  case ICmpInst::ICMP_SLE:
2759  return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
2760  Constant::getNullValue(SRem->getType()));
2761  }
2762  }
2763 
2764  if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
2765  BO0->hasOneUse() && BO1->hasOneUse() &&
2766  BO0->getOperand(1) == BO1->getOperand(1)) {
2767  switch (BO0->getOpcode()) {
2768  default: break;
2769  case Instruction::Add:
2770  case Instruction::Sub:
2771  case Instruction::Xor:
2772  if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2773  return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2774  BO1->getOperand(0));
2775  // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2776  if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2777  if (CI->getValue().isSignBit()) {
2778  ICmpInst::Predicate Pred = I.isSigned()
2779  ? I.getUnsignedPredicate()
2780  : I.getSignedPredicate();
2781  return new ICmpInst(Pred, BO0->getOperand(0),
2782  BO1->getOperand(0));
2783  }
2784 
2785  if (CI->isMaxValue(true)) {
2786  ICmpInst::Predicate Pred = I.isSigned()
2787  ? I.getUnsignedPredicate()
2788  : I.getSignedPredicate();
2789  Pred = I.getSwappedPredicate(Pred);
2790  return new ICmpInst(Pred, BO0->getOperand(0),
2791  BO1->getOperand(0));
2792  }
2793  }
2794  break;
2795  case Instruction::Mul:
2796  if (!I.isEquality())
2797  break;
2798 
2799  if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
2800  // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2801  // Mask = -1 >> count-trailing-zeros(Cst).
2802  if (!CI->isZero() && !CI->isOne()) {
2803  const APInt &AP = CI->getValue();
2806  AP.getBitWidth() -
2807  AP.countTrailingZeros()));
2808  Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
2809  Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
2810  return new ICmpInst(I.getPredicate(), And1, And2);
2811  }
2812  }
2813  break;
2814  case Instruction::UDiv:
2815  case Instruction::LShr:
2816  if (I.isSigned())
2817  break;
2818  // fall-through
2819  case Instruction::SDiv:
2820  case Instruction::AShr:
2821  if (!BO0->isExact() || !BO1->isExact())
2822  break;
2823  return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2824  BO1->getOperand(0));
2825  case Instruction::Shl: {
2826  bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
2827  bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
2828  if (!NUW && !NSW)
2829  break;
2830  if (!NSW && I.isSigned())
2831  break;
2832  return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
2833  BO1->getOperand(0));
2834  }
2835  }
2836  }
2837  }
2838 
2839  { Value *A, *B;
2840  // Transform (A & ~B) == 0 --> (A & B) != 0
2841  // and (A & ~B) != 0 --> (A & B) == 0
2842  // if A is a power of 2.
2843  if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
2844  match(Op1, m_Zero()) && isKnownToBeAPowerOfTwo(A) && I.isEquality())
2845  return new ICmpInst(I.getInversePredicate(),
2846  Builder->CreateAnd(A, B),
2847  Op1);
2848 
2849  // ~x < ~y --> y < x
2850  // ~x < cst --> ~cst < x
2851  if (match(Op0, m_Not(m_Value(A)))) {
2852  if (match(Op1, m_Not(m_Value(B))))
2853  return new ICmpInst(I.getPredicate(), B, A);
2854  if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
2855  return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2856  }
2857 
2858  // (a+b) <u a --> llvm.uadd.with.overflow.
2859  // (a+b) <u b --> llvm.uadd.with.overflow.
2860  if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2861  match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2862  (Op1 == A || Op1 == B))
2863  if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2864  return R;
2865 
2866  // a >u (a+b) --> llvm.uadd.with.overflow.
2867  // b >u (a+b) --> llvm.uadd.with.overflow.
2868  if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2869  match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2870  (Op0 == A || Op0 == B))
2871  if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2872  return R;
2873  }
2874 
2875  if (I.isEquality()) {
2876  Value *A, *B, *C, *D;
2877 
2878  if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2879  if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
2880  Value *OtherVal = A == Op1 ? B : A;
2881  return new ICmpInst(I.getPredicate(), OtherVal,
2883  }
2884 
2885  if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2886  // A^c1 == C^c2 --> A == C^(c1^c2)
2887  ConstantInt *C1, *C2;
2888  if (match(B, m_ConstantInt(C1)) &&
2889  match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2890  Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
2891  Value *Xor = Builder->CreateXor(C, NC);
2892  return new ICmpInst(I.getPredicate(), A, Xor);
2893  }
2894 
2895  // A^B == A^D -> B == D
2896  if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2897  if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2898  if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2899  if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2900  }
2901  }
2902 
2903  if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2904  (A == Op0 || B == Op0)) {
2905  // A == (A^B) -> B == 0
2906  Value *OtherVal = A == Op0 ? B : A;
2907  return new ICmpInst(I.getPredicate(), OtherVal,
2909  }
2910 
2911  // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2912  if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
2913  match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
2914  Value *X = 0, *Y = 0, *Z = 0;
2915 
2916  if (A == C) {
2917  X = B; Y = D; Z = A;
2918  } else if (A == D) {
2919  X = B; Y = C; Z = A;
2920  } else if (B == C) {
2921  X = A; Y = D; Z = B;
2922  } else if (B == D) {
2923  X = A; Y = C; Z = B;
2924  }
2925 
2926  if (X) { // Build (X^Y) & Z
2927  Op1 = Builder->CreateXor(X, Y);
2928  Op1 = Builder->CreateAnd(Op1, Z);
2929  I.setOperand(0, Op1);
2930  I.setOperand(1, Constant::getNullValue(Op1->getType()));
2931  return &I;
2932  }
2933  }
2934 
2935  // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
2936  // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
2937  ConstantInt *Cst1;
2938  if ((Op0->hasOneUse() &&
2939  match(Op0, m_ZExt(m_Value(A))) &&
2940  match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
2941  (Op1->hasOneUse() &&
2942  match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
2943  match(Op1, m_ZExt(m_Value(A))))) {
2944  APInt Pow2 = Cst1->getValue() + 1;
2945  if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
2946  Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
2947  return new ICmpInst(I.getPredicate(), A,
2948  Builder->CreateTrunc(B, A->getType()));
2949  }
2950 
2951  // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
2952  // For lshr and ashr pairs.
2953  if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
2954  match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
2955  (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
2956  match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
2957  unsigned TypeBits = Cst1->getBitWidth();
2958  unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
2959  if (ShAmt < TypeBits && ShAmt != 0) {
2963  Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
2964  APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
2965  return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
2966  }
2967  }
2968 
2969  // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
2970  // "icmp (and X, mask), cst"
2971  uint64_t ShAmt = 0;
2972  if (Op0->hasOneUse() &&
2974  m_ConstantInt(ShAmt))))) &&
2975  match(Op1, m_ConstantInt(Cst1)) &&
2976  // Only do this when A has multiple uses. This is most important to do
2977  // when it exposes other optimizations.
2978  !A->hasOneUse()) {
2979  unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
2980 
2981  if (ShAmt < ASize) {
2982  APInt MaskV =
2984  MaskV <<= ShAmt;
2985 
2986  APInt CmpV = Cst1->getValue().zext(ASize);
2987  CmpV <<= ShAmt;
2988 
2989  Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
2990  return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
2991  }
2992  }
2993  }
2994 
2995  {
2996  Value *X; ConstantInt *Cst;
2997  // icmp X+Cst, X
2998  if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2999  return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
3000 
3001  // icmp X, X+Cst
3002  if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
3003  return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
3004  }
3005  return Changed ? &I : 0;
3006 }
3007 
3008 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
3009 ///
3011  Instruction *LHSI,
3012  Constant *RHSC) {
3013  if (!isa<ConstantFP>(RHSC)) return 0;
3014  const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
3015 
3016  // Get the width of the mantissa. We don't want to hack on conversions that
3017  // might lose information from the integer, e.g. "i64 -> float"
3018  int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
3019  if (MantissaWidth == -1) return 0; // Unknown.
3020 
3021  // Check to see that the input is converted from an integer type that is small
3022  // enough that preserves all bits. TODO: check here for "known" sign bits.
3023  // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
3024  unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
3025 
3026  // If this is a uitofp instruction, we need an extra bit to hold the sign.
3027  bool LHSUnsigned = isa<UIToFPInst>(LHSI);
3028  if (LHSUnsigned)
3029  ++InputSize;
3030 
3031  // If the conversion would lose info, don't hack on this.
3032  if ((int)InputSize > MantissaWidth)
3033  return 0;
3034 
3035  // Otherwise, we can potentially simplify the comparison. We know that it
3036  // will always come through as an integer value and we know the constant is
3037  // not a NAN (it would have been previously simplified).
3038  assert(!RHS.isNaN() && "NaN comparison not already folded!");
3039 
3040  ICmpInst::Predicate Pred;
3041  switch (I.getPredicate()) {
3042  default: llvm_unreachable("Unexpected predicate!");
3043  case FCmpInst::FCMP_UEQ:
3044  case FCmpInst::FCMP_OEQ:
3045  Pred = ICmpInst::ICMP_EQ;
3046  break;
3047  case FCmpInst::FCMP_UGT:
3048  case FCmpInst::FCMP_OGT:
3049  Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
3050  break;
3051  case FCmpInst::FCMP_UGE:
3052  case FCmpInst::FCMP_OGE:
3053  Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
3054  break;
3055  case FCmpInst::FCMP_ULT:
3056  case FCmpInst::FCMP_OLT:
3057  Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
3058  break;
3059  case FCmpInst::FCMP_ULE:
3060  case FCmpInst::FCMP_OLE:
3061  Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
3062  break;
3063  case FCmpInst::FCMP_UNE:
3064  case FCmpInst::FCMP_ONE:
3065  Pred = ICmpInst::ICMP_NE;
3066  break;
3067  case FCmpInst::FCMP_ORD:
3068  return ReplaceInstUsesWith(I, Builder->getTrue());
3069  case FCmpInst::FCMP_UNO:
3070  return ReplaceInstUsesWith(I, Builder->getFalse());
3071  }
3072 
3073  IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
3074 
3075  // Now we know that the APFloat is a normal number, zero or inf.
3076 
3077  // See if the FP constant is too large for the integer. For example,
3078  // comparing an i8 to 300.0.
3079  unsigned IntWidth = IntTy->getScalarSizeInBits();
3080 
3081  if (!LHSUnsigned) {
3082  // If the RHS value is > SignedMax, fold the comparison. This handles +INF
3083  // and large values.
3084  APFloat SMax(RHS.getSemantics());
3085  SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
3087  if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
3088  if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
3089  Pred == ICmpInst::ICMP_SLE)
3090  return ReplaceInstUsesWith(I, Builder->getTrue());
3091  return ReplaceInstUsesWith(I, Builder->getFalse());
3092  }
3093  } else {
3094  // If the RHS value is > UnsignedMax, fold the comparison. This handles
3095  // +INF and large values.
3096  APFloat UMax(RHS.getSemantics());
3097  UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
3099  if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
3100  if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
3101  Pred == ICmpInst::ICMP_ULE)
3102  return ReplaceInstUsesWith(I, Builder->getTrue());
3103  return ReplaceInstUsesWith(I, Builder->getFalse());
3104  }
3105  }
3106 
3107  if (!LHSUnsigned) {
3108  // See if the RHS value is < SignedMin.
3109  APFloat SMin(RHS.getSemantics());
3110  SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
3112  if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
3113  if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
3114  Pred == ICmpInst::ICMP_SGE)
3115  return ReplaceInstUsesWith(I, Builder->getTrue());
3116  return ReplaceInstUsesWith(I, Builder->getFalse());
3117  }
3118  } else {
3119  // See if the RHS value is < UnsignedMin.
3120  APFloat SMin(RHS.getSemantics());
3121  SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
3123  if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
3124  if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
3125  Pred == ICmpInst::ICMP_UGE)
3126  return ReplaceInstUsesWith(I, Builder->getTrue());
3127  return ReplaceInstUsesWith(I, Builder->getFalse());
3128  }
3129  }
3130 
3131  // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
3132  // [0, UMAX], but it may still be fractional. See if it is fractional by
3133  // casting the FP value to the integer value and back, checking for equality.
3134  // Don't do this for zero, because -0.0 is not fractional.
3135  Constant *RHSInt = LHSUnsigned
3136  ? ConstantExpr::getFPToUI(RHSC, IntTy)
3137  : ConstantExpr::getFPToSI(RHSC, IntTy);
3138  if (!RHS.isZero()) {
3139  bool Equal = LHSUnsigned
3140  ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
3141  : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
3142  if (!Equal) {
3143  // If we had a comparison against a fractional value, we have to adjust
3144  // the compare predicate and sometimes the value. RHSC is rounded towards
3145  // zero at this point.
3146  switch (Pred) {
3147  default: llvm_unreachable("Unexpected integer comparison!");
3148  case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
3149  return ReplaceInstUsesWith(I, Builder->getTrue());
3150  case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
3151  return ReplaceInstUsesWith(I, Builder->getFalse());
3152  case ICmpInst::ICMP_ULE:
3153  // (float)int <= 4.4 --> int <= 4
3154  // (float)int <= -4.4 --> false
3155  if (RHS.isNegative())
3156  return ReplaceInstUsesWith(I, Builder->getFalse());
3157  break;
3158  case ICmpInst::ICMP_SLE:
3159  // (float)int <= 4.4 --> int <= 4
3160  // (float)int <= -4.4 --> int < -4
3161  if (RHS.isNegative())
3162  Pred = ICmpInst::ICMP_SLT;
3163  break;
3164  case ICmpInst::ICMP_ULT:
3165  // (float)int < -4.4 --> false
3166  // (float)int < 4.4 --> int <= 4
3167  if (RHS.isNegative())
3168  return ReplaceInstUsesWith(I, Builder->getFalse());
3169  Pred = ICmpInst::ICMP_ULE;
3170  break;
3171  case ICmpInst::ICMP_SLT:
3172  // (float)int < -4.4 --> int < -4
3173  // (float)int < 4.4 --> int <= 4
3174  if (!RHS.isNegative())
3175  Pred = ICmpInst::ICMP_SLE;
3176  break;
3177  case ICmpInst::ICMP_UGT:
3178  // (float)int > 4.4 --> int > 4
3179  // (float)int > -4.4 --> true
3180  if (RHS.isNegative())
3181  return ReplaceInstUsesWith(I, Builder->getTrue());
3182  break;
3183  case ICmpInst::ICMP_SGT:
3184  // (float)int > 4.4 --> int > 4
3185  // (float)int > -4.4 --> int >= -4
3186  if (RHS.isNegative())
3187  Pred = ICmpInst::ICMP_SGE;
3188  break;
3189  case ICmpInst::ICMP_UGE:
3190  // (float)int >= -4.4 --> true
3191  // (float)int >= 4.4 --> int > 4
3192  if (RHS.isNegative())
3193  return ReplaceInstUsesWith(I, Builder->getTrue());
3194  Pred = ICmpInst::ICMP_UGT;
3195  break;
3196  case ICmpInst::ICMP_SGE:
3197  // (float)int >= -4.4 --> int >= -4
3198  // (float)int >= 4.4 --> int > 4
3199  if (!RHS.isNegative())
3200  Pred = ICmpInst::ICMP_SGT;
3201  break;
3202  }
3203  }
3204  }
3205 
3206  // Lower this FP comparison into an appropriate integer version of the
3207  // comparison.
3208  return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
3209 }
3210 
3212  bool Changed = false;
3213 
3214  /// Orders the operands of the compare so that they are listed from most
3215  /// complex to least complex. This puts constants before unary operators,
3216  /// before binary operators.
3217  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
3218  I.swapOperands();
3219  Changed = true;
3220  }
3221 
3222  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3223 
3224  if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
3225  return ReplaceInstUsesWith(I, V);
3226 
3227  // Simplify 'fcmp pred X, X'
3228  if (Op0 == Op1) {
3229  switch (I.getPredicate()) {
3230  default: llvm_unreachable("Unknown predicate!");
3231  case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
3232  case FCmpInst::FCMP_ULT: // True if unordered or less than
3233  case FCmpInst::FCMP_UGT: // True if unordered or greater than
3234  case FCmpInst::FCMP_UNE: // True if unordered or not equal
3235  // Canonicalize these to be 'fcmp uno %X, 0.0'.
3238  return &I;
3239 
3240  case FCmpInst::FCMP_ORD: // True if ordered (no nans)
3241  case FCmpInst::FCMP_OEQ: // True if ordered and equal
3242  case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
3243  case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
3244  // Canonicalize these to be 'fcmp ord %X, 0.0'.
3247  return &I;
3248  }
3249  }
3250 
3251  // Handle fcmp with constant RHS
3252  if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
3253  if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
3254  switch (LHSI->getOpcode()) {
3255  case Instruction::FPExt: {
3256  // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
3257  FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
3258  ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
3259  if (!RHSF)
3260  break;
3261 
3262  const fltSemantics *Sem;
3263  // FIXME: This shouldn't be here.
3264  if (LHSExt->getSrcTy()->isHalfTy())
3265  Sem = &APFloat::IEEEhalf;
3266  else if (LHSExt->getSrcTy()->isFloatTy())
3267  Sem = &APFloat::IEEEsingle;
3268  else if (LHSExt->getSrcTy()->isDoubleTy())
3269  Sem = &APFloat::IEEEdouble;
3270  else if (LHSExt->getSrcTy()->isFP128Ty())
3271  Sem = &APFloat::IEEEquad;
3272  else if (LHSExt->getSrcTy()->isX86_FP80Ty())
3274  else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
3275  Sem = &APFloat::PPCDoubleDouble;
3276  else
3277  break;
3278 
3279  bool Lossy;
3280  APFloat F = RHSF->getValueAPF();
3281  F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
3282 
3283  // Avoid lossy conversions and denormals. Zero is a special case
3284  // that's OK to convert.
3285  APFloat Fabs = F;
3286  Fabs.clearSign();
3287  if (!Lossy &&
3288  ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
3289  APFloat::cmpLessThan) || Fabs.isZero()))
3290 
3291  return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3292  ConstantFP::get(RHSC->getContext(), F));
3293  break;
3294  }
3295  case Instruction::PHI:
3296  // Only fold fcmp into the PHI if the phi and fcmp are in the same
3297  // block. If in the same block, we're encouraging jump threading. If
3298  // not, we are just pessimizing the code by making an i1 phi.
3299  if (LHSI->getParent() == I.getParent())
3300  if (Instruction *NV = FoldOpIntoPhi(I))
3301  return NV;
3302  break;
3303  case Instruction::SIToFP:
3304  case Instruction::UIToFP:
3305  if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
3306  return NV;
3307  break;
3308  case Instruction::Select: {
3309  // If either operand of the select is a constant, we can fold the
3310  // comparison into the select arms, which will cause one to be
3311  // constant folded and the select turned into a bitwise or.
3312  Value *Op1 = 0, *Op2 = 0;
3313  if (LHSI->hasOneUse()) {
3314  if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3315  // Fold the known value into the constant operand.
3316  Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3317  // Insert a new FCmp of the other select operand.
3318  Op2 = Builder->CreateFCmp(I.getPredicate(),
3319  LHSI->getOperand(2), RHSC, I.getName());
3320  } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3321  // Fold the known value into the constant operand.
3322  Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
3323  // Insert a new FCmp of the other select operand.
3324  Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
3325  RHSC, I.getName());
3326  }
3327  }
3328 
3329  if (Op1)
3330  return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3331  break;
3332  }
3333  case Instruction::FSub: {
3334  // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
3335  Value *Op;
3336  if (match(LHSI, m_FNeg(m_Value(Op))))
3337  return new FCmpInst(I.getSwappedPredicate(), Op,
3338  ConstantExpr::getFNeg(RHSC));
3339  break;
3340  }
3341  case Instruction::Load:
3342  if (GetElementPtrInst *GEP =
3343  dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3344  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3345  if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3346  !cast<LoadInst>(LHSI)->isVolatile())
3347  if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
3348  return Res;
3349  }
3350  break;
3351  case Instruction::Call: {
3352  CallInst *CI = cast<CallInst>(LHSI);
3354  // Various optimization for fabs compared with zero.
3355  if (RHSC->isNullValue() && CI->getCalledFunction() &&
3356  TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
3357  TLI->has(Func)) {
3358  if (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
3359  Func == LibFunc::fabsl) {
3360  switch (I.getPredicate()) {
3361  default: break;
3362  // fabs(x) < 0 --> false
3363  case FCmpInst::FCMP_OLT:
3364  return ReplaceInstUsesWith(I, Builder->getFalse());
3365  // fabs(x) > 0 --> x != 0
3366  case FCmpInst::FCMP_OGT:
3367  return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0),
3368  RHSC);
3369  // fabs(x) <= 0 --> x == 0
3370  case FCmpInst::FCMP_OLE:
3371  return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0),
3372  RHSC);
3373  // fabs(x) >= 0 --> !isnan(x)
3374  case FCmpInst::FCMP_OGE:
3375  return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0),
3376  RHSC);
3377  // fabs(x) == 0 --> x == 0
3378  // fabs(x) != 0 --> x != 0
3379  case FCmpInst::FCMP_OEQ:
3380  case FCmpInst::FCMP_UEQ:
3381  case FCmpInst::FCMP_ONE:
3382  case FCmpInst::FCMP_UNE:
3383  return new FCmpInst(I.getPredicate(), CI->getArgOperand(0),
3384  RHSC);
3385  }
3386  }
3387  }
3388  }
3389  }
3390  }
3391 
3392  // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
3393  Value *X, *Y;
3394  if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
3395  return new FCmpInst(I.getSwappedPredicate(), X, Y);
3396 
3397  // fcmp (fpext x), (fpext y) -> fcmp x, y
3398  if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
3399  if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
3400  if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
3401  return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
3402  RHSExt->getOperand(0));
3403 
3404  return Changed ? &I : 0;
3405 }
bool isArithmeticShift() const
isArithmeticShift - Return true if this is an arithmetic shift right.
Definition: Instruction.h:113
const Use & getOperandUse(unsigned i) const
Definition: User.h:99
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:467
static bool isHighOnes(const ConstantInt *CI)
APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const
Arithmetic right-shift function.
Definition: APInt.cpp:1038
void push_back(const T &Elt)
Definition: SmallVector.h:236
use_iterator use_end()
Definition: Value.h:152
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:445
IntegerType * getType() const
Definition: Constants.h:139
Instruction::CastOps getOpcode() const
Return the opcode of this CastInst.
Definition: InstrTypes.h:603
class_match< Value > m_Value()
m_Value() - Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
static APInt getSignBit(unsigned BitWidth)
Get the SignBit for a specific bit width.
Definition: APInt.h:443
APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const
Definition: APInt.cpp:777
static Constant * getSIToFP(Constant *C, Type *Ty)
Definition: Constants.cpp:1604
APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const
Get the absolute value;.
Definition: APInt.h:1521
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:450
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
Definition: PatternMatch.h:407
Instruction * FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS, ICmpInst::Predicate Cond, Instruction &I)
static bool HasSubOverflow(ConstantInt *Result, ConstantInt *In1, ConstantInt *In2, bool IsSigned)
bool isNaN() const
Returns true if and only if the float is a quiet or signaling NaN.
Definition: APFloat.h:386
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Definition: IRBuilder.h:1180
unsigned getScalarSizeInBits()
Definition: Type.cpp:135
static const fltSemantics IEEEdouble
Definition: APFloat.h:133
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
static void ComputeSignedMinMaxValuesFromKnownBits(const APInt &KnownZero, const APInt &KnownOne, APInt &Min, APInt &Max)
match_zero m_Zero()
Definition: PatternMatch.h:137
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", Instruction *InsertBefore=0)
void setBit(unsigned bitPosition)
Set a given bit to 1.
Definition: APInt.cpp:583
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getBitWidth() const
getBitWidth - Return the bitwidth of this constant.
Definition: Constants.h:110
This class represents zero extension of integer types.
unsigned getNumOperands() const
Definition: User.h:108
static Constant * getFPToUI(Constant *C, Type *Ty)
Definition: Constants.cpp:1615
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:327
static bool SubWithOverflow(Constant *&Result, Constant *In1, Constant *In2, bool IsSigned=false)
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Get a value with low bits set.
Definition: APInt.h:528
Predicate getInversePredicate() const
Return the inverse of the instruction's predicate.
Definition: InstrTypes.h:737
Value * EmitGEPOffset(IRBuilderTy *Builder, const DataLayout &TD, User *GEP, bool NoAssumptions=false)
Definition: Local.h:187
unsigned less or equal
Definition: InstrTypes.h:677
unsigned less than
Definition: InstrTypes.h:676
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:497
bool isSigned() const
Determine if this instruction is using a signed comparison.
Definition: InstrTypes.h:780
static Constant * getExtractElement(Constant *Vec, Constant *Idx)
Definition: Constants.cpp:1912
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:657
bool isDoubleTy() const
isDoubleTy - Return true if this is 'double', a 64-bit IEEE fp type.
Definition: Type.h:149
void clearSign()
Definition: APFloat.cpp:1596
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:667
int getFPMantissaWidth() const
Definition: Type.cpp:142
static bool isEquality(Predicate P)
Definition: Instructions.h:997
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
static Constant * getUIToFP(Constant *C, Type *Ty)
Definition: Constants.cpp:1593
F(f)
static ExtractValueInst * Create(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &NameStr="", Instruction *InsertBefore=0)
Instruction * FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI, Constant *RHSC)
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:61
FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:657
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2040
fneg_match< LHS > m_FNeg(const LHS &L)
m_FNeg - Match a floating point negate.
Definition: PatternMatch.h:790
const Constant * getInitializer() const
Value * SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition: APInt.h:423
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2029
bool hasAllConstantIndices() const
Definition: Operator.h:428
APInt Not(const APInt &APIVal)
Bitwise complement function.
Definition: APInt.h:1855
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:322
bool uge(uint64_t Num) const
Determine if the value is greater or equal to the given number.
Definition: Constants.h:209
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:662
long double fabsl(long double x);
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:42
static const fltSemantics x87DoubleExtended
Definition: APFloat.h:136
Value * CreateExtractValue(Value *Agg, ArrayRef< unsigned > Idxs, const Twine &Name="")
Definition: IRBuilder.h:1375
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:661
static unsigned getComplexity(Value *V)
Definition: InstCombine.h:42
DataLayout * getDataLayout() const
Definition: InstCombine.h:102
static unsigned getBitWidth(Type *Ty, const DataLayout *TD)
unsigned ComputeNumSignBits(Value *Op, unsigned Depth=0) const
Definition: InstCombine.h:312
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
Definition: PatternMatch.h:479
const StructLayout * getStructLayout(StructType *Ty) const
Definition: DataLayout.cpp:445
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0)
Definition: Constants.cpp:1679
Base class of casting instructions.
Definition: InstrTypes.h:387
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
#define llvm_unreachable(msg)
Type * getArrayElementType() const
Definition: Type.h:368
static Constant * getLShr(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2107
APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition: APInt.cpp:1127
static Instruction * ProcessUAddIdiom(Instruction &I, Value *OrigAddV, InstCombiner &IC)
CastClass_match< OpTy, Instruction::Trunc > m_Trunc(const OpTy &Op)
m_Trunc
Definition: PatternMatch.h:678
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
InstCombiner - The -instcombine pass.
Definition: InstCombine.h:72
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:658
static Constant * SubOne(Constant *C)
SubOne - Subtract one from a ConstantInt.
static Constant * getExtractValue(Constant *Agg, ArrayRef< unsigned > Idxs)
Definition: Constants.cpp:1989
static const fltSemantics IEEEquad
Definition: APFloat.h:134
static ConstantInt * ExtractElement(Constant *V, Constant *Idx)
not_match< LHS > m_Not(const LHS &L)
Definition: PatternMatch.h:738
bool isNegative() const
Definition: Constants.h:155
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:395
This class represents a cast from a pointer to an integer.
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
m_ZExt
Definition: PatternMatch.h:692
bool isHalfTy() const
isHalfTy - Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:143
static Constant * getAShr(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2112
static Constant * getICmp(unsigned short pred, Constant *LHS, Constant *RHS)
Definition: Constants.cpp:1870
Represents a floating point comparison operator.
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
Get the constant's value with a saturation limit.
Definition: Constants.h:218
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1100
This class represents a no-op cast from one type to another.
bool isLogicalShift() const
Definition: Instruction.h:108
static APInt DemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth, bool isSignCheck)
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition: APInt.h:1276
class_match< ConstantInt > m_ConstantInt()
m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:72
Predicate getUnsignedPredicate() const
Return the unsigned version of the predicate.
Definition: Instructions.h:987
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:683
static bool AddWithOverflow(Constant *&Result, Constant *In1, Constant *In2, bool IsSigned=false)
SelectClass_match< Cond, LHS, RHS > m_Select(const Cond &C, const LHS &L, const RHS &R)
Definition: PatternMatch.h:630
cst_pred_ty< is_power2 > m_Power2()
m_Power2() - Match an integer or vector power of 2.
Definition: PatternMatch.h:281
static Constant * getUDiv(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2062
static Constant * getIntToPtr(Constant *C, Type *Ty)
Definition: Constants.cpp:1649
void takeName(Value *V)
Definition: Value.cpp:239
Value * SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
Instruction * visitICmpInstWithCastAndCast(ICmpInst &ICI)
bool isPPC_FP128Ty() const
isPPC_FP128Ty - Return true if this is powerpc long double.
Definition: Type.h:158
This class represents a truncation of integer types.
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:83
bool isInBounds() const
isInBounds - Determine whether the GEP has the inbounds flag.
void ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, const DataLayout *TD=0, unsigned Depth=0)
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.cpp:515
opStatus convertFromAPInt(const APInt &, bool, roundingMode)
Definition: APFloat.cpp:2238
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:442
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Get a value with high bits set.
Definition: APInt.h:510
Instruction * FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV, CmpInst &ICI, ConstantInt *AndCst=0)
A self-contained host- and target-independent arbitrary-precision floating-point software implementat...
Definition: APFloat.h:122
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:60
bool isIntOrIntVectorTy() const
Definition: Type.h:204
#define P(N)
static Instruction * ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B, ConstantInt *CI2, ConstantInt *CI1, InstCombiner &IC)
static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS)
static Constant * getFNeg(Constant *C)
Definition: Constants.cpp:2017
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
Definition: PatternMatch.h:491
static APFloat getSmallestNormalized(const fltSemantics &Sem, bool Negative=false)
Definition: APFloat.cpp:3397
static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero, const APInt &KnownOne, APInt &Min, APInt &Max)
cmpResult compare(const APFloat &) const
Definition: APFloat.cpp:1859
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
Definition: PatternMatch.h:473
bool isEquality() const
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:615
bool isMaxValue(bool isSigned) const
Determine if the value is maximal.
Definition: Constants.h:185
LLVM Constant Representation.
Definition: Constant.h:41
Instruction * ReplaceInstUsesWith(Instruction &I, Value *V)
Definition: InstCombine.h:267
bool isFloatTy() const
isFloatTy - Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:146
static Constant * getAnd(Constant *C1, Constant *C2)
Definition: Constants.cpp:2088
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
Instruction * FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI, ConstantInt *DivRHS)
FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
static Value * EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC)
cst_pred_ty< is_all_ones > m_AllOnes()
m_AllOnes() - Match an integer or vector with all bits set to true.
Definition: PatternMatch.h:265
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:476
specificval_ty m_Specific(const Value *V)
m_Specific - Match if we have a specific specified value.
Definition: PatternMatch.h:323
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition: APInt.h:1068
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
Definition: PatternMatch.h:485
float fabsf(float x);
Represent an integer comparison operator.
Definition: Instructions.h:911
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
opStatus convert(const fltSemantics &, roundingMode, bool *)
Definition: APFloat.cpp:1938
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1116
Instruction * visitICmpInst(ICmpInst &I)
Value * getOperand(unsigned i) const
Definition: User.h:88
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:660
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
Integer representation type.
Definition: DerivedTypes.h:37
Type * getSrcTy() const
Return the source type, as a convenience.
Definition: InstrTypes.h:608
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2023
Constant * getAggregateElement(unsigned Elt) const
Definition: Constants.cpp:183
static Constant * getAllOnesValue(Type *Ty)
Get the all ones value.
Definition: Constants.cpp:163
BuilderTy * Builder
Definition: InstCombine.h:87
bool isFP128Ty() const
isFP128Ty - Return true if this is 'fp128'.
Definition: Type.h:155
bool isPointerTy() const
Definition: Type.h:220
void swapOperands()
Swap operands and adjust predicate.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
bool hasNoSignedWrap() const
hasNoSignedWrap - Determine whether the no signed wrap flag is set.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:390
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:666
static const fltSemantics IEEEhalf
Definition: APFloat.h:131
signed greater than
Definition: InstrTypes.h:678
bool isRelational() const
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1084
unsigned countTrailingZeros() const
Count the number of trailing zero bits.
Definition: APInt.cpp:736
static bool isZero(Value *V, DataLayout *DL)
Definition: Lint.cpp:507
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Definition: DataLayout.cpp:610
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:655
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
static IntegerType * get(LLVMContext &C, unsigned NumBits)
Get or create an IntegerType instance.
Definition: Type.cpp:305
static Constant * getBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1661
static const fltSemantics PPCDoubleDouble
Definition: APFloat.h:135
unsigned getIntegerBitWidth() const
Definition: Type.cpp:178
Class for constant integers.
Definition: Constants.h:51
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1071
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.cpp:547
bool isNegative() const
Definition: APFloat.h:361
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
static Constant * getSDiv(Constant *C1, Constant *C2, bool isExact=false)
Definition: Constants.cpp:2067
unsigned logBase2() const
Definition: APInt.h:1500
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:665
Type * getType() const
Definition: Value.h:111
signed less than
Definition: InstrTypes.h:680
const APInt & getLower() const
Definition: ConstantRange.h:79
bool isTrueWhenEqual() const
Determine if this is true when both operands are the same.
Definition: InstrTypes.h:792
SequentialType * getType() const
Definition: Instructions.h:764
bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero=false, unsigned Depth=0)
Value * stripPointerCasts()
Strips off any unneeded pointer casts, all-zero GEPs and aliases from the specified value...
Definition: Value.cpp:385
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition: APInt.h:335
Predicate getSwappedPredicate() const
Return the predicate as if the operands were swapped.
Definition: InstrTypes.h:753
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition: APInt.h:430
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
Function * getCalledFunction() const
bool isZero() const
Definition: Constants.h:160
double fabs(double x);
static Constant * AddOne(Constant *C)
AddOne - Add one to a ConstantInt.
static Constant * getTrunc(Constant *C, Type *Ty)
Definition: Constants.cpp:1527
static Constant * get(Type *Ty, double V)
Definition: Constants.cpp:557
#define NC
Definition: regutils.h:39
bool isNullValue() const
Definition: Constants.cpp:75
bool isExact() const
isExact - Determine whether the exact flag is set.
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:438
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:719
static Constant * getFPToSI(Constant *C, Type *Ty)
Definition: Constants.cpp:1626
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
bool isAllOnesValue() const
Definition: Constants.cpp:88
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
Value * getArgOperand(unsigned i) const
signed less or equal
Definition: InstrTypes.h:681
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isIntegerTy() const
Definition: Type.h:196
static bool HasAddOverflow(ConstantInt *Result, ConstantInt *In1, ConstantInt *In2, bool IsSigned)
CastClass_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
m_PtrToInt
Definition: PatternMatch.h:671
static ConstantInt * getOne(Constant *C)
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition: APInt.h:418
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:365
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
use_iterator use_begin()
Definition: Value.h:150
static Constant * getNeg(Constant *C, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2010
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:340
static CmpInst * Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const Twine &Name="", Instruction *InsertBefore=0)
Create a CmpInst.
static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS, bool &TrueIfSigned)
static const fltSemantics IEEEsingle
Definition: APFloat.h:132
bool isX86_FP80Ty() const
isX86_FP80Ty - Return true if this is x86 long double.
Definition: Type.h:152
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
static Constant * getZExt(Constant *C, Type *Ty)
Definition: Constants.cpp:1555
bool isInBounds() const
Definition: Operator.h:373
unsigned greater or equal
Definition: InstrTypes.h:675
void clearBit(unsigned bitPosition)
Set a given bit to 0.
Definition: APInt.cpp:592
#define I(x, y, z)
Definition: MD5.cpp:54
bool hasOneUse() const
Definition: Value.h:161
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:659
bool isSignBit() const
Check if the APInt's value is returned by getSignBit.
Definition: APInt.h:399
static ConstantRange makeConstantRange(Predicate pred, const APInt &C)
Make a ConstantRange for a relation with a constant value.
unsigned countTrailingOnes() const
Count the number of trailing one bits.
Definition: APInt.h:1382
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2100
Instruction * visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS, ConstantInt *RHS)
const Type * getScalarType() const
Definition: Type.cpp:51
uint64_t getArrayNumElements() const
Definition: Type.cpp:210
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:663
Instruction * FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI, ConstantInt *DivRHS)
bool isUnsigned() const
Determine if this instruction is using an unsigned comparison.
Definition: InstrTypes.h:786
CallInst * CreateCall2(Value *Callee, Value *Arg1, Value *Arg2, const Twine &Name="")
Definition: IRBuilder.h:1310
const APInt & getUpper() const
Definition: ConstantRange.h:83
void swapOperands()
Swap operands and adjust predicate.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition: APInt.h:433
static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1)
Check if the order of Op0 and Op1 as operand in an ICmpInst should be swapped. The descision is based...
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:654
Module * getParent()
Definition: GlobalValue.h:286
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1068
LLVM Value Representation.
Definition: Value.h:66
bool hasNoUnsignedWrap() const
hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set.
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:664
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
bool isZero() const
Returns true if and only if the float is plus or minus zero.
Definition: APFloat.h:376
cst_pred_ty< is_one > m_One()
m_One() - Match an integer 1 or a vector with all elements equal to 1.
Definition: PatternMatch.h:257
Predicate getSignedPredicate() const
Return the signed version of the predicate.
Definition: Instructions.h:975
Instruction * visitFCmpInst(FCmpInst &I)
unsigned greater than
Definition: InstrTypes.h:674
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:983
static Constant * getCompare(unsigned short pred, Constant *C1, Constant *C2)
Return an ICmp or FCmp comparison operator constant expression.
Definition: Constants.cpp:1798
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml","ocaml 3.10-compatible collector")
static Constant * getMul(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2051
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", Instruction *InsertBefore=0)
This class represents an extension of floating point types.
int64_t getSExtValue() const
Return the sign extended value.
Definition: Constants.h:124
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:656
static Constant * getCast(unsigned ops, Constant *C, Type *Ty)
Definition: Constants.cpp:1444
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition: APInt.h:1052
const fltSemantics & getSemantics() const
Definition: APFloat.h:397
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
bool isOne() const
Determine if the value is one.
Definition: Constants.h:168
Instruction * FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI, ICmpInst::Predicate Pred)
FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
signed greater or equal
Definition: InstrTypes.h:679
static Constant * getXor(Constant *C1, Constant *C2)
Definition: Constants.cpp:2096
gep_type_iterator gep_type_begin(const User *GEP)