LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LoopStrengthReduce.cpp
Go to the documentation of this file.
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 // ...
26 // %i.next = add %i, 1
27 // %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using // it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 // of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 // smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 // multiple base registers, or as the increment expression in an addrec),
48 // we may not actually need both reg and (-1 * reg) in registers; the
49 // negation can be implemented by using a sub instead of an add. The
50 // lack of support for taking this into consideration when making
51 // register pressure decisions is partly worked around by the "Special"
52 // use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #define DEBUG_TYPE "loop-reduce"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/Analysis/IVUsers.h"
64 #include "llvm/Analysis/LoopPass.h"
67 #include "llvm/Assembly/Writer.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/Support/Debug.h"
78 #include <algorithm>
79 using namespace llvm;
80 
81 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
82 /// bail out. This threshold is far beyond the number of users that LSR can
83 /// conceivably solve, so it should not affect generated code, but catches the
84 /// worst cases before LSR burns too much compile time and stack space.
85 static const unsigned MaxIVUsers = 200;
86 
87 // Temporary flag to cleanup congruent phis after LSR phi expansion.
88 // It's currently disabled until we can determine whether it's truly useful or
89 // not. The flag should be removed after the v3.0 release.
90 // This is now needed for ivchains.
92  "enable-lsr-phielim", cl::Hidden, cl::init(true),
93  cl::desc("Enable LSR phi elimination"));
94 
95 #ifndef NDEBUG
96 // Stress test IV chain generation.
98  "stress-ivchain", cl::Hidden, cl::init(false),
99  cl::desc("Stress test LSR IV chains"));
100 #else
101 static bool StressIVChain = false;
102 #endif
103 
104 namespace {
105 
106 /// RegSortData - This class holds data which is used to order reuse candidates.
107 class RegSortData {
108 public:
109  /// UsedByIndices - This represents the set of LSRUse indices which reference
110  /// a particular register.
111  SmallBitVector UsedByIndices;
112 
113  RegSortData() {}
114 
115  void print(raw_ostream &OS) const;
116  void dump() const;
117 };
118 
119 }
120 
121 void RegSortData::print(raw_ostream &OS) const {
122  OS << "[NumUses=" << UsedByIndices.count() << ']';
123 }
124 
125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
126 void RegSortData::dump() const {
127  print(errs()); errs() << '\n';
128 }
129 #endif
130 
131 namespace {
132 
133 /// RegUseTracker - Map register candidates to information about how they are
134 /// used.
135 class RegUseTracker {
136  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
137 
138  RegUsesTy RegUsesMap;
139  SmallVector<const SCEV *, 16> RegSequence;
140 
141 public:
142  void CountRegister(const SCEV *Reg, size_t LUIdx);
143  void DropRegister(const SCEV *Reg, size_t LUIdx);
144  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
145 
146  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
147 
148  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
149 
150  void clear();
151 
153  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
154  iterator begin() { return RegSequence.begin(); }
155  iterator end() { return RegSequence.end(); }
156  const_iterator begin() const { return RegSequence.begin(); }
157  const_iterator end() const { return RegSequence.end(); }
158 };
159 
160 }
161 
162 void
163 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
164  std::pair<RegUsesTy::iterator, bool> Pair =
165  RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
166  RegSortData &RSD = Pair.first->second;
167  if (Pair.second)
168  RegSequence.push_back(Reg);
169  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
170  RSD.UsedByIndices.set(LUIdx);
171 }
172 
173 void
174 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
175  RegUsesTy::iterator It = RegUsesMap.find(Reg);
176  assert(It != RegUsesMap.end());
177  RegSortData &RSD = It->second;
178  assert(RSD.UsedByIndices.size() > LUIdx);
179  RSD.UsedByIndices.reset(LUIdx);
180 }
181 
182 void
183 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
184  assert(LUIdx <= LastLUIdx);
185 
186  // Update RegUses. The data structure is not optimized for this purpose;
187  // we must iterate through it and update each of the bit vectors.
188  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
189  I != E; ++I) {
190  SmallBitVector &UsedByIndices = I->second.UsedByIndices;
191  if (LUIdx < UsedByIndices.size())
192  UsedByIndices[LUIdx] =
193  LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
194  UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
195  }
196 }
197 
198 bool
199 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
200  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
201  if (I == RegUsesMap.end())
202  return false;
203  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
204  int i = UsedByIndices.find_first();
205  if (i == -1) return false;
206  if ((size_t)i != LUIdx) return true;
207  return UsedByIndices.find_next(i) != -1;
208 }
209 
210 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
211  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
212  assert(I != RegUsesMap.end() && "Unknown register!");
213  return I->second.UsedByIndices;
214 }
215 
216 void RegUseTracker::clear() {
217  RegUsesMap.clear();
218  RegSequence.clear();
219 }
220 
221 namespace {
222 
223 /// Formula - This class holds information that describes a formula for
224 /// computing satisfying a use. It may include broken-out immediates and scaled
225 /// registers.
226 struct Formula {
227  /// Global base address used for complex addressing.
228  GlobalValue *BaseGV;
229 
230  /// Base offset for complex addressing.
231  int64_t BaseOffset;
232 
233  /// Whether any complex addressing has a base register.
234  bool HasBaseReg;
235 
236  /// The scale of any complex addressing.
237  int64_t Scale;
238 
239  /// BaseRegs - The list of "base" registers for this use. When this is
240  /// non-empty,
242 
243  /// ScaledReg - The 'scaled' register for this use. This should be non-null
244  /// when Scale is not zero.
245  const SCEV *ScaledReg;
246 
247  /// UnfoldedOffset - An additional constant offset which added near the
248  /// use. This requires a temporary register, but the offset itself can
249  /// live in an add immediate field rather than a register.
250  int64_t UnfoldedOffset;
251 
252  Formula()
253  : BaseGV(0), BaseOffset(0), HasBaseReg(false), Scale(0), ScaledReg(0),
254  UnfoldedOffset(0) {}
255 
256  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
257 
258  unsigned getNumRegs() const;
259  Type *getType() const;
260 
261  void DeleteBaseReg(const SCEV *&S);
262 
263  bool referencesReg(const SCEV *S) const;
264  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
265  const RegUseTracker &RegUses) const;
266 
267  void print(raw_ostream &OS) const;
268  void dump() const;
269 };
270 
271 }
272 
273 /// DoInitialMatch - Recursion helper for InitialMatch.
274 static void DoInitialMatch(const SCEV *S, Loop *L,
277  ScalarEvolution &SE) {
278  // Collect expressions which properly dominate the loop header.
279  if (SE.properlyDominates(S, L->getHeader())) {
280  Good.push_back(S);
281  return;
282  }
283 
284  // Look at add operands.
285  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
286  for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
287  I != E; ++I)
288  DoInitialMatch(*I, L, Good, Bad, SE);
289  return;
290  }
291 
292  // Look at addrec operands.
293  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
294  if (!AR->getStart()->isZero()) {
295  DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
296  DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
297  AR->getStepRecurrence(SE),
298  // FIXME: AR->getNoWrapFlags()
299  AR->getLoop(), SCEV::FlagAnyWrap),
300  L, Good, Bad, SE);
301  return;
302  }
303 
304  // Handle a multiplication by -1 (negation) if it didn't fold.
305  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
306  if (Mul->getOperand(0)->isAllOnesValue()) {
307  SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
308  const SCEV *NewMul = SE.getMulExpr(Ops);
309 
312  DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
313  const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
314  SE.getEffectiveSCEVType(NewMul->getType())));
316  E = MyGood.end(); I != E; ++I)
317  Good.push_back(SE.getMulExpr(NegOne, *I));
319  E = MyBad.end(); I != E; ++I)
320  Bad.push_back(SE.getMulExpr(NegOne, *I));
321  return;
322  }
323 
324  // Ok, we can't do anything interesting. Just stuff the whole thing into a
325  // register and hope for the best.
326  Bad.push_back(S);
327 }
328 
329 /// InitialMatch - Incorporate loop-variant parts of S into this Formula,
330 /// attempting to keep all loop-invariant and loop-computable values in a
331 /// single base register.
332 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
335  DoInitialMatch(S, L, Good, Bad, SE);
336  if (!Good.empty()) {
337  const SCEV *Sum = SE.getAddExpr(Good);
338  if (!Sum->isZero())
339  BaseRegs.push_back(Sum);
340  HasBaseReg = true;
341  }
342  if (!Bad.empty()) {
343  const SCEV *Sum = SE.getAddExpr(Bad);
344  if (!Sum->isZero())
345  BaseRegs.push_back(Sum);
346  HasBaseReg = true;
347  }
348 }
349 
350 /// getNumRegs - Return the total number of register operands used by this
351 /// formula. This does not include register uses implied by non-constant
352 /// addrec strides.
353 unsigned Formula::getNumRegs() const {
354  return !!ScaledReg + BaseRegs.size();
355 }
356 
357 /// getType - Return the type of this formula, if it has one, or null
358 /// otherwise. This type is meaningless except for the bit size.
359 Type *Formula::getType() const {
360  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
361  ScaledReg ? ScaledReg->getType() :
362  BaseGV ? BaseGV->getType() :
363  0;
364 }
365 
366 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
367 void Formula::DeleteBaseReg(const SCEV *&S) {
368  if (&S != &BaseRegs.back())
369  std::swap(S, BaseRegs.back());
370  BaseRegs.pop_back();
371 }
372 
373 /// referencesReg - Test if this formula references the given register.
374 bool Formula::referencesReg(const SCEV *S) const {
375  return S == ScaledReg ||
376  std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
377 }
378 
379 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
380 /// which are used by uses other than the use with the given index.
381 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
382  const RegUseTracker &RegUses) const {
383  if (ScaledReg)
384  if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
385  return true;
387  E = BaseRegs.end(); I != E; ++I)
388  if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
389  return true;
390  return false;
391 }
392 
393 void Formula::print(raw_ostream &OS) const {
394  bool First = true;
395  if (BaseGV) {
396  if (!First) OS << " + "; else First = false;
397  WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
398  }
399  if (BaseOffset != 0) {
400  if (!First) OS << " + "; else First = false;
401  OS << BaseOffset;
402  }
404  E = BaseRegs.end(); I != E; ++I) {
405  if (!First) OS << " + "; else First = false;
406  OS << "reg(" << **I << ')';
407  }
408  if (HasBaseReg && BaseRegs.empty()) {
409  if (!First) OS << " + "; else First = false;
410  OS << "**error: HasBaseReg**";
411  } else if (!HasBaseReg && !BaseRegs.empty()) {
412  if (!First) OS << " + "; else First = false;
413  OS << "**error: !HasBaseReg**";
414  }
415  if (Scale != 0) {
416  if (!First) OS << " + "; else First = false;
417  OS << Scale << "*reg(";
418  if (ScaledReg)
419  OS << *ScaledReg;
420  else
421  OS << "<unknown>";
422  OS << ')';
423  }
424  if (UnfoldedOffset != 0) {
425  if (!First) OS << " + "; else First = false;
426  OS << "imm(" << UnfoldedOffset << ')';
427  }
428 }
429 
430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
431 void Formula::dump() const {
432  print(errs()); errs() << '\n';
433 }
434 #endif
435 
436 /// isAddRecSExtable - Return true if the given addrec can be sign-extended
437 /// without changing its value.
438 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
439  Type *WideTy =
441  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
442 }
443 
444 /// isAddSExtable - Return true if the given add can be sign-extended
445 /// without changing its value.
446 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
447  Type *WideTy =
449  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
450 }
451 
452 /// isMulSExtable - Return true if the given mul can be sign-extended
453 /// without changing its value.
454 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
455  Type *WideTy =
457  SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
458  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
459 }
460 
461 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
462 /// and if the remainder is known to be zero, or null otherwise. If
463 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
464 /// to Y, ignoring that the multiplication may overflow, which is useful when
465 /// the result will be used in a context where the most significant bits are
466 /// ignored.
467 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
468  ScalarEvolution &SE,
469  bool IgnoreSignificantBits = false) {
470  // Handle the trivial case, which works for any SCEV type.
471  if (LHS == RHS)
472  return SE.getConstant(LHS->getType(), 1);
473 
474  // Handle a few RHS special cases.
475  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
476  if (RC) {
477  const APInt &RA = RC->getValue()->getValue();
478  // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
479  // some folding.
480  if (RA.isAllOnesValue())
481  return SE.getMulExpr(LHS, RC);
482  // Handle x /s 1 as x.
483  if (RA == 1)
484  return LHS;
485  }
486 
487  // Check for a division of a constant by a constant.
488  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
489  if (!RC)
490  return 0;
491  const APInt &LA = C->getValue()->getValue();
492  const APInt &RA = RC->getValue()->getValue();
493  if (LA.srem(RA) != 0)
494  return 0;
495  return SE.getConstant(LA.sdiv(RA));
496  }
497 
498  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
499  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
500  if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
501  const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
502  IgnoreSignificantBits);
503  if (!Step) return 0;
504  const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
505  IgnoreSignificantBits);
506  if (!Start) return 0;
507  // FlagNW is independent of the start value, step direction, and is
508  // preserved with smaller magnitude steps.
509  // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
510  return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
511  }
512  return 0;
513  }
514 
515  // Distribute the sdiv over add operands, if the add doesn't overflow.
516  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
517  if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
519  for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
520  I != E; ++I) {
521  const SCEV *Op = getExactSDiv(*I, RHS, SE,
522  IgnoreSignificantBits);
523  if (!Op) return 0;
524  Ops.push_back(Op);
525  }
526  return SE.getAddExpr(Ops);
527  }
528  return 0;
529  }
530 
531  // Check for a multiply operand that we can pull RHS out of.
532  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
533  if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
535  bool Found = false;
536  for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
537  I != E; ++I) {
538  const SCEV *S = *I;
539  if (!Found)
540  if (const SCEV *Q = getExactSDiv(S, RHS, SE,
541  IgnoreSignificantBits)) {
542  S = Q;
543  Found = true;
544  }
545  Ops.push_back(S);
546  }
547  return Found ? SE.getMulExpr(Ops) : 0;
548  }
549  return 0;
550  }
551 
552  // Otherwise we don't know.
553  return 0;
554 }
555 
556 /// ExtractImmediate - If S involves the addition of a constant integer value,
557 /// return that integer value, and mutate S to point to a new SCEV with that
558 /// value excluded.
559 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
560  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
561  if (C->getValue()->getValue().getMinSignedBits() <= 64) {
562  S = SE.getConstant(C->getType(), 0);
563  return C->getValue()->getSExtValue();
564  }
565  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
566  SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
567  int64_t Result = ExtractImmediate(NewOps.front(), SE);
568  if (Result != 0)
569  S = SE.getAddExpr(NewOps);
570  return Result;
571  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
572  SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
573  int64_t Result = ExtractImmediate(NewOps.front(), SE);
574  if (Result != 0)
575  S = SE.getAddRecExpr(NewOps, AR->getLoop(),
576  // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
578  return Result;
579  }
580  return 0;
581 }
582 
583 /// ExtractSymbol - If S involves the addition of a GlobalValue address,
584 /// return that symbol, and mutate S to point to a new SCEV with that
585 /// value excluded.
587  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
588  if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
589  S = SE.getConstant(GV->getType(), 0);
590  return GV;
591  }
592  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
593  SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
594  GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
595  if (Result)
596  S = SE.getAddExpr(NewOps);
597  return Result;
598  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
599  SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
600  GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
601  if (Result)
602  S = SE.getAddRecExpr(NewOps, AR->getLoop(),
603  // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
605  return Result;
606  }
607  return 0;
608 }
609 
610 /// isAddressUse - Returns true if the specified instruction is using the
611 /// specified value as an address.
612 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
613  bool isAddress = isa<LoadInst>(Inst);
614  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
615  if (SI->getOperand(1) == OperandVal)
616  isAddress = true;
617  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
618  // Addressing modes can also be folded into prefetches and a variety
619  // of intrinsics.
620  switch (II->getIntrinsicID()) {
621  default: break;
622  case Intrinsic::prefetch:
627  if (II->getArgOperand(0) == OperandVal)
628  isAddress = true;
629  break;
630  }
631  }
632  return isAddress;
633 }
634 
635 /// getAccessType - Return the type of the memory being accessed.
636 static Type *getAccessType(const Instruction *Inst) {
637  Type *AccessTy = Inst->getType();
638  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
639  AccessTy = SI->getOperand(0)->getType();
640  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
641  // Addressing modes can also be folded into prefetches and a variety
642  // of intrinsics.
643  switch (II->getIntrinsicID()) {
644  default: break;
649  AccessTy = II->getArgOperand(0)->getType();
650  break;
651  }
652  }
653 
654  // All pointers have the same requirements, so canonicalize them to an
655  // arbitrary pointer type to minimize variation.
656  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
657  AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
658  PTy->getAddressSpace());
659 
660  return AccessTy;
661 }
662 
663 /// isExistingPhi - Return true if this AddRec is already a phi in its loop.
664 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
665  for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
666  PHINode *PN = dyn_cast<PHINode>(I); ++I) {
667  if (SE.isSCEVable(PN->getType()) &&
668  (SE.getEffectiveSCEVType(PN->getType()) ==
669  SE.getEffectiveSCEVType(AR->getType())) &&
670  SE.getSCEV(PN) == AR)
671  return true;
672  }
673  return false;
674 }
675 
676 /// Check if expanding this expression is likely to incur significant cost. This
677 /// is tricky because SCEV doesn't track which expressions are actually computed
678 /// by the current IR.
679 ///
680 /// We currently allow expansion of IV increments that involve adds,
681 /// multiplication by constants, and AddRecs from existing phis.
682 ///
683 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
684 /// obvious multiple of the UDivExpr.
685 static bool isHighCostExpansion(const SCEV *S,
686  SmallPtrSet<const SCEV*, 8> &Processed,
687  ScalarEvolution &SE) {
688  // Zero/One operand expressions
689  switch (S->getSCEVType()) {
690  case scUnknown:
691  case scConstant:
692  return false;
693  case scTruncate:
694  return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
695  Processed, SE);
696  case scZeroExtend:
697  return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
698  Processed, SE);
699  case scSignExtend:
700  return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
701  Processed, SE);
702  }
703 
704  if (!Processed.insert(S))
705  return false;
706 
707  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
708  for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
709  I != E; ++I) {
710  if (isHighCostExpansion(*I, Processed, SE))
711  return true;
712  }
713  return false;
714  }
715 
716  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
717  if (Mul->getNumOperands() == 2) {
718  // Multiplication by a constant is ok
719  if (isa<SCEVConstant>(Mul->getOperand(0)))
720  return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
721 
722  // If we have the value of one operand, check if an existing
723  // multiplication already generates this expression.
724  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
725  Value *UVal = U->getValue();
726  for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
727  UI != UE; ++UI) {
728  // If U is a constant, it may be used by a ConstantExpr.
730  if (User && User->getOpcode() == Instruction::Mul
731  && SE.isSCEVable(User->getType())) {
732  return SE.getSCEV(User) == Mul;
733  }
734  }
735  }
736  }
737  }
738 
739  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
740  if (isExistingPhi(AR, SE))
741  return false;
742  }
743 
744  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
745  return true;
746 }
747 
748 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
749 /// specified set are trivially dead, delete them and see if this makes any of
750 /// their operands subsequently dead.
751 static bool
753  bool Changed = false;
754 
755  while (!DeadInsts.empty()) {
756  Value *V = DeadInsts.pop_back_val();
757  Instruction *I = dyn_cast_or_null<Instruction>(V);
758 
759  if (I == 0 || !isInstructionTriviallyDead(I))
760  continue;
761 
762  for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
763  if (Instruction *U = dyn_cast<Instruction>(*OI)) {
764  *OI = 0;
765  if (U->use_empty())
766  DeadInsts.push_back(U);
767  }
768 
769  I->eraseFromParent();
770  Changed = true;
771  }
772 
773  return Changed;
774 }
775 
776 namespace {
777 class LSRUse;
778 }
779 // Check if it is legal to fold 2 base registers.
780 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU,
781  const Formula &F);
782 // Get the cost of the scaling factor used in F for LU.
783 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
784  const LSRUse &LU, const Formula &F);
785 
786 namespace {
787 
788 /// Cost - This class is used to measure and compare candidate formulae.
789 class Cost {
790  /// TODO: Some of these could be merged. Also, a lexical ordering
791  /// isn't always optimal.
792  unsigned NumRegs;
793  unsigned AddRecCost;
794  unsigned NumIVMuls;
795  unsigned NumBaseAdds;
796  unsigned ImmCost;
797  unsigned SetupCost;
798  unsigned ScaleCost;
799 
800 public:
801  Cost()
802  : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
803  SetupCost(0), ScaleCost(0) {}
804 
805  bool operator<(const Cost &Other) const;
806 
807  void Loose();
808 
809 #ifndef NDEBUG
810  // Once any of the metrics loses, they must all remain losers.
811  bool isValid() {
812  return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
813  | ImmCost | SetupCost | ScaleCost) != ~0u)
814  || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
815  & ImmCost & SetupCost & ScaleCost) == ~0u);
816  }
817 #endif
818 
819  bool isLoser() {
820  assert(isValid() && "invalid cost");
821  return NumRegs == ~0u;
822  }
823 
824  void RateFormula(const TargetTransformInfo &TTI,
825  const Formula &F,
827  const DenseSet<const SCEV *> &VisitedRegs,
828  const Loop *L,
829  const SmallVectorImpl<int64_t> &Offsets,
831  const LSRUse &LU,
832  SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
833 
834  void print(raw_ostream &OS) const;
835  void dump() const;
836 
837 private:
838  void RateRegister(const SCEV *Reg,
840  const Loop *L,
841  ScalarEvolution &SE, DominatorTree &DT);
842  void RatePrimaryRegister(const SCEV *Reg,
844  const Loop *L,
846  SmallPtrSet<const SCEV *, 16> *LoserRegs);
847 };
848 
849 }
850 
851 /// RateRegister - Tally up interesting quantities from the given register.
852 void Cost::RateRegister(const SCEV *Reg,
854  const Loop *L,
855  ScalarEvolution &SE, DominatorTree &DT) {
856  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
857  // If this is an addrec for another loop, don't second-guess its addrec phi
858  // nodes. LSR isn't currently smart enough to reason about more than one
859  // loop at a time. LSR has already run on inner loops, will not run on outer
860  // loops, and cannot be expected to change sibling loops.
861  if (AR->getLoop() != L) {
862  // If the AddRec exists, consider it's register free and leave it alone.
863  if (isExistingPhi(AR, SE))
864  return;
865 
866  // Otherwise, do not consider this formula at all.
867  Loose();
868  return;
869  }
870  AddRecCost += 1; /// TODO: This should be a function of the stride.
871 
872  // Add the step value register, if it needs one.
873  // TODO: The non-affine case isn't precisely modeled here.
874  if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
875  if (!Regs.count(AR->getOperand(1))) {
876  RateRegister(AR->getOperand(1), Regs, L, SE, DT);
877  if (isLoser())
878  return;
879  }
880  }
881  }
882  ++NumRegs;
883 
884  // Rough heuristic; favor registers which don't require extra setup
885  // instructions in the preheader.
886  if (!isa<SCEVUnknown>(Reg) &&
887  !isa<SCEVConstant>(Reg) &&
888  !(isa<SCEVAddRecExpr>(Reg) &&
889  (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
890  isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
891  ++SetupCost;
892 
893  NumIVMuls += isa<SCEVMulExpr>(Reg) &&
894  SE.hasComputableLoopEvolution(Reg, L);
895 }
896 
897 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it
898 /// before, rate it. Optional LoserRegs provides a way to declare any formula
899 /// that refers to one of those regs an instant loser.
900 void Cost::RatePrimaryRegister(const SCEV *Reg,
902  const Loop *L,
904  SmallPtrSet<const SCEV *, 16> *LoserRegs) {
905  if (LoserRegs && LoserRegs->count(Reg)) {
906  Loose();
907  return;
908  }
909  if (Regs.insert(Reg)) {
910  RateRegister(Reg, Regs, L, SE, DT);
911  if (LoserRegs && isLoser())
912  LoserRegs->insert(Reg);
913  }
914 }
915 
916 void Cost::RateFormula(const TargetTransformInfo &TTI,
917  const Formula &F,
919  const DenseSet<const SCEV *> &VisitedRegs,
920  const Loop *L,
921  const SmallVectorImpl<int64_t> &Offsets,
923  const LSRUse &LU,
924  SmallPtrSet<const SCEV *, 16> *LoserRegs) {
925  // Tally up the registers.
926  if (const SCEV *ScaledReg = F.ScaledReg) {
927  if (VisitedRegs.count(ScaledReg)) {
928  Loose();
929  return;
930  }
931  RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
932  if (isLoser())
933  return;
934  }
935  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
936  E = F.BaseRegs.end(); I != E; ++I) {
937  const SCEV *BaseReg = *I;
938  if (VisitedRegs.count(BaseReg)) {
939  Loose();
940  return;
941  }
942  RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
943  if (isLoser())
944  return;
945  }
946 
947  // Determine how many (unfolded) adds we'll need inside the loop.
948  size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
949  if (NumBaseParts > 1)
950  // Do not count the base and a possible second register if the target
951  // allows to fold 2 registers.
952  NumBaseAdds += NumBaseParts - (1 + isLegal2RegAMUse(TTI, LU, F));
953 
954  // Accumulate non-free scaling amounts.
955  ScaleCost += getScalingFactorCost(TTI, LU, F);
956 
957  // Tally up the non-zero immediates.
959  E = Offsets.end(); I != E; ++I) {
960  int64_t Offset = (uint64_t)*I + F.BaseOffset;
961  if (F.BaseGV)
962  ImmCost += 64; // Handle symbolic values conservatively.
963  // TODO: This should probably be the pointer size.
964  else if (Offset != 0)
965  ImmCost += APInt(64, Offset, true).getMinSignedBits();
966  }
967  assert(isValid() && "invalid cost");
968 }
969 
970 /// Loose - Set this cost to a losing value.
971 void Cost::Loose() {
972  NumRegs = ~0u;
973  AddRecCost = ~0u;
974  NumIVMuls = ~0u;
975  NumBaseAdds = ~0u;
976  ImmCost = ~0u;
977  SetupCost = ~0u;
978  ScaleCost = ~0u;
979 }
980 
981 /// operator< - Choose the lower cost.
982 bool Cost::operator<(const Cost &Other) const {
983  if (NumRegs != Other.NumRegs)
984  return NumRegs < Other.NumRegs;
985  if (AddRecCost != Other.AddRecCost)
986  return AddRecCost < Other.AddRecCost;
987  if (NumIVMuls != Other.NumIVMuls)
988  return NumIVMuls < Other.NumIVMuls;
989  if (NumBaseAdds != Other.NumBaseAdds)
990  return NumBaseAdds < Other.NumBaseAdds;
991  if (ScaleCost != Other.ScaleCost)
992  return ScaleCost < Other.ScaleCost;
993  if (ImmCost != Other.ImmCost)
994  return ImmCost < Other.ImmCost;
995  if (SetupCost != Other.SetupCost)
996  return SetupCost < Other.SetupCost;
997  return false;
998 }
999 
1000 void Cost::print(raw_ostream &OS) const {
1001  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1002  if (AddRecCost != 0)
1003  OS << ", with addrec cost " << AddRecCost;
1004  if (NumIVMuls != 0)
1005  OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1006  if (NumBaseAdds != 0)
1007  OS << ", plus " << NumBaseAdds << " base add"
1008  << (NumBaseAdds == 1 ? "" : "s");
1009  if (ScaleCost != 0)
1010  OS << ", plus " << ScaleCost << " scale cost";
1011  if (ImmCost != 0)
1012  OS << ", plus " << ImmCost << " imm cost";
1013  if (SetupCost != 0)
1014  OS << ", plus " << SetupCost << " setup cost";
1015 }
1016 
1017 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1018 void Cost::dump() const {
1019  print(errs()); errs() << '\n';
1020 }
1021 #endif
1022 
1023 namespace {
1024 
1025 /// LSRFixup - An operand value in an instruction which is to be replaced
1026 /// with some equivalent, possibly strength-reduced, replacement.
1027 struct LSRFixup {
1028  /// UserInst - The instruction which will be updated.
1029  Instruction *UserInst;
1030 
1031  /// OperandValToReplace - The operand of the instruction which will
1032  /// be replaced. The operand may be used more than once; every instance
1033  /// will be replaced.
1034  Value *OperandValToReplace;
1035 
1036  /// PostIncLoops - If this user is to use the post-incremented value of an
1037  /// induction variable, this variable is non-null and holds the loop
1038  /// associated with the induction variable.
1039  PostIncLoopSet PostIncLoops;
1040 
1041  /// LUIdx - The index of the LSRUse describing the expression which
1042  /// this fixup needs, minus an offset (below).
1043  size_t LUIdx;
1044 
1045  /// Offset - A constant offset to be added to the LSRUse expression.
1046  /// This allows multiple fixups to share the same LSRUse with different
1047  /// offsets, for example in an unrolled loop.
1048  int64_t Offset;
1049 
1050  bool isUseFullyOutsideLoop(const Loop *L) const;
1051 
1052  LSRFixup();
1053 
1054  void print(raw_ostream &OS) const;
1055  void dump() const;
1056 };
1057 
1058 }
1059 
1060 LSRFixup::LSRFixup()
1061  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
1062 
1063 /// isUseFullyOutsideLoop - Test whether this fixup always uses its
1064 /// value outside of the given loop.
1065 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1066  // PHI nodes use their value in their incoming blocks.
1067  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1068  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1069  if (PN->getIncomingValue(i) == OperandValToReplace &&
1070  L->contains(PN->getIncomingBlock(i)))
1071  return false;
1072  return true;
1073  }
1074 
1075  return !L->contains(UserInst);
1076 }
1077 
1078 void LSRFixup::print(raw_ostream &OS) const {
1079  OS << "UserInst=";
1080  // Store is common and interesting enough to be worth special-casing.
1081  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1082  OS << "store ";
1083  WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
1084  } else if (UserInst->getType()->isVoidTy())
1085  OS << UserInst->getOpcodeName();
1086  else
1087  WriteAsOperand(OS, UserInst, /*PrintType=*/false);
1088 
1089  OS << ", OperandValToReplace=";
1090  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
1091 
1092  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1093  E = PostIncLoops.end(); I != E; ++I) {
1094  OS << ", PostIncLoop=";
1095  WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
1096  }
1097 
1098  if (LUIdx != ~size_t(0))
1099  OS << ", LUIdx=" << LUIdx;
1100 
1101  if (Offset != 0)
1102  OS << ", Offset=" << Offset;
1103 }
1104 
1105 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1106 void LSRFixup::dump() const {
1107  print(errs()); errs() << '\n';
1108 }
1109 #endif
1110 
1111 namespace {
1112 
1113 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1114 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1115 struct UniquifierDenseMapInfo {
1116  static SmallVector<const SCEV *, 4> getEmptyKey() {
1118  V.push_back(reinterpret_cast<const SCEV *>(-1));
1119  return V;
1120  }
1121 
1122  static SmallVector<const SCEV *, 4> getTombstoneKey() {
1124  V.push_back(reinterpret_cast<const SCEV *>(-2));
1125  return V;
1126  }
1127 
1128  static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1129  unsigned Result = 0;
1131  E = V.end(); I != E; ++I)
1133  return Result;
1134  }
1135 
1136  static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1137  const SmallVector<const SCEV *, 4> &RHS) {
1138  return LHS == RHS;
1139  }
1140 };
1141 
1142 /// LSRUse - This class holds the state that LSR keeps for each use in
1143 /// IVUsers, as well as uses invented by LSR itself. It includes information
1144 /// about what kinds of things can be folded into the user, information about
1145 /// the user itself, and information about how the use may be satisfied.
1146 /// TODO: Represent multiple users of the same expression in common?
1147 class LSRUse {
1148  DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1149 
1150 public:
1151  /// KindType - An enum for a kind of use, indicating what types of
1152  /// scaled and immediate operands it might support.
1153  enum KindType {
1154  Basic, ///< A normal use, with no folding.
1155  Special, ///< A special case of basic, allowing -1 scales.
1156  Address, ///< An address use; folding according to TargetLowering
1157  ICmpZero ///< An equality icmp with both operands folded into one.
1158  // TODO: Add a generic icmp too?
1159  };
1160 
1161  KindType Kind;
1162  Type *AccessTy;
1163 
1164  SmallVector<int64_t, 8> Offsets;
1165  int64_t MinOffset;
1166  int64_t MaxOffset;
1167 
1168  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1169  /// LSRUse are outside of the loop, in which case some special-case heuristics
1170  /// may be used.
1171  bool AllFixupsOutsideLoop;
1172 
1173  /// RigidFormula is set to true to guarantee that this use will be associated
1174  /// with a single formula--the one that initially matched. Some SCEV
1175  /// expressions cannot be expanded. This allows LSR to consider the registers
1176  /// used by those expressions without the need to expand them later after
1177  /// changing the formula.
1178  bool RigidFormula;
1179 
1180  /// WidestFixupType - This records the widest use type for any fixup using
1181  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1182  /// max fixup widths to be equivalent, because the narrower one may be relying
1183  /// on the implicit truncation to truncate away bogus bits.
1184  Type *WidestFixupType;
1185 
1186  /// Formulae - A list of ways to build a value that can satisfy this user.
1187  /// After the list is populated, one of these is selected heuristically and
1188  /// used to formulate a replacement for OperandValToReplace in UserInst.
1189  SmallVector<Formula, 12> Formulae;
1190 
1191  /// Regs - The set of register candidates used by all formulae in this LSRUse.
1193 
1194  LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1195  MinOffset(INT64_MAX),
1196  MaxOffset(INT64_MIN),
1197  AllFixupsOutsideLoop(true),
1198  RigidFormula(false),
1199  WidestFixupType(0) {}
1200 
1201  bool HasFormulaWithSameRegs(const Formula &F) const;
1202  bool InsertFormula(const Formula &F);
1203  void DeleteFormula(Formula &F);
1204  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1205 
1206  void print(raw_ostream &OS) const;
1207  void dump() const;
1208 };
1209 
1210 }
1211 
1212 /// HasFormula - Test whether this use as a formula which has the same
1213 /// registers as the given formula.
1214 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1215  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1216  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1217  // Unstable sort by host order ok, because this is only used for uniquifying.
1218  std::sort(Key.begin(), Key.end());
1219  return Uniquifier.count(Key);
1220 }
1221 
1222 /// InsertFormula - If the given formula has not yet been inserted, add it to
1223 /// the list, and return true. Return false otherwise.
1224 bool LSRUse::InsertFormula(const Formula &F) {
1225  if (!Formulae.empty() && RigidFormula)
1226  return false;
1227 
1228  SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1229  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1230  // Unstable sort by host order ok, because this is only used for uniquifying.
1231  std::sort(Key.begin(), Key.end());
1232 
1233  if (!Uniquifier.insert(Key).second)
1234  return false;
1235 
1236  // Using a register to hold the value of 0 is not profitable.
1237  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1238  "Zero allocated in a scaled register!");
1239 #ifndef NDEBUG
1241  F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1242  assert(!(*I)->isZero() && "Zero allocated in a base register!");
1243 #endif
1244 
1245  // Add the formula to the list.
1246  Formulae.push_back(F);
1247 
1248  // Record registers now being used by this use.
1249  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1250 
1251  return true;
1252 }
1253 
1254 /// DeleteFormula - Remove the given formula from this use's list.
1255 void LSRUse::DeleteFormula(Formula &F) {
1256  if (&F != &Formulae.back())
1257  std::swap(F, Formulae.back());
1258  Formulae.pop_back();
1259 }
1260 
1261 /// RecomputeRegs - Recompute the Regs field, and update RegUses.
1262 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1263  // Now that we've filtered out some formulae, recompute the Regs set.
1264  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1265  Regs.clear();
1266  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1267  E = Formulae.end(); I != E; ++I) {
1268  const Formula &F = *I;
1269  if (F.ScaledReg) Regs.insert(F.ScaledReg);
1270  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1271  }
1272 
1273  // Update the RegTracker.
1274  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1275  E = OldRegs.end(); I != E; ++I)
1276  if (!Regs.count(*I))
1277  RegUses.DropRegister(*I, LUIdx);
1278 }
1279 
1280 void LSRUse::print(raw_ostream &OS) const {
1281  OS << "LSR Use: Kind=";
1282  switch (Kind) {
1283  case Basic: OS << "Basic"; break;
1284  case Special: OS << "Special"; break;
1285  case ICmpZero: OS << "ICmpZero"; break;
1286  case Address:
1287  OS << "Address of ";
1288  if (AccessTy->isPointerTy())
1289  OS << "pointer"; // the full pointer type could be really verbose
1290  else
1291  OS << *AccessTy;
1292  }
1293 
1294  OS << ", Offsets={";
1296  E = Offsets.end(); I != E; ++I) {
1297  OS << *I;
1298  if (llvm::next(I) != E)
1299  OS << ',';
1300  }
1301  OS << '}';
1302 
1303  if (AllFixupsOutsideLoop)
1304  OS << ", all-fixups-outside-loop";
1305 
1306  if (WidestFixupType)
1307  OS << ", widest fixup type: " << *WidestFixupType;
1308 }
1309 
1310 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1311 void LSRUse::dump() const {
1312  print(errs()); errs() << '\n';
1313 }
1314 #endif
1315 
1316 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1317 /// be completely folded into the user instruction at isel time. This includes
1318 /// address-mode folding and special icmp tricks.
1319 static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind,
1320  Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset,
1321  bool HasBaseReg, int64_t Scale) {
1322  switch (Kind) {
1323  case LSRUse::Address:
1324  return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
1325 
1326  // Otherwise, just guess that reg+reg addressing is legal.
1327  //return ;
1328 
1329  case LSRUse::ICmpZero:
1330  // There's not even a target hook for querying whether it would be legal to
1331  // fold a GV into an ICmp.
1332  if (BaseGV)
1333  return false;
1334 
1335  // ICmp only has two operands; don't allow more than two non-trivial parts.
1336  if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1337  return false;
1338 
1339  // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1340  // putting the scaled register in the other operand of the icmp.
1341  if (Scale != 0 && Scale != -1)
1342  return false;
1343 
1344  // If we have low-level target information, ask the target if it can fold an
1345  // integer immediate on an icmp.
1346  if (BaseOffset != 0) {
1347  // We have one of:
1348  // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1349  // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1350  // Offs is the ICmp immediate.
1351  if (Scale == 0)
1352  // The cast does the right thing with INT64_MIN.
1353  BaseOffset = -(uint64_t)BaseOffset;
1354  return TTI.isLegalICmpImmediate(BaseOffset);
1355  }
1356 
1357  // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1358  return true;
1359 
1360  case LSRUse::Basic:
1361  // Only handle single-register values.
1362  return !BaseGV && Scale == 0 && BaseOffset == 0;
1363 
1364  case LSRUse::Special:
1365  // Special case Basic to handle -1 scales.
1366  return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1367  }
1368 
1369  llvm_unreachable("Invalid LSRUse Kind!");
1370 }
1371 
1372 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1373  int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
1374  GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
1375  int64_t Scale) {
1376  // Check for overflow.
1377  if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1378  (MinOffset > 0))
1379  return false;
1380  MinOffset = (uint64_t)BaseOffset + MinOffset;
1381  if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1382  (MaxOffset > 0))
1383  return false;
1384  MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1385 
1386  return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg,
1387  Scale) &&
1388  isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale);
1389 }
1390 
1391 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1392  int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy,
1393  const Formula &F) {
1394  return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1395  F.BaseOffset, F.HasBaseReg, F.Scale);
1396 }
1397 
1398 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU,
1399  const Formula &F) {
1400  // If F is used as an Addressing Mode, it may fold one Base plus one
1401  // scaled register. If the scaled register is nil, do as if another
1402  // element of the base regs is a 1-scaled register.
1403  // This is possible if BaseRegs has at least 2 registers.
1404 
1405  // If this is not an address calculation, this is not an addressing mode
1406  // use.
1407  if (LU.Kind != LSRUse::Address)
1408  return false;
1409 
1410  // F is already scaled.
1411  if (F.Scale != 0)
1412  return false;
1413 
1414  // We need to keep one register for the base and one to scale.
1415  if (F.BaseRegs.size() < 2)
1416  return false;
1417 
1418  return isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
1419  F.BaseGV, F.BaseOffset, F.HasBaseReg, 1);
1420  }
1421 
1422 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1423  const LSRUse &LU, const Formula &F) {
1424  if (!F.Scale)
1425  return 0;
1426  assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1427  LU.AccessTy, F) && "Illegal formula in use.");
1428 
1429  switch (LU.Kind) {
1430  case LSRUse::Address: {
1431  // Check the scaling factor cost with both the min and max offsets.
1432  int ScaleCostMinOffset =
1433  TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
1434  F.BaseOffset + LU.MinOffset,
1435  F.HasBaseReg, F.Scale);
1436  int ScaleCostMaxOffset =
1437  TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV,
1438  F.BaseOffset + LU.MaxOffset,
1439  F.HasBaseReg, F.Scale);
1440 
1441  assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1442  "Legal addressing mode has an illegal cost!");
1443  return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1444  }
1445  case LSRUse::ICmpZero:
1446  // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg.
1447  // Therefore, return 0 in case F.Scale == -1.
1448  return F.Scale != -1;
1449 
1450  case LSRUse::Basic:
1451  case LSRUse::Special:
1452  return 0;
1453  }
1454 
1455  llvm_unreachable("Invalid LSRUse Kind!");
1456 }
1457 
1458 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1459  LSRUse::KindType Kind, Type *AccessTy,
1460  GlobalValue *BaseGV, int64_t BaseOffset,
1461  bool HasBaseReg) {
1462  // Fast-path: zero is always foldable.
1463  if (BaseOffset == 0 && !BaseGV) return true;
1464 
1465  // Conservatively, create an address with an immediate and a
1466  // base and a scale.
1467  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1468 
1469  // Canonicalize a scale of 1 to a base register if the formula doesn't
1470  // already have a base register.
1471  if (!HasBaseReg && Scale == 1) {
1472  Scale = 0;
1473  HasBaseReg = true;
1474  }
1475 
1476  return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale);
1477 }
1478 
1479 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1480  ScalarEvolution &SE, int64_t MinOffset,
1481  int64_t MaxOffset, LSRUse::KindType Kind,
1482  Type *AccessTy, const SCEV *S, bool HasBaseReg) {
1483  // Fast-path: zero is always foldable.
1484  if (S->isZero()) return true;
1485 
1486  // Conservatively, create an address with an immediate and a
1487  // base and a scale.
1488  int64_t BaseOffset = ExtractImmediate(S, SE);
1489  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1490 
1491  // If there's anything else involved, it's not foldable.
1492  if (!S->isZero()) return false;
1493 
1494  // Fast-path: zero is always foldable.
1495  if (BaseOffset == 0 && !BaseGV) return true;
1496 
1497  // Conservatively, create an address with an immediate and a
1498  // base and a scale.
1499  int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1500 
1501  return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1502  BaseOffset, HasBaseReg, Scale);
1503 }
1504 
1505 namespace {
1506 
1507 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1508 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1509 struct UseMapDenseMapInfo {
1510  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1511  return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1512  }
1513 
1514  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1515  return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1516  }
1517 
1518  static unsigned
1519  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1520  unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1521  Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1522  return Result;
1523  }
1524 
1525  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1526  const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1527  return LHS == RHS;
1528  }
1529 };
1530 
1531 /// IVInc - An individual increment in a Chain of IV increments.
1532 /// Relate an IV user to an expression that computes the IV it uses from the IV
1533 /// used by the previous link in the Chain.
1534 ///
1535 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1536 /// original IVOperand. The head of the chain's IVOperand is only valid during
1537 /// chain collection, before LSR replaces IV users. During chain generation,
1538 /// IncExpr can be used to find the new IVOperand that computes the same
1539 /// expression.
1540 struct IVInc {
1541  Instruction *UserInst;
1542  Value* IVOperand;
1543  const SCEV *IncExpr;
1544 
1545  IVInc(Instruction *U, Value *O, const SCEV *E):
1546  UserInst(U), IVOperand(O), IncExpr(E) {}
1547 };
1548 
1549 // IVChain - The list of IV increments in program order.
1550 // We typically add the head of a chain without finding subsequent links.
1551 struct IVChain {
1552  SmallVector<IVInc,1> Incs;
1553  const SCEV *ExprBase;
1554 
1555  IVChain() : ExprBase(0) {}
1556 
1557  IVChain(const IVInc &Head, const SCEV *Base)
1558  : Incs(1, Head), ExprBase(Base) {}
1559 
1560  typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1561 
1562  // begin - return the first increment in the chain.
1563  const_iterator begin() const {
1564  assert(!Incs.empty());
1565  return llvm::next(Incs.begin());
1566  }
1567  const_iterator end() const {
1568  return Incs.end();
1569  }
1570 
1571  // hasIncs - Returns true if this chain contains any increments.
1572  bool hasIncs() const { return Incs.size() >= 2; }
1573 
1574  // add - Add an IVInc to the end of this chain.
1575  void add(const IVInc &X) { Incs.push_back(X); }
1576 
1577  // tailUserInst - Returns the last UserInst in the chain.
1578  Instruction *tailUserInst() const { return Incs.back().UserInst; }
1579 
1580  // isProfitableIncrement - Returns true if IncExpr can be profitably added to
1581  // this chain.
1582  bool isProfitableIncrement(const SCEV *OperExpr,
1583  const SCEV *IncExpr,
1584  ScalarEvolution&);
1585 };
1586 
1587 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1588 /// Distinguish between FarUsers that definitely cross IV increments and
1589 /// NearUsers that may be used between IV increments.
1590 struct ChainUsers {
1592  SmallPtrSet<Instruction*, 4> NearUsers;
1593 };
1594 
1595 /// LSRInstance - This class holds state for the main loop strength reduction
1596 /// logic.
1597 class LSRInstance {
1598  IVUsers &IU;
1599  ScalarEvolution &SE;
1600  DominatorTree &DT;
1601  LoopInfo &LI;
1602  const TargetTransformInfo &TTI;
1603  Loop *const L;
1604  bool Changed;
1605 
1606  /// IVIncInsertPos - This is the insert position that the current loop's
1607  /// induction variable increment should be placed. In simple loops, this is
1608  /// the latch block's terminator. But in more complicated cases, this is a
1609  /// position which will dominate all the in-loop post-increment users.
1610  Instruction *IVIncInsertPos;
1611 
1612  /// Factors - Interesting factors between use strides.
1614 
1615  /// Types - Interesting use types, to facilitate truncation reuse.
1617 
1618  /// Fixups - The list of operands which are to be replaced.
1620 
1621  /// Uses - The list of interesting uses.
1623 
1624  /// RegUses - Track which uses use which register candidates.
1625  RegUseTracker RegUses;
1626 
1627  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1628  // have more than a few IV increment chains in a loop. Missing a Chain falls
1629  // back to normal LSR behavior for those uses.
1630  static const unsigned MaxChains = 8;
1631 
1632  /// IVChainVec - IV users can form a chain of IV increments.
1634 
1635  /// IVIncSet - IV users that belong to profitable IVChains.
1637 
1638  void OptimizeShadowIV();
1639  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1640  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1641  void OptimizeLoopTermCond();
1642 
1643  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1644  SmallVectorImpl<ChainUsers> &ChainUsersVec);
1645  void FinalizeChain(IVChain &Chain);
1646  void CollectChains();
1647  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1648  SmallVectorImpl<WeakVH> &DeadInsts);
1649 
1650  void CollectInterestingTypesAndFactors();
1651  void CollectFixupsAndInitialFormulae();
1652 
1653  LSRFixup &getNewFixup() {
1654  Fixups.push_back(LSRFixup());
1655  return Fixups.back();
1656  }
1657 
1658  // Support for sharing of LSRUses between LSRFixups.
1660  size_t,
1661  UseMapDenseMapInfo> UseMapTy;
1662  UseMapTy UseMap;
1663 
1664  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1665  LSRUse::KindType Kind, Type *AccessTy);
1666 
1667  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1668  LSRUse::KindType Kind,
1669  Type *AccessTy);
1670 
1671  void DeleteUse(LSRUse &LU, size_t LUIdx);
1672 
1673  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1674 
1675  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1676  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1677  void CountRegisters(const Formula &F, size_t LUIdx);
1678  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1679 
1680  void CollectLoopInvariantFixupsAndFormulae();
1681 
1682  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1683  unsigned Depth = 0);
1684  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1685  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1686  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1687  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1688  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1689  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1690  void GenerateCrossUseConstantOffsets();
1691  void GenerateAllReuseFormulae();
1692 
1693  void FilterOutUndesirableDedicatedRegisters();
1694 
1695  size_t EstimateSearchSpaceComplexity() const;
1696  void NarrowSearchSpaceByDetectingSupersets();
1697  void NarrowSearchSpaceByCollapsingUnrolledCode();
1698  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1699  void NarrowSearchSpaceByPickingWinnerRegs();
1700  void NarrowSearchSpaceUsingHeuristics();
1701 
1702  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1703  Cost &SolutionCost,
1705  const Cost &CurCost,
1706  const SmallPtrSet<const SCEV *, 16> &CurRegs,
1707  DenseSet<const SCEV *> &VisitedRegs) const;
1708  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1709 
1711  HoistInsertPosition(BasicBlock::iterator IP,
1712  const SmallVectorImpl<Instruction *> &Inputs) const;
1714  AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1715  const LSRFixup &LF,
1716  const LSRUse &LU,
1717  SCEVExpander &Rewriter) const;
1718 
1719  Value *Expand(const LSRFixup &LF,
1720  const Formula &F,
1723  SmallVectorImpl<WeakVH> &DeadInsts) const;
1724  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1725  const Formula &F,
1727  SmallVectorImpl<WeakVH> &DeadInsts,
1728  Pass *P) const;
1729  void Rewrite(const LSRFixup &LF,
1730  const Formula &F,
1732  SmallVectorImpl<WeakVH> &DeadInsts,
1733  Pass *P) const;
1734  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1735  Pass *P);
1736 
1737 public:
1738  LSRInstance(Loop *L, Pass *P);
1739 
1740  bool getChanged() const { return Changed; }
1741 
1742  void print_factors_and_types(raw_ostream &OS) const;
1743  void print_fixups(raw_ostream &OS) const;
1744  void print_uses(raw_ostream &OS) const;
1745  void print(raw_ostream &OS) const;
1746  void dump() const;
1747 };
1748 
1749 }
1750 
1751 /// OptimizeShadowIV - If IV is used in a int-to-float cast
1752 /// inside the loop then try to eliminate the cast operation.
1753 void LSRInstance::OptimizeShadowIV() {
1754  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1755  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1756  return;
1757 
1758  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1759  UI != E; /* empty */) {
1760  IVUsers::const_iterator CandidateUI = UI;
1761  ++UI;
1762  Instruction *ShadowUse = CandidateUI->getUser();
1763  Type *DestTy = 0;
1764  bool IsSigned = false;
1765 
1766  /* If shadow use is a int->float cast then insert a second IV
1767  to eliminate this cast.
1768 
1769  for (unsigned i = 0; i < n; ++i)
1770  foo((double)i);
1771 
1772  is transformed into
1773 
1774  double d = 0.0;
1775  for (unsigned i = 0; i < n; ++i, ++d)
1776  foo(d);
1777  */
1778  if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1779  IsSigned = false;
1780  DestTy = UCast->getDestTy();
1781  }
1782  else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1783  IsSigned = true;
1784  DestTy = SCast->getDestTy();
1785  }
1786  if (!DestTy) continue;
1787 
1788  // If target does not support DestTy natively then do not apply
1789  // this transformation.
1790  if (!TTI.isTypeLegal(DestTy)) continue;
1791 
1792  PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1793  if (!PH) continue;
1794  if (PH->getNumIncomingValues() != 2) continue;
1795 
1796  Type *SrcTy = PH->getType();
1797  int Mantissa = DestTy->getFPMantissaWidth();
1798  if (Mantissa == -1) continue;
1799  if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1800  continue;
1801 
1802  unsigned Entry, Latch;
1803  if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1804  Entry = 0;
1805  Latch = 1;
1806  } else {
1807  Entry = 1;
1808  Latch = 0;
1809  }
1810 
1812  if (!Init) continue;
1813  Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1814  (double)Init->getSExtValue() :
1815  (double)Init->getZExtValue());
1816 
1817  BinaryOperator *Incr =
1819  if (!Incr) continue;
1820  if (Incr->getOpcode() != Instruction::Add
1821  && Incr->getOpcode() != Instruction::Sub)
1822  continue;
1823 
1824  /* Initialize new IV, double d = 0.0 in above example. */
1825  ConstantInt *C = 0;
1826  if (Incr->getOperand(0) == PH)
1827  C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1828  else if (Incr->getOperand(1) == PH)
1829  C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1830  else
1831  continue;
1832 
1833  if (!C) continue;
1834 
1835  // Ignore negative constants, as the code below doesn't handle them
1836  // correctly. TODO: Remove this restriction.
1837  if (!C->getValue().isStrictlyPositive()) continue;
1838 
1839  /* Add new PHINode. */
1840  PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1841 
1842  /* create new increment. '++d' in above example. */
1843  Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1844  BinaryOperator *NewIncr =
1845  BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1846  Instruction::FAdd : Instruction::FSub,
1847  NewPH, CFP, "IV.S.next.", Incr);
1848 
1849  NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1850  NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1851 
1852  /* Remove cast operation */
1853  ShadowUse->replaceAllUsesWith(NewPH);
1854  ShadowUse->eraseFromParent();
1855  Changed = true;
1856  break;
1857  }
1858 }
1859 
1860 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1861 /// set the IV user and stride information and return true, otherwise return
1862 /// false.
1863 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1864  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1865  if (UI->getUser() == Cond) {
1866  // NOTE: we could handle setcc instructions with multiple uses here, but
1867  // InstCombine does it as well for simple uses, it's not clear that it
1868  // occurs enough in real life to handle.
1869  CondUse = UI;
1870  return true;
1871  }
1872  return false;
1873 }
1874 
1875 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
1876 /// a max computation.
1877 ///
1878 /// This is a narrow solution to a specific, but acute, problem. For loops
1879 /// like this:
1880 ///
1881 /// i = 0;
1882 /// do {
1883 /// p[i] = 0.0;
1884 /// } while (++i < n);
1885 ///
1886 /// the trip count isn't just 'n', because 'n' might not be positive. And
1887 /// unfortunately this can come up even for loops where the user didn't use
1888 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1889 /// will commonly be lowered like this:
1890 //
1891 /// if (n > 0) {
1892 /// i = 0;
1893 /// do {
1894 /// p[i] = 0.0;
1895 /// } while (++i < n);
1896 /// }
1897 ///
1898 /// and then it's possible for subsequent optimization to obscure the if
1899 /// test in such a way that indvars can't find it.
1900 ///
1901 /// When indvars can't find the if test in loops like this, it creates a
1902 /// max expression, which allows it to give the loop a canonical
1903 /// induction variable:
1904 ///
1905 /// i = 0;
1906 /// max = n < 1 ? 1 : n;
1907 /// do {
1908 /// p[i] = 0.0;
1909 /// } while (++i != max);
1910 ///
1911 /// Canonical induction variables are necessary because the loop passes
1912 /// are designed around them. The most obvious example of this is the
1913 /// LoopInfo analysis, which doesn't remember trip count values. It
1914 /// expects to be able to rediscover the trip count each time it is
1915 /// needed, and it does this using a simple analysis that only succeeds if
1916 /// the loop has a canonical induction variable.
1917 ///
1918 /// However, when it comes time to generate code, the maximum operation
1919 /// can be quite costly, especially if it's inside of an outer loop.
1920 ///
1921 /// This function solves this problem by detecting this type of loop and
1922 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1923 /// the instructions for the maximum computation.
1924 ///
1925 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1926  // Check that the loop matches the pattern we're looking for.
1927  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1928  Cond->getPredicate() != CmpInst::ICMP_NE)
1929  return Cond;
1930 
1931  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1932  if (!Sel || !Sel->hasOneUse()) return Cond;
1933 
1934  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1935  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1936  return Cond;
1937  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1938 
1939  // Add one to the backedge-taken count to get the trip count.
1940  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1941  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1942 
1943  // Check for a max calculation that matches the pattern. There's no check
1944  // for ICMP_ULE here because the comparison would be with zero, which
1945  // isn't interesting.
1946  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1947  const SCEVNAryExpr *Max = 0;
1948  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1949  Pred = ICmpInst::ICMP_SLE;
1950  Max = S;
1951  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1952  Pred = ICmpInst::ICMP_SLT;
1953  Max = S;
1954  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1955  Pred = ICmpInst::ICMP_ULT;
1956  Max = U;
1957  } else {
1958  // No match; bail.
1959  return Cond;
1960  }
1961 
1962  // To handle a max with more than two operands, this optimization would
1963  // require additional checking and setup.
1964  if (Max->getNumOperands() != 2)
1965  return Cond;
1966 
1967  const SCEV *MaxLHS = Max->getOperand(0);
1968  const SCEV *MaxRHS = Max->getOperand(1);
1969 
1970  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1971  // for a comparison with 1. For <= and >=, a comparison with zero.
1972  if (!MaxLHS ||
1973  (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1974  return Cond;
1975 
1976  // Check the relevant induction variable for conformance to
1977  // the pattern.
1978  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1979  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1980  if (!AR || !AR->isAffine() ||
1981  AR->getStart() != One ||
1982  AR->getStepRecurrence(SE) != One)
1983  return Cond;
1984 
1985  assert(AR->getLoop() == L &&
1986  "Loop condition operand is an addrec in a different loop!");
1987 
1988  // Check the right operand of the select, and remember it, as it will
1989  // be used in the new comparison instruction.
1990  Value *NewRHS = 0;
1991  if (ICmpInst::isTrueWhenEqual(Pred)) {
1992  // Look for n+1, and grab n.
1993  if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1994  if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
1995  if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1996  NewRHS = BO->getOperand(0);
1997  if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1998  if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
1999  if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2000  NewRHS = BO->getOperand(0);
2001  if (!NewRHS)
2002  return Cond;
2003  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2004  NewRHS = Sel->getOperand(1);
2005  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2006  NewRHS = Sel->getOperand(2);
2007  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2008  NewRHS = SU->getValue();
2009  else
2010  // Max doesn't match expected pattern.
2011  return Cond;
2012 
2013  // Determine the new comparison opcode. It may be signed or unsigned,
2014  // and the original comparison may be either equality or inequality.
2015  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2016  Pred = CmpInst::getInversePredicate(Pred);
2017 
2018  // Ok, everything looks ok to change the condition into an SLT or SGE and
2019  // delete the max calculation.
2020  ICmpInst *NewCond =
2021  new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2022 
2023  // Delete the max calculation instructions.
2024  Cond->replaceAllUsesWith(NewCond);
2025  CondUse->setUser(NewCond);
2026  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2027  Cond->eraseFromParent();
2028  Sel->eraseFromParent();
2029  if (Cmp->use_empty())
2030  Cmp->eraseFromParent();
2031  return NewCond;
2032 }
2033 
2034 /// OptimizeLoopTermCond - Change loop terminating condition to use the
2035 /// postinc iv when possible.
2036 void
2037 LSRInstance::OptimizeLoopTermCond() {
2039 
2040  BasicBlock *LatchBlock = L->getLoopLatch();
2041  SmallVector<BasicBlock*, 8> ExitingBlocks;
2042  L->getExitingBlocks(ExitingBlocks);
2043 
2044  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
2045  BasicBlock *ExitingBlock = ExitingBlocks[i];
2046 
2047  // Get the terminating condition for the loop if possible. If we
2048  // can, we want to change it to use a post-incremented version of its
2049  // induction variable, to allow coalescing the live ranges for the IV into
2050  // one register value.
2051 
2052  BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2053  if (!TermBr)
2054  continue;
2055  // FIXME: Overly conservative, termination condition could be an 'or' etc..
2056  if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2057  continue;
2058 
2059  // Search IVUsesByStride to find Cond's IVUse if there is one.
2060  IVStrideUse *CondUse = 0;
2061  ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2062  if (!FindIVUserForCond(Cond, CondUse))
2063  continue;
2064 
2065  // If the trip count is computed in terms of a max (due to ScalarEvolution
2066  // being unable to find a sufficient guard, for example), change the loop
2067  // comparison to use SLT or ULT instead of NE.
2068  // One consequence of doing this now is that it disrupts the count-down
2069  // optimization. That's not always a bad thing though, because in such
2070  // cases it may still be worthwhile to avoid a max.
2071  Cond = OptimizeMax(Cond, CondUse);
2072 
2073  // If this exiting block dominates the latch block, it may also use
2074  // the post-inc value if it won't be shared with other uses.
2075  // Check for dominance.
2076  if (!DT.dominates(ExitingBlock, LatchBlock))
2077  continue;
2078 
2079  // Conservatively avoid trying to use the post-inc value in non-latch
2080  // exits if there may be pre-inc users in intervening blocks.
2081  if (LatchBlock != ExitingBlock)
2082  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2083  // Test if the use is reachable from the exiting block. This dominator
2084  // query is a conservative approximation of reachability.
2085  if (&*UI != CondUse &&
2086  !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2087  // Conservatively assume there may be reuse if the quotient of their
2088  // strides could be a legal scale.
2089  const SCEV *A = IU.getStride(*CondUse, L);
2090  const SCEV *B = IU.getStride(*UI, L);
2091  if (!A || !B) continue;
2092  if (SE.getTypeSizeInBits(A->getType()) !=
2093  SE.getTypeSizeInBits(B->getType())) {
2094  if (SE.getTypeSizeInBits(A->getType()) >
2095  SE.getTypeSizeInBits(B->getType()))
2096  B = SE.getSignExtendExpr(B, A->getType());
2097  else
2098  A = SE.getSignExtendExpr(A, B->getType());
2099  }
2100  if (const SCEVConstant *D =
2101  dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2102  const ConstantInt *C = D->getValue();
2103  // Stride of one or negative one can have reuse with non-addresses.
2104  if (C->isOne() || C->isAllOnesValue())
2105  goto decline_post_inc;
2106  // Avoid weird situations.
2107  if (C->getValue().getMinSignedBits() >= 64 ||
2108  C->getValue().isMinSignedValue())
2109  goto decline_post_inc;
2110  // Check for possible scaled-address reuse.
2111  Type *AccessTy = getAccessType(UI->getUser());
2112  int64_t Scale = C->getSExtValue();
2113  if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
2114  /*BaseOffset=*/ 0,
2115  /*HasBaseReg=*/ false, Scale))
2116  goto decline_post_inc;
2117  Scale = -Scale;
2118  if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ 0,
2119  /*BaseOffset=*/ 0,
2120  /*HasBaseReg=*/ false, Scale))
2121  goto decline_post_inc;
2122  }
2123  }
2124 
2125  DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2126  << *Cond << '\n');
2127 
2128  // It's possible for the setcc instruction to be anywhere in the loop, and
2129  // possible for it to have multiple users. If it is not immediately before
2130  // the exiting block branch, move it.
2131  if (&*++BasicBlock::iterator(Cond) != TermBr) {
2132  if (Cond->hasOneUse()) {
2133  Cond->moveBefore(TermBr);
2134  } else {
2135  // Clone the terminating condition and insert into the loopend.
2136  ICmpInst *OldCond = Cond;
2137  Cond = cast<ICmpInst>(Cond->clone());
2138  Cond->setName(L->getHeader()->getName() + ".termcond");
2139  ExitingBlock->getInstList().insert(TermBr, Cond);
2140 
2141  // Clone the IVUse, as the old use still exists!
2142  CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2143  TermBr->replaceUsesOfWith(OldCond, Cond);
2144  }
2145  }
2146 
2147  // If we get to here, we know that we can transform the setcc instruction to
2148  // use the post-incremented version of the IV, allowing us to coalesce the
2149  // live ranges for the IV correctly.
2150  CondUse->transformToPostInc(L);
2151  Changed = true;
2152 
2153  PostIncs.insert(Cond);
2154  decline_post_inc:;
2155  }
2156 
2157  // Determine an insertion point for the loop induction variable increment. It
2158  // must dominate all the post-inc comparisons we just set up, and it must
2159  // dominate the loop latch edge.
2160  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2162  E = PostIncs.end(); I != E; ++I) {
2163  BasicBlock *BB =
2164  DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2165  (*I)->getParent());
2166  if (BB == (*I)->getParent())
2167  IVIncInsertPos = *I;
2168  else if (BB != IVIncInsertPos->getParent())
2169  IVIncInsertPos = BB->getTerminator();
2170  }
2171 }
2172 
2173 /// reconcileNewOffset - Determine if the given use can accommodate a fixup
2174 /// at the given offset and other details. If so, update the use and
2175 /// return true.
2176 bool
2177 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2178  LSRUse::KindType Kind, Type *AccessTy) {
2179  int64_t NewMinOffset = LU.MinOffset;
2180  int64_t NewMaxOffset = LU.MaxOffset;
2181  Type *NewAccessTy = AccessTy;
2182 
2183  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2184  // something conservative, however this can pessimize in the case that one of
2185  // the uses will have all its uses outside the loop, for example.
2186  if (LU.Kind != Kind)
2187  return false;
2188  // Conservatively assume HasBaseReg is true for now.
2189  if (NewOffset < LU.MinOffset) {
2190  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
2191  LU.MaxOffset - NewOffset, HasBaseReg))
2192  return false;
2193  NewMinOffset = NewOffset;
2194  } else if (NewOffset > LU.MaxOffset) {
2195  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
2196  NewOffset - LU.MinOffset, HasBaseReg))
2197  return false;
2198  NewMaxOffset = NewOffset;
2199  }
2200  // Check for a mismatched access type, and fall back conservatively as needed.
2201  // TODO: Be less conservative when the type is similar and can use the same
2202  // addressing modes.
2203  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
2204  NewAccessTy = Type::getVoidTy(AccessTy->getContext());
2205 
2206  // Update the use.
2207  LU.MinOffset = NewMinOffset;
2208  LU.MaxOffset = NewMaxOffset;
2209  LU.AccessTy = NewAccessTy;
2210  if (NewOffset != LU.Offsets.back())
2211  LU.Offsets.push_back(NewOffset);
2212  return true;
2213 }
2214 
2215 /// getUse - Return an LSRUse index and an offset value for a fixup which
2216 /// needs the given expression, with the given kind and optional access type.
2217 /// Either reuse an existing use or create a new one, as needed.
2218 std::pair<size_t, int64_t>
2219 LSRInstance::getUse(const SCEV *&Expr,
2220  LSRUse::KindType Kind, Type *AccessTy) {
2221  const SCEV *Copy = Expr;
2222  int64_t Offset = ExtractImmediate(Expr, SE);
2223 
2224  // Basic uses can't accept any offset, for example.
2225  if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ 0,
2226  Offset, /*HasBaseReg=*/ true)) {
2227  Expr = Copy;
2228  Offset = 0;
2229  }
2230 
2231  std::pair<UseMapTy::iterator, bool> P =
2232  UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
2233  if (!P.second) {
2234  // A use already existed with this base.
2235  size_t LUIdx = P.first->second;
2236  LSRUse &LU = Uses[LUIdx];
2237  if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2238  // Reuse this use.
2239  return std::make_pair(LUIdx, Offset);
2240  }
2241 
2242  // Create a new use.
2243  size_t LUIdx = Uses.size();
2244  P.first->second = LUIdx;
2245  Uses.push_back(LSRUse(Kind, AccessTy));
2246  LSRUse &LU = Uses[LUIdx];
2247 
2248  // We don't need to track redundant offsets, but we don't need to go out
2249  // of our way here to avoid them.
2250  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2251  LU.Offsets.push_back(Offset);
2252 
2253  LU.MinOffset = Offset;
2254  LU.MaxOffset = Offset;
2255  return std::make_pair(LUIdx, Offset);
2256 }
2257 
2258 /// DeleteUse - Delete the given use from the Uses list.
2259 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2260  if (&LU != &Uses.back())
2261  std::swap(LU, Uses.back());
2262  Uses.pop_back();
2263 
2264  // Update RegUses.
2265  RegUses.SwapAndDropUse(LUIdx, Uses.size());
2266 }
2267 
2268 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2269 /// a formula that has the same registers as the given formula.
2270 LSRUse *
2271 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2272  const LSRUse &OrigLU) {
2273  // Search all uses for the formula. This could be more clever.
2274  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2275  LSRUse &LU = Uses[LUIdx];
2276  // Check whether this use is close enough to OrigLU, to see whether it's
2277  // worthwhile looking through its formulae.
2278  // Ignore ICmpZero uses because they may contain formulae generated by
2279  // GenerateICmpZeroScales, in which case adding fixup offsets may
2280  // be invalid.
2281  if (&LU != &OrigLU &&
2282  LU.Kind != LSRUse::ICmpZero &&
2283  LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2284  LU.WidestFixupType == OrigLU.WidestFixupType &&
2285  LU.HasFormulaWithSameRegs(OrigF)) {
2286  // Scan through this use's formulae.
2287  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2288  E = LU.Formulae.end(); I != E; ++I) {
2289  const Formula &F = *I;
2290  // Check to see if this formula has the same registers and symbols
2291  // as OrigF.
2292  if (F.BaseRegs == OrigF.BaseRegs &&
2293  F.ScaledReg == OrigF.ScaledReg &&
2294  F.BaseGV == OrigF.BaseGV &&
2295  F.Scale == OrigF.Scale &&
2296  F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2297  if (F.BaseOffset == 0)
2298  return &LU;
2299  // This is the formula where all the registers and symbols matched;
2300  // there aren't going to be any others. Since we declined it, we
2301  // can skip the rest of the formulae and proceed to the next LSRUse.
2302  break;
2303  }
2304  }
2305  }
2306  }
2307 
2308  // Nothing looked good.
2309  return 0;
2310 }
2311 
2312 void LSRInstance::CollectInterestingTypesAndFactors() {
2314 
2315  // Collect interesting types and strides.
2317  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2318  const SCEV *Expr = IU.getExpr(*UI);
2319 
2320  // Collect interesting types.
2321  Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2322 
2323  // Add strides for mentioned loops.
2324  Worklist.push_back(Expr);
2325  do {
2326  const SCEV *S = Worklist.pop_back_val();
2327  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2328  if (AR->getLoop() == L)
2329  Strides.insert(AR->getStepRecurrence(SE));
2330  Worklist.push_back(AR->getStart());
2331  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2332  Worklist.append(Add->op_begin(), Add->op_end());
2333  }
2334  } while (!Worklist.empty());
2335  }
2336 
2337  // Compute interesting factors from the set of interesting strides.
2339  I = Strides.begin(), E = Strides.end(); I != E; ++I)
2341  llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
2342  const SCEV *OldStride = *I;
2343  const SCEV *NewStride = *NewStrideIter;
2344 
2345  if (SE.getTypeSizeInBits(OldStride->getType()) !=
2346  SE.getTypeSizeInBits(NewStride->getType())) {
2347  if (SE.getTypeSizeInBits(OldStride->getType()) >
2348  SE.getTypeSizeInBits(NewStride->getType()))
2349  NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2350  else
2351  OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2352  }
2353  if (const SCEVConstant *Factor =
2354  dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2355  SE, true))) {
2356  if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2357  Factors.insert(Factor->getValue()->getValue().getSExtValue());
2358  } else if (const SCEVConstant *Factor =
2359  dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2360  NewStride,
2361  SE, true))) {
2362  if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2363  Factors.insert(Factor->getValue()->getValue().getSExtValue());
2364  }
2365  }
2366 
2367  // If all uses use the same type, don't bother looking for truncation-based
2368  // reuse.
2369  if (Types.size() == 1)
2370  Types.clear();
2371 
2372  DEBUG(print_factors_and_types(dbgs()));
2373 }
2374 
2375 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2376 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2377 /// Instructions to IVStrideUses, we could partially skip this.
2378 static User::op_iterator
2380  Loop *L, ScalarEvolution &SE) {
2381  for(; OI != OE; ++OI) {
2382  if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2383  if (!SE.isSCEVable(Oper->getType()))
2384  continue;
2385 
2386  if (const SCEVAddRecExpr *AR =
2387  dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2388  if (AR->getLoop() == L)
2389  break;
2390  }
2391  }
2392  }
2393  return OI;
2394 }
2395 
2396 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2397 /// operands, so wrap it in a convenient helper.
2398 static Value *getWideOperand(Value *Oper) {
2399  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2400  return Trunc->getOperand(0);
2401  return Oper;
2402 }
2403 
2404 /// isCompatibleIVType - Return true if we allow an IV chain to include both
2405 /// types.
2406 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2407  Type *LType = LVal->getType();
2408  Type *RType = RVal->getType();
2409  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2410 }
2411 
2412 /// getExprBase - Return an approximation of this SCEV expression's "base", or
2413 /// NULL for any constant. Returning the expression itself is
2414 /// conservative. Returning a deeper subexpression is more precise and valid as
2415 /// long as it isn't less complex than another subexpression. For expressions
2416 /// involving multiple unscaled values, we need to return the pointer-type
2417 /// SCEVUnknown. This avoids forming chains across objects, such as:
2418 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2419 ///
2420 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2421 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2422 static const SCEV *getExprBase(const SCEV *S) {
2423  switch (S->getSCEVType()) {
2424  default: // uncluding scUnknown.
2425  return S;
2426  case scConstant:
2427  return 0;
2428  case scTruncate:
2429  return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2430  case scZeroExtend:
2431  return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2432  case scSignExtend:
2433  return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2434  case scAddExpr: {
2435  // Skip over scaled operands (scMulExpr) to follow add operands as long as
2436  // there's nothing more complex.
2437  // FIXME: not sure if we want to recognize negation.
2438  const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2439  for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2440  E(Add->op_begin()); I != E; ++I) {
2441  const SCEV *SubExpr = *I;
2442  if (SubExpr->getSCEVType() == scAddExpr)
2443  return getExprBase(SubExpr);
2444 
2445  if (SubExpr->getSCEVType() != scMulExpr)
2446  return SubExpr;
2447  }
2448  return S; // all operands are scaled, be conservative.
2449  }
2450  case scAddRecExpr:
2451  return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2452  }
2453 }
2454 
2455 /// Return true if the chain increment is profitable to expand into a loop
2456 /// invariant value, which may require its own register. A profitable chain
2457 /// increment will be an offset relative to the same base. We allow such offsets
2458 /// to potentially be used as chain increment as long as it's not obviously
2459 /// expensive to expand using real instructions.
2460 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2461  const SCEV *IncExpr,
2462  ScalarEvolution &SE) {
2463  // Aggressively form chains when -stress-ivchain.
2464  if (StressIVChain)
2465  return true;
2466 
2467  // Do not replace a constant offset from IV head with a nonconstant IV
2468  // increment.
2469  if (!isa<SCEVConstant>(IncExpr)) {
2470  const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2471  if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2472  return 0;
2473  }
2474 
2475  SmallPtrSet<const SCEV*, 8> Processed;
2476  return !isHighCostExpansion(IncExpr, Processed, SE);
2477 }
2478 
2479 /// Return true if the number of registers needed for the chain is estimated to
2480 /// be less than the number required for the individual IV users. First prohibit
2481 /// any IV users that keep the IV live across increments (the Users set should
2482 /// be empty). Next count the number and type of increments in the chain.
2483 ///
2484 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2485 /// effectively use postinc addressing modes. Only consider it profitable it the
2486 /// increments can be computed in fewer registers when chained.
2487 ///
2488 /// TODO: Consider IVInc free if it's already used in another chains.
2489 static bool
2491  ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2492  if (StressIVChain)
2493  return true;
2494 
2495  if (!Chain.hasIncs())
2496  return false;
2497 
2498  if (!Users.empty()) {
2499  DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2501  E = Users.end(); I != E; ++I) {
2502  dbgs() << " " << **I << "\n";
2503  });
2504  return false;
2505  }
2506  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2507 
2508  // The chain itself may require a register, so intialize cost to 1.
2509  int cost = 1;
2510 
2511  // A complete chain likely eliminates the need for keeping the original IV in
2512  // a register. LSR does not currently know how to form a complete chain unless
2513  // the header phi already exists.
2514  if (isa<PHINode>(Chain.tailUserInst())
2515  && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2516  --cost;
2517  }
2518  const SCEV *LastIncExpr = 0;
2519  unsigned NumConstIncrements = 0;
2520  unsigned NumVarIncrements = 0;
2521  unsigned NumReusedIncrements = 0;
2522  for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2523  I != E; ++I) {
2524 
2525  if (I->IncExpr->isZero())
2526  continue;
2527 
2528  // Incrementing by zero or some constant is neutral. We assume constants can
2529  // be folded into an addressing mode or an add's immediate operand.
2530  if (isa<SCEVConstant>(I->IncExpr)) {
2531  ++NumConstIncrements;
2532  continue;
2533  }
2534 
2535  if (I->IncExpr == LastIncExpr)
2536  ++NumReusedIncrements;
2537  else
2538  ++NumVarIncrements;
2539 
2540  LastIncExpr = I->IncExpr;
2541  }
2542  // An IV chain with a single increment is handled by LSR's postinc
2543  // uses. However, a chain with multiple increments requires keeping the IV's
2544  // value live longer than it needs to be if chained.
2545  if (NumConstIncrements > 1)
2546  --cost;
2547 
2548  // Materializing increment expressions in the preheader that didn't exist in
2549  // the original code may cost a register. For example, sign-extended array
2550  // indices can produce ridiculous increments like this:
2551  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2552  cost += NumVarIncrements;
2553 
2554  // Reusing variable increments likely saves a register to hold the multiple of
2555  // the stride.
2556  cost -= NumReusedIncrements;
2557 
2558  DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2559  << "\n");
2560 
2561  return cost < 0;
2562 }
2563 
2564 /// ChainInstruction - Add this IV user to an existing chain or make it the head
2565 /// of a new chain.
2566 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2567  SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2568  // When IVs are used as types of varying widths, they are generally converted
2569  // to a wider type with some uses remaining narrow under a (free) trunc.
2570  Value *const NextIV = getWideOperand(IVOper);
2571  const SCEV *const OperExpr = SE.getSCEV(NextIV);
2572  const SCEV *const OperExprBase = getExprBase(OperExpr);
2573 
2574  // Visit all existing chains. Check if its IVOper can be computed as a
2575  // profitable loop invariant increment from the last link in the Chain.
2576  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2577  const SCEV *LastIncExpr = 0;
2578  for (; ChainIdx < NChains; ++ChainIdx) {
2579  IVChain &Chain = IVChainVec[ChainIdx];
2580 
2581  // Prune the solution space aggressively by checking that both IV operands
2582  // are expressions that operate on the same unscaled SCEVUnknown. This
2583  // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2584  // first avoids creating extra SCEV expressions.
2585  if (!StressIVChain && Chain.ExprBase != OperExprBase)
2586  continue;
2587 
2588  Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2589  if (!isCompatibleIVType(PrevIV, NextIV))
2590  continue;
2591 
2592  // A phi node terminates a chain.
2593  if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2594  continue;
2595 
2596  // The increment must be loop-invariant so it can be kept in a register.
2597  const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2598  const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2599  if (!SE.isLoopInvariant(IncExpr, L))
2600  continue;
2601 
2602  if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2603  LastIncExpr = IncExpr;
2604  break;
2605  }
2606  }
2607  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2608  // bother for phi nodes, because they must be last in the chain.
2609  if (ChainIdx == NChains) {
2610  if (isa<PHINode>(UserInst))
2611  return;
2612  if (NChains >= MaxChains && !StressIVChain) {
2613  DEBUG(dbgs() << "IV Chain Limit\n");
2614  return;
2615  }
2616  LastIncExpr = OperExpr;
2617  // IVUsers may have skipped over sign/zero extensions. We don't currently
2618  // attempt to form chains involving extensions unless they can be hoisted
2619  // into this loop's AddRec.
2620  if (!isa<SCEVAddRecExpr>(LastIncExpr))
2621  return;
2622  ++NChains;
2623  IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2624  OperExprBase));
2625  ChainUsersVec.resize(NChains);
2626  DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2627  << ") IV=" << *LastIncExpr << "\n");
2628  } else {
2629  DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
2630  << ") IV+" << *LastIncExpr << "\n");
2631  // Add this IV user to the end of the chain.
2632  IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2633  }
2634  IVChain &Chain = IVChainVec[ChainIdx];
2635 
2636  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2637  // This chain's NearUsers become FarUsers.
2638  if (!LastIncExpr->isZero()) {
2639  ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2640  NearUsers.end());
2641  NearUsers.clear();
2642  }
2643 
2644  // All other uses of IVOperand become near uses of the chain.
2645  // We currently ignore intermediate values within SCEV expressions, assuming
2646  // they will eventually be used be the current chain, or can be computed
2647  // from one of the chain increments. To be more precise we could
2648  // transitively follow its user and only add leaf IV users to the set.
2649  for (Value::use_iterator UseIter = IVOper->use_begin(),
2650  UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
2651  Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
2652  if (!OtherUse)
2653  continue;
2654  // Uses in the chain will no longer be uses if the chain is formed.
2655  // Include the head of the chain in this iteration (not Chain.begin()).
2656  IVChain::const_iterator IncIter = Chain.Incs.begin();
2657  IVChain::const_iterator IncEnd = Chain.Incs.end();
2658  for( ; IncIter != IncEnd; ++IncIter) {
2659  if (IncIter->UserInst == OtherUse)
2660  break;
2661  }
2662  if (IncIter != IncEnd)
2663  continue;
2664 
2665  if (SE.isSCEVable(OtherUse->getType())
2666  && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2667  && IU.isIVUserOrOperand(OtherUse)) {
2668  continue;
2669  }
2670  NearUsers.insert(OtherUse);
2671  }
2672 
2673  // Since this user is part of the chain, it's no longer considered a use
2674  // of the chain.
2675  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2676 }
2677 
2678 /// CollectChains - Populate the vector of Chains.
2679 ///
2680 /// This decreases ILP at the architecture level. Targets with ample registers,
2681 /// multiple memory ports, and no register renaming probably don't want
2682 /// this. However, such targets should probably disable LSR altogether.
2683 ///
2684 /// The job of LSR is to make a reasonable choice of induction variables across
2685 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2686 /// ILP *within the loop* if the target wants it.
2687 ///
2688 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2689 /// will not reorder memory operations, it will recognize this as a chain, but
2690 /// will generate redundant IV increments. Ideally this would be corrected later
2691 /// by a smart scheduler:
2692 /// = A[i]
2693 /// = A[i+x]
2694 /// A[i] =
2695 /// A[i+x] =
2696 ///
2697 /// TODO: Walk the entire domtree within this loop, not just the path to the
2698 /// loop latch. This will discover chains on side paths, but requires
2699 /// maintaining multiple copies of the Chains state.
2700 void LSRInstance::CollectChains() {
2701  DEBUG(dbgs() << "Collecting IV Chains.\n");
2702  SmallVector<ChainUsers, 8> ChainUsersVec;
2703 
2704  SmallVector<BasicBlock *,8> LatchPath;
2705  BasicBlock *LoopHeader = L->getHeader();
2706  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2707  Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2708  LatchPath.push_back(Rung->getBlock());
2709  }
2710  LatchPath.push_back(LoopHeader);
2711 
2712  // Walk the instruction stream from the loop header to the loop latch.
2714  BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2715  BBIter != BBEnd; ++BBIter) {
2716  for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2717  I != E; ++I) {
2718  // Skip instructions that weren't seen by IVUsers analysis.
2719  if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2720  continue;
2721 
2722  // Ignore users that are part of a SCEV expression. This way we only
2723  // consider leaf IV Users. This effectively rediscovers a portion of
2724  // IVUsers analysis but in program order this time.
2725  if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2726  continue;
2727 
2728  // Remove this instruction from any NearUsers set it may be in.
2729  for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2730  ChainIdx < NChains; ++ChainIdx) {
2731  ChainUsersVec[ChainIdx].NearUsers.erase(I);
2732  }
2733  // Search for operands that can be chained.
2734  SmallPtrSet<Instruction*, 4> UniqueOperands;
2735  User::op_iterator IVOpEnd = I->op_end();
2736  User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2737  while (IVOpIter != IVOpEnd) {
2738  Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2739  if (UniqueOperands.insert(IVOpInst))
2740  ChainInstruction(I, IVOpInst, ChainUsersVec);
2741  IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2742  }
2743  } // Continue walking down the instructions.
2744  } // Continue walking down the domtree.
2745  // Visit phi backedges to determine if the chain can generate the IV postinc.
2746  for (BasicBlock::iterator I = L->getHeader()->begin();
2747  PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2748  if (!SE.isSCEVable(PN->getType()))
2749  continue;
2750 
2751  Instruction *IncV =
2752  dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2753  if (IncV)
2754  ChainInstruction(PN, IncV, ChainUsersVec);
2755  }
2756  // Remove any unprofitable chains.
2757  unsigned ChainIdx = 0;
2758  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2759  UsersIdx < NChains; ++UsersIdx) {
2760  if (!isProfitableChain(IVChainVec[UsersIdx],
2761  ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2762  continue;
2763  // Preserve the chain at UsesIdx.
2764  if (ChainIdx != UsersIdx)
2765  IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2766  FinalizeChain(IVChainVec[ChainIdx]);
2767  ++ChainIdx;
2768  }
2769  IVChainVec.resize(ChainIdx);
2770 }
2771 
2772 void LSRInstance::FinalizeChain(IVChain &Chain) {
2773  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2774  DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2775 
2776  for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2777  I != E; ++I) {
2778  DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n");
2779  User::op_iterator UseI =
2780  std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2781  assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2782  IVIncSet.insert(UseI);
2783  }
2784 }
2785 
2786 /// Return true if the IVInc can be folded into an addressing mode.
2787 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2788  Value *Operand, const TargetTransformInfo &TTI) {
2789  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2790  if (!IncConst || !isAddressUse(UserInst, Operand))
2791  return false;
2792 
2793  if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2794  return false;
2795 
2796  int64_t IncOffset = IncConst->getValue()->getSExtValue();
2797  if (!isAlwaysFoldable(TTI, LSRUse::Address,
2798  getAccessType(UserInst), /*BaseGV=*/ 0,
2799  IncOffset, /*HaseBaseReg=*/ false))
2800  return false;
2801 
2802  return true;
2803 }
2804 
2805 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2806 /// materialize the IV user's operand from the previous IV user's operand.
2807 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2808  SmallVectorImpl<WeakVH> &DeadInsts) {
2809  // Find the new IVOperand for the head of the chain. It may have been replaced
2810  // by LSR.
2811  const IVInc &Head = Chain.Incs[0];
2812  User::op_iterator IVOpEnd = Head.UserInst->op_end();
2813  // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2814  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2815  IVOpEnd, L, SE);
2816  Value *IVSrc = 0;
2817  while (IVOpIter != IVOpEnd) {
2818  IVSrc = getWideOperand(*IVOpIter);
2819 
2820  // If this operand computes the expression that the chain needs, we may use
2821  // it. (Check this after setting IVSrc which is used below.)
2822  //
2823  // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2824  // narrow for the chain, so we can no longer use it. We do allow using a
2825  // wider phi, assuming the LSR checked for free truncation. In that case we
2826  // should already have a truncate on this operand such that
2827  // getSCEV(IVSrc) == IncExpr.
2828  if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2829  || SE.getSCEV(IVSrc) == Head.IncExpr) {
2830  break;
2831  }
2832  IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2833  }
2834  if (IVOpIter == IVOpEnd) {
2835  // Gracefully give up on this chain.
2836  DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2837  return;
2838  }
2839 
2840  DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2841  Type *IVTy = IVSrc->getType();
2842  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2843  const SCEV *LeftOverExpr = 0;
2844  for (IVChain::const_iterator IncI = Chain.begin(),
2845  IncE = Chain.end(); IncI != IncE; ++IncI) {
2846 
2847  Instruction *InsertPt = IncI->UserInst;
2848  if (isa<PHINode>(InsertPt))
2849  InsertPt = L->getLoopLatch()->getTerminator();
2850 
2851  // IVOper will replace the current IV User's operand. IVSrc is the IV
2852  // value currently held in a register.
2853  Value *IVOper = IVSrc;
2854  if (!IncI->IncExpr->isZero()) {
2855  // IncExpr was the result of subtraction of two narrow values, so must
2856  // be signed.
2857  const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2858  LeftOverExpr = LeftOverExpr ?
2859  SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2860  }
2861  if (LeftOverExpr && !LeftOverExpr->isZero()) {
2862  // Expand the IV increment.
2863  Rewriter.clearPostInc();
2864  Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2865  const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2866  SE.getUnknown(IncV));
2867  IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2868 
2869  // If an IV increment can't be folded, use it as the next IV value.
2870  if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2871  TTI)) {
2872  assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2873  IVSrc = IVOper;
2874  LeftOverExpr = 0;
2875  }
2876  }
2877  Type *OperTy = IncI->IVOperand->getType();
2878  if (IVTy != OperTy) {
2879  assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2880  "cannot extend a chained IV");
2881  IRBuilder<> Builder(InsertPt);
2882  IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2883  }
2884  IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2885  DeadInsts.push_back(IncI->IVOperand);
2886  }
2887  // If LSR created a new, wider phi, we may also replace its postinc. We only
2888  // do this if we also found a wide value for the head of the chain.
2889  if (isa<PHINode>(Chain.tailUserInst())) {
2890  for (BasicBlock::iterator I = L->getHeader()->begin();
2891  PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2892  if (!isCompatibleIVType(Phi, IVSrc))
2893  continue;
2894  Instruction *PostIncV = dyn_cast<Instruction>(
2895  Phi->getIncomingValueForBlock(L->getLoopLatch()));
2896  if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2897  continue;
2898  Value *IVOper = IVSrc;
2899  Type *PostIncTy = PostIncV->getType();
2900  if (IVTy != PostIncTy) {
2901  assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2902  IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2903  Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2904  IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2905  }
2906  Phi->replaceUsesOfWith(PostIncV, IVOper);
2907  DeadInsts.push_back(PostIncV);
2908  }
2909  }
2910 }
2911 
2912 void LSRInstance::CollectFixupsAndInitialFormulae() {
2913  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2914  Instruction *UserInst = UI->getUser();
2915  // Skip IV users that are part of profitable IV Chains.
2916  User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2917  UI->getOperandValToReplace());
2918  assert(UseI != UserInst->op_end() && "cannot find IV operand");
2919  if (IVIncSet.count(UseI))
2920  continue;
2921 
2922  // Record the uses.
2923  LSRFixup &LF = getNewFixup();
2924  LF.UserInst = UserInst;
2925  LF.OperandValToReplace = UI->getOperandValToReplace();
2926  LF.PostIncLoops = UI->getPostIncLoops();
2927 
2928  LSRUse::KindType Kind = LSRUse::Basic;
2929  Type *AccessTy = 0;
2930  if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2931  Kind = LSRUse::Address;
2932  AccessTy = getAccessType(LF.UserInst);
2933  }
2934 
2935  const SCEV *S = IU.getExpr(*UI);
2936 
2937  // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2938  // (N - i == 0), and this allows (N - i) to be the expression that we work
2939  // with rather than just N or i, so we can consider the register
2940  // requirements for both N and i at the same time. Limiting this code to
2941  // equality icmps is not a problem because all interesting loops use
2942  // equality icmps, thanks to IndVarSimplify.
2943  if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2944  if (CI->isEquality()) {
2945  // Swap the operands if needed to put the OperandValToReplace on the
2946  // left, for consistency.
2947  Value *NV = CI->getOperand(1);
2948  if (NV == LF.OperandValToReplace) {
2949  CI->setOperand(1, CI->getOperand(0));
2950  CI->setOperand(0, NV);
2951  NV = CI->getOperand(1);
2952  Changed = true;
2953  }
2954 
2955  // x == y --> x - y == 0
2956  const SCEV *N = SE.getSCEV(NV);
2957  if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
2958  // S is normalized, so normalize N before folding it into S
2959  // to keep the result normalized.
2960  N = TransformForPostIncUse(Normalize, N, CI, 0,
2961  LF.PostIncLoops, SE, DT);
2962  Kind = LSRUse::ICmpZero;
2963  S = SE.getMinusSCEV(N, S);
2964  }
2965 
2966  // -1 and the negations of all interesting strides (except the negation
2967  // of -1) are now also interesting.
2968  for (size_t i = 0, e = Factors.size(); i != e; ++i)
2969  if (Factors[i] != -1)
2970  Factors.insert(-(uint64_t)Factors[i]);
2971  Factors.insert(-1);
2972  }
2973 
2974  // Set up the initial formula for this use.
2975  std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2976  LF.LUIdx = P.first;
2977  LF.Offset = P.second;
2978  LSRUse &LU = Uses[LF.LUIdx];
2979  LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2980  if (!LU.WidestFixupType ||
2981  SE.getTypeSizeInBits(LU.WidestFixupType) <
2982  SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2983  LU.WidestFixupType = LF.OperandValToReplace->getType();
2984 
2985  // If this is the first use of this LSRUse, give it a formula.
2986  if (LU.Formulae.empty()) {
2987  InsertInitialFormula(S, LU, LF.LUIdx);
2988  CountRegisters(LU.Formulae.back(), LF.LUIdx);
2989  }
2990  }
2991 
2992  DEBUG(print_fixups(dbgs()));
2993 }
2994 
2995 /// InsertInitialFormula - Insert a formula for the given expression into
2996 /// the given use, separating out loop-variant portions from loop-invariant
2997 /// and loop-computable portions.
2998 void
2999 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3000  // Mark uses whose expressions cannot be expanded.
3001  if (!isSafeToExpand(S, SE))
3002  LU.RigidFormula = true;
3003 
3004  Formula F;
3005  F.InitialMatch(S, L, SE);
3006  bool Inserted = InsertFormula(LU, LUIdx, F);
3007  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3008 }
3009 
3010 /// InsertSupplementalFormula - Insert a simple single-register formula for
3011 /// the given expression into the given use.
3012 void
3013 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3014  LSRUse &LU, size_t LUIdx) {
3015  Formula F;
3016  F.BaseRegs.push_back(S);
3017  F.HasBaseReg = true;
3018  bool Inserted = InsertFormula(LU, LUIdx, F);
3019  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3020 }
3021 
3022 /// CountRegisters - Note which registers are used by the given formula,
3023 /// updating RegUses.
3024 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3025  if (F.ScaledReg)
3026  RegUses.CountRegister(F.ScaledReg, LUIdx);
3027  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
3028  E = F.BaseRegs.end(); I != E; ++I)
3029  RegUses.CountRegister(*I, LUIdx);
3030 }
3031 
3032 /// InsertFormula - If the given formula has not yet been inserted, add it to
3033 /// the list, and return true. Return false otherwise.
3034 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3035  if (!LU.InsertFormula(F))
3036  return false;
3037 
3038  CountRegisters(F, LUIdx);
3039  return true;
3040 }
3041 
3042 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
3043 /// loop-invariant values which we're tracking. These other uses will pin these
3044 /// values in registers, making them less profitable for elimination.
3045 /// TODO: This currently misses non-constant addrec step registers.
3046 /// TODO: Should this give more weight to users inside the loop?
3047 void
3048 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3049  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3051 
3052  while (!Worklist.empty()) {
3053  const SCEV *S = Worklist.pop_back_val();
3054 
3055  if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3056  Worklist.append(N->op_begin(), N->op_end());
3057  else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3058  Worklist.push_back(C->getOperand());
3059  else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3060  Worklist.push_back(D->getLHS());
3061  Worklist.push_back(D->getRHS());
3062  } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3063  if (!Inserted.insert(U)) continue;
3064  const Value *V = U->getValue();
3065  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3066  // Look for instructions defined outside the loop.
3067  if (L->contains(Inst)) continue;
3068  } else if (isa<UndefValue>(V))
3069  // Undef doesn't have a live range, so it doesn't matter.
3070  continue;
3071  for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
3072  UI != UE; ++UI) {
3073  const Instruction *UserInst = dyn_cast<Instruction>(*UI);
3074  // Ignore non-instructions.
3075  if (!UserInst)
3076  continue;
3077  // Ignore instructions in other functions (as can happen with
3078  // Constants).
3079  if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3080  continue;
3081  // Ignore instructions not dominated by the loop.
3082  const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3083  UserInst->getParent() :
3084  cast<PHINode>(UserInst)->getIncomingBlock(
3085  PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
3086  if (!DT.dominates(L->getHeader(), UseBB))
3087  continue;
3088  // Ignore uses which are part of other SCEV expressions, to avoid
3089  // analyzing them multiple times.
3090  if (SE.isSCEVable(UserInst->getType())) {
3091  const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3092  // If the user is a no-op, look through to its uses.
3093  if (!isa<SCEVUnknown>(UserS))
3094  continue;
3095  if (UserS == U) {
3096  Worklist.push_back(
3097  SE.getUnknown(const_cast<Instruction *>(UserInst)));
3098  continue;
3099  }
3100  }
3101  // Ignore icmp instructions which are already being analyzed.
3102  if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3103  unsigned OtherIdx = !UI.getOperandNo();
3104  Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3105  if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3106  continue;
3107  }
3108 
3109  LSRFixup &LF = getNewFixup();
3110  LF.UserInst = const_cast<Instruction *>(UserInst);
3111  LF.OperandValToReplace = UI.getUse();
3112  std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
3113  LF.LUIdx = P.first;
3114  LF.Offset = P.second;
3115  LSRUse &LU = Uses[LF.LUIdx];
3116  LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3117  if (!LU.WidestFixupType ||
3118  SE.getTypeSizeInBits(LU.WidestFixupType) <
3119  SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3120  LU.WidestFixupType = LF.OperandValToReplace->getType();
3121  InsertSupplementalFormula(U, LU, LF.LUIdx);
3122  CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3123  break;
3124  }
3125  }
3126  }
3127 }
3128 
3129 /// CollectSubexprs - Split S into subexpressions which can be pulled out into
3130 /// separate registers. If C is non-null, multiply each subexpression by C.
3131 ///
3132 /// Return remainder expression after factoring the subexpressions captured by
3133 /// Ops. If Ops is complete, return NULL.
3134 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3136  const Loop *L,
3137  ScalarEvolution &SE,
3138  unsigned Depth = 0) {
3139  // Arbitrarily cap recursion to protect compile time.
3140  if (Depth >= 3)
3141  return S;
3142 
3143  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3144  // Break out add operands.
3145  for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
3146  I != E; ++I) {
3147  const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
3148  if (Remainder)
3149  Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3150  }
3151  return 0;
3152  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3153  // Split a non-zero base out of an addrec.
3154  if (AR->getStart()->isZero())
3155  return S;
3156 
3157  const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3158  C, Ops, L, SE, Depth+1);
3159  // Split the non-zero AddRec unless it is part of a nested recurrence that
3160  // does not pertain to this loop.
3161  if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3162  Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3163  Remainder = 0;
3164  }
3165  if (Remainder != AR->getStart()) {
3166  if (!Remainder)
3167  Remainder = SE.getConstant(AR->getType(), 0);
3168  return SE.getAddRecExpr(Remainder,
3169  AR->getStepRecurrence(SE),
3170  AR->getLoop(),
3171  //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3172  SCEV::FlagAnyWrap);
3173  }
3174  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3175  // Break (C * (a + b + c)) into C*a + C*b + C*c.
3176  if (Mul->getNumOperands() != 2)
3177  return S;
3178  if (const SCEVConstant *Op0 =
3179  dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3180  C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3181  const SCEV *Remainder =
3182  CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3183  if (Remainder)
3184  Ops.push_back(SE.getMulExpr(C, Remainder));
3185  return 0;
3186  }
3187  }
3188  return S;
3189 }
3190 
3191 /// GenerateReassociations - Split out subexpressions from adds and the bases of
3192 /// addrecs.
3193 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3194  Formula Base,
3195  unsigned Depth) {
3196  // Arbitrarily cap recursion to protect compile time.
3197  if (Depth >= 3) return;
3198 
3199  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3200  const SCEV *BaseReg = Base.BaseRegs[i];
3201 
3203  const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE);
3204  if (Remainder)
3205  AddOps.push_back(Remainder);
3206 
3207  if (AddOps.size() == 1) continue;
3208 
3210  JE = AddOps.end(); J != JE; ++J) {
3211 
3212  // Loop-variant "unknown" values are uninteresting; we won't be able to
3213  // do anything meaningful with them.
3214  if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3215  continue;
3216 
3217  // Don't pull a constant into a register if the constant could be folded
3218  // into an immediate field.
3219  if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3220  LU.AccessTy, *J, Base.getNumRegs() > 1))
3221  continue;
3222 
3223  // Collect all operands except *J.
3224  SmallVector<const SCEV *, 8> InnerAddOps
3225  (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3226  InnerAddOps.append
3227  (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3228 
3229  // Don't leave just a constant behind in a register if the constant could
3230  // be folded into an immediate field.
3231  if (InnerAddOps.size() == 1 &&
3232  isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3233  LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3234  continue;
3235 
3236  const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3237  if (InnerSum->isZero())
3238  continue;
3239  Formula F = Base;
3240 
3241  // Add the remaining pieces of the add back into the new formula.
3242  const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3243  if (InnerSumSC &&
3244  SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3245  TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3246  InnerSumSC->getValue()->getZExtValue())) {
3247  F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3248  InnerSumSC->getValue()->getZExtValue();
3249  F.BaseRegs.erase(F.BaseRegs.begin() + i);
3250  } else
3251  F.BaseRegs[i] = InnerSum;
3252 
3253  // Add J as its own register, or an unfolded immediate.
3254  const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3255  if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3256  TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3257  SC->getValue()->getZExtValue()))
3258  F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3259  SC->getValue()->getZExtValue();
3260  else
3261  F.BaseRegs.push_back(*J);
3262 
3263  if (InsertFormula(LU, LUIdx, F))
3264  // If that formula hadn't been seen before, recurse to find more like
3265  // it.
3266  GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
3267  }
3268  }
3269 }
3270 
3271 /// GenerateCombinations - Generate a formula consisting of all of the
3272 /// loop-dominating registers added into a single register.
3273 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3274  Formula Base) {
3275  // This method is only interesting on a plurality of registers.
3276  if (Base.BaseRegs.size() <= 1) return;
3277 
3278  Formula F = Base;
3279  F.BaseRegs.clear();
3282  I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3283  const SCEV *BaseReg = *I;
3284  if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3285  !SE.hasComputableLoopEvolution(BaseReg, L))
3286  Ops.push_back(BaseReg);
3287  else
3288  F.BaseRegs.push_back(BaseReg);
3289  }
3290  if (Ops.size() > 1) {
3291  const SCEV *Sum = SE.getAddExpr(Ops);
3292  // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3293  // opportunity to fold something. For now, just ignore such cases
3294  // rather than proceed with zero in a register.
3295  if (!Sum->isZero()) {
3296  F.BaseRegs.push_back(Sum);
3297  (void)InsertFormula(LU, LUIdx, F);
3298  }
3299  }
3300 }
3301 
3302 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
3303 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3304  Formula Base) {
3305  // We can't add a symbolic offset if the address already contains one.
3306  if (Base.BaseGV) return;
3307 
3308  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3309  const SCEV *G = Base.BaseRegs[i];
3310  GlobalValue *GV = ExtractSymbol(G, SE);
3311  if (G->isZero() || !GV)
3312  continue;
3313  Formula F = Base;
3314  F.BaseGV = GV;
3315  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3316  continue;
3317  F.BaseRegs[i] = G;
3318  (void)InsertFormula(LU, LUIdx, F);
3319  }
3320 }
3321 
3322 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3323 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3324  Formula Base) {
3325  // TODO: For now, just add the min and max offset, because it usually isn't
3326  // worthwhile looking at everything inbetween.
3327  SmallVector<int64_t, 2> Worklist;
3328  Worklist.push_back(LU.MinOffset);
3329  if (LU.MaxOffset != LU.MinOffset)
3330  Worklist.push_back(LU.MaxOffset);
3331 
3332  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3333  const SCEV *G = Base.BaseRegs[i];
3334 
3335  for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3336  E = Worklist.end(); I != E; ++I) {
3337  Formula F = Base;
3338  F.BaseOffset = (uint64_t)Base.BaseOffset - *I;
3339  if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind,
3340  LU.AccessTy, F)) {
3341  // Add the offset to the base register.
3342  const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
3343  // If it cancelled out, drop the base register, otherwise update it.
3344  if (NewG->isZero()) {
3345  std::swap(F.BaseRegs[i], F.BaseRegs.back());
3346  F.BaseRegs.pop_back();
3347  } else
3348  F.BaseRegs[i] = NewG;
3349 
3350  (void)InsertFormula(LU, LUIdx, F);
3351  }
3352  }
3353 
3354  int64_t Imm = ExtractImmediate(G, SE);
3355  if (G->isZero() || Imm == 0)
3356  continue;
3357  Formula F = Base;
3358  F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3359  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3360  continue;
3361  F.BaseRegs[i] = G;
3362  (void)InsertFormula(LU, LUIdx, F);
3363  }
3364 }
3365 
3366 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3367 /// the comparison. For example, x == y -> x*c == y*c.
3368 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3369  Formula Base) {
3370  if (LU.Kind != LSRUse::ICmpZero) return;
3371 
3372  // Determine the integer type for the base formula.
3373  Type *IntTy = Base.getType();
3374  if (!IntTy) return;
3375  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3376 
3377  // Don't do this if there is more than one offset.
3378  if (LU.MinOffset != LU.MaxOffset) return;
3379 
3380  assert(!Base.BaseGV && "ICmpZero use is not legal!");
3381 
3382  // Check each interesting stride.
3384  I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3385  int64_t Factor = *I;
3386 
3387  // Check that the multiplication doesn't overflow.
3388  if (Base.BaseOffset == INT64_MIN && Factor == -1)
3389  continue;
3390  int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3391  if (NewBaseOffset / Factor != Base.BaseOffset)
3392  continue;
3393 
3394  // Check that multiplying with the use offset doesn't overflow.
3395  int64_t Offset = LU.MinOffset;
3396  if (Offset == INT64_MIN && Factor == -1)
3397  continue;
3398  Offset = (uint64_t)Offset * Factor;
3399  if (Offset / Factor != LU.MinOffset)
3400  continue;
3401 
3402  Formula F = Base;
3403  F.BaseOffset = NewBaseOffset;
3404 
3405  // Check that this scale is legal.
3406  if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3407  continue;
3408 
3409  // Compensate for the use having MinOffset built into it.
3410  F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3411 
3412  const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3413 
3414  // Check that multiplying with each base register doesn't overflow.
3415  for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3416  F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3417  if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3418  goto next;
3419  }
3420 
3421  // Check that multiplying with the scaled register doesn't overflow.
3422  if (F.ScaledReg) {
3423  F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3424  if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3425  continue;
3426  }
3427 
3428  // Check that multiplying with the unfolded offset doesn't overflow.
3429  if (F.UnfoldedOffset != 0) {
3430  if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3431  continue;
3432  F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3433  if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3434  continue;
3435  }
3436 
3437  // If we make it here and it's legal, add it.
3438  (void)InsertFormula(LU, LUIdx, F);
3439  next:;
3440  }
3441 }
3442 
3443 /// GenerateScales - Generate stride factor reuse formulae by making use of
3444 /// scaled-offset address modes, for example.
3445 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3446  // Determine the integer type for the base formula.
3447  Type *IntTy = Base.getType();
3448  if (!IntTy) return;
3449 
3450  // If this Formula already has a scaled register, we can't add another one.
3451  if (Base.Scale != 0) return;
3452 
3453  // Check each interesting stride.
3455  I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3456  int64_t Factor = *I;
3457 
3458  Base.Scale = Factor;
3459  Base.HasBaseReg = Base.BaseRegs.size() > 1;
3460  // Check whether this scale is going to be legal.
3461  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3462  Base)) {
3463  // As a special-case, handle special out-of-loop Basic users specially.
3464  // TODO: Reconsider this special case.
3465  if (LU.Kind == LSRUse::Basic &&
3466  isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3467  LU.AccessTy, Base) &&
3468  LU.AllFixupsOutsideLoop)
3469  LU.Kind = LSRUse::Special;
3470  else
3471  continue;
3472  }
3473  // For an ICmpZero, negating a solitary base register won't lead to
3474  // new solutions.
3475  if (LU.Kind == LSRUse::ICmpZero &&
3476  !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3477  continue;
3478  // For each addrec base reg, apply the scale, if possible.
3479  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3480  if (const SCEVAddRecExpr *AR =
3481  dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3482  const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3483  if (FactorS->isZero())
3484  continue;
3485  // Divide out the factor, ignoring high bits, since we'll be
3486  // scaling the value back up in the end.
3487  if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3488  // TODO: This could be optimized to avoid all the copying.
3489  Formula F = Base;
3490  F.ScaledReg = Quotient;
3491  F.DeleteBaseReg(F.BaseRegs[i]);
3492  (void)InsertFormula(LU, LUIdx, F);
3493  }
3494  }
3495  }
3496 }
3497 
3498 /// GenerateTruncates - Generate reuse formulae from different IV types.
3499 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3500  // Don't bother truncating symbolic values.
3501  if (Base.BaseGV) return;
3502 
3503  // Determine the integer type for the base formula.
3504  Type *DstTy = Base.getType();
3505  if (!DstTy) return;
3506  DstTy = SE.getEffectiveSCEVType(DstTy);
3507 
3509  I = Types.begin(), E = Types.end(); I != E; ++I) {
3510  Type *SrcTy = *I;
3511  if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3512  Formula F = Base;
3513 
3514  if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3515  for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3516  JE = F.BaseRegs.end(); J != JE; ++J)
3517  *J = SE.getAnyExtendExpr(*J, SrcTy);
3518 
3519  // TODO: This assumes we've done basic processing on all uses and
3520  // have an idea what the register usage is.
3521  if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3522  continue;
3523 
3524  (void)InsertFormula(LU, LUIdx, F);
3525  }
3526  }
3527 }
3528 
3529 namespace {
3530 
3531 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
3532 /// defer modifications so that the search phase doesn't have to worry about
3533 /// the data structures moving underneath it.
3534 struct WorkItem {
3535  size_t LUIdx;
3536  int64_t Imm;
3537  const SCEV *OrigReg;
3538 
3539  WorkItem(size_t LI, int64_t I, const SCEV *R)
3540  : LUIdx(LI), Imm(I), OrigReg(R) {}
3541 
3542  void print(raw_ostream &OS) const;
3543  void dump() const;
3544 };
3545 
3546 }
3547 
3548 void WorkItem::print(raw_ostream &OS) const {
3549  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3550  << " , add offset " << Imm;
3551 }
3552 
3553 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3554 void WorkItem::dump() const {
3555  print(errs()); errs() << '\n';
3556 }
3557 #endif
3558 
3559 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3560 /// distance apart and try to form reuse opportunities between them.
3561 void LSRInstance::GenerateCrossUseConstantOffsets() {
3562  // Group the registers by their value without any added constant offset.
3563  typedef std::map<int64_t, const SCEV *> ImmMapTy;
3564  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3565  RegMapTy Map;
3566  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3568  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3569  I != E; ++I) {
3570  const SCEV *Reg = *I;
3571  int64_t Imm = ExtractImmediate(Reg, SE);
3572  std::pair<RegMapTy::iterator, bool> Pair =
3573  Map.insert(std::make_pair(Reg, ImmMapTy()));
3574  if (Pair.second)
3575  Sequence.push_back(Reg);
3576  Pair.first->second.insert(std::make_pair(Imm, *I));
3577  UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3578  }
3579 
3580  // Now examine each set of registers with the same base value. Build up
3581  // a list of work to do and do the work in a separate step so that we're
3582  // not adding formulae and register counts while we're searching.
3583  SmallVector<WorkItem, 32> WorkItems;
3584  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3586  E = Sequence.end(); I != E; ++I) {
3587  const SCEV *Reg = *I;
3588  const ImmMapTy &Imms = Map.find(Reg)->second;
3589 
3590  // It's not worthwhile looking for reuse if there's only one offset.
3591  if (Imms.size() == 1)
3592  continue;
3593 
3594  DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3595  for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3596  J != JE; ++J)
3597  dbgs() << ' ' << J->first;
3598  dbgs() << '\n');
3599 
3600  // Examine each offset.
3601  for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3602  J != JE; ++J) {
3603  const SCEV *OrigReg = J->second;
3604 
3605  int64_t JImm = J->first;
3606  const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3607 
3608  if (!isa<SCEVConstant>(OrigReg) &&
3609  UsedByIndicesMap[Reg].count() == 1) {
3610  DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3611  continue;
3612  }
3613 
3614  // Conservatively examine offsets between this orig reg a few selected
3615  // other orig regs.
3616  ImmMapTy::const_iterator OtherImms[] = {
3617  Imms.begin(), prior(Imms.end()),
3618  Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
3619  };
3620  for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3621  ImmMapTy::const_iterator M = OtherImms[i];
3622  if (M == J || M == JE) continue;
3623 
3624  // Compute the difference between the two.
3625  int64_t Imm = (uint64_t)JImm - M->first;
3626  for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3627  LUIdx = UsedByIndices.find_next(LUIdx))
3628  // Make a memo of this use, offset, and register tuple.
3629  if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
3630  WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3631  }
3632  }
3633  }
3634 
3635  Map.clear();
3636  Sequence.clear();
3637  UsedByIndicesMap.clear();
3638  UniqueItems.clear();
3639 
3640  // Now iterate through the worklist and add new formulae.
3641  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3642  E = WorkItems.end(); I != E; ++I) {
3643  const WorkItem &WI = *I;
3644  size_t LUIdx = WI.LUIdx;
3645  LSRUse &LU = Uses[LUIdx];
3646  int64_t Imm = WI.Imm;
3647  const SCEV *OrigReg = WI.OrigReg;
3648 
3649  Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3650  const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3651  unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3652 
3653  // TODO: Use a more targeted data structure.
3654  for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3655  const Formula &F = LU.Formulae[L];
3656  // Use the immediate in the scaled register.
3657  if (F.ScaledReg == OrigReg) {
3658  int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3659  // Don't create 50 + reg(-50).
3660  if (F.referencesReg(SE.getSCEV(
3661  ConstantInt::get(IntTy, -(uint64_t)Offset))))
3662  continue;
3663  Formula NewF = F;
3664  NewF.BaseOffset = Offset;
3665  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3666  NewF))
3667  continue;
3668  NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3669 
3670  // If the new scale is a constant in a register, and adding the constant
3671  // value to the immediate would produce a value closer to zero than the
3672  // immediate itself, then the formula isn't worthwhile.
3673  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3674  if (C->getValue()->isNegative() !=
3675  (NewF.BaseOffset < 0) &&
3676  (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale))
3677  .ule(abs64(NewF.BaseOffset)))
3678  continue;
3679 
3680  // OK, looks good.
3681  (void)InsertFormula(LU, LUIdx, NewF);
3682  } else {
3683  // Use the immediate in a base register.
3684  for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3685  const SCEV *BaseReg = F.BaseRegs[N];
3686  if (BaseReg != OrigReg)
3687  continue;
3688  Formula NewF = F;
3689  NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3690  if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3691  LU.Kind, LU.AccessTy, NewF)) {
3692  if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3693  continue;
3694  NewF = F;
3695  NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3696  }
3697  NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3698 
3699  // If the new formula has a constant in a register, and adding the
3700  // constant value to the immediate would produce a value closer to
3701  // zero than the immediate itself, then the formula isn't worthwhile.
3703  J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3704  J != JE; ++J)
3705  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
3706  if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt(
3707  abs64(NewF.BaseOffset)) &&
3708  (C->getValue()->getValue() +
3709  NewF.BaseOffset).countTrailingZeros() >=
3710  countTrailingZeros<uint64_t>(NewF.BaseOffset))
3711  goto skip_formula;
3712 
3713  // Ok, looks good.
3714  (void)InsertFormula(LU, LUIdx, NewF);
3715  break;
3716  skip_formula:;
3717  }
3718  }
3719  }
3720  }
3721 }
3722 
3723 /// GenerateAllReuseFormulae - Generate formulae for each use.
3724 void
3725 LSRInstance::GenerateAllReuseFormulae() {
3726  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3727  // queries are more precise.
3728  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3729  LSRUse &LU = Uses[LUIdx];
3730  for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3731  GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3732  for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3733  GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3734  }
3735  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3736  LSRUse &LU = Uses[LUIdx];
3737  for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3738  GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3739  for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3740  GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3741  for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3742  GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3743  for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3744  GenerateScales(LU, LUIdx, LU.Formulae[i]);
3745  }
3746  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3747  LSRUse &LU = Uses[LUIdx];
3748  for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3749  GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3750  }
3751 
3752  GenerateCrossUseConstantOffsets();
3753 
3754  DEBUG(dbgs() << "\n"
3755  "After generating reuse formulae:\n";
3756  print_uses(dbgs()));
3757 }
3758 
3759 /// If there are multiple formulae with the same set of registers used
3760 /// by other uses, pick the best one and delete the others.
3761 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3762  DenseSet<const SCEV *> VisitedRegs;
3765 #ifndef NDEBUG
3766  bool ChangedFormulae = false;
3767 #endif
3768 
3769  // Collect the best formula for each unique set of shared registers. This
3770  // is reset for each use.
3771  typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3772  BestFormulaeTy;
3773  BestFormulaeTy BestFormulae;
3774 
3775  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3776  LSRUse &LU = Uses[LUIdx];
3777  DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3778 
3779  bool Any = false;
3780  for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3781  FIdx != NumForms; ++FIdx) {
3782  Formula &F = LU.Formulae[FIdx];
3783 
3784  // Some formulas are instant losers. For example, they may depend on
3785  // nonexistent AddRecs from other loops. These need to be filtered
3786  // immediately, otherwise heuristics could choose them over others leading
3787  // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3788  // avoids the need to recompute this information across formulae using the
3789  // same bad AddRec. Passing LoserRegs is also essential unless we remove
3790  // the corresponding bad register from the Regs set.
3791  Cost CostF;
3792  Regs.clear();
3793  CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
3794  &LoserRegs);
3795  if (CostF.isLoser()) {
3796  // During initial formula generation, undesirable formulae are generated
3797  // by uses within other loops that have some non-trivial address mode or
3798  // use the postinc form of the IV. LSR needs to provide these formulae
3799  // as the basis of rediscovering the desired formula that uses an AddRec
3800  // corresponding to the existing phi. Once all formulae have been
3801  // generated, these initial losers may be pruned.
3802  DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
3803  dbgs() << "\n");
3804  }
3805  else {
3807  for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3808  JE = F.BaseRegs.end(); J != JE; ++J) {
3809  const SCEV *Reg = *J;
3810  if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3811  Key.push_back(Reg);
3812  }
3813  if (F.ScaledReg &&
3814  RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3815  Key.push_back(F.ScaledReg);
3816  // Unstable sort by host order ok, because this is only used for
3817  // uniquifying.
3818  std::sort(Key.begin(), Key.end());
3819 
3820  std::pair<BestFormulaeTy::const_iterator, bool> P =
3821  BestFormulae.insert(std::make_pair(Key, FIdx));
3822  if (P.second)
3823  continue;
3824 
3825  Formula &Best = LU.Formulae[P.first->second];
3826 
3827  Cost CostBest;
3828  Regs.clear();
3829  CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
3830  DT, LU);
3831  if (CostF < CostBest)
3832  std::swap(F, Best);
3833  DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
3834  dbgs() << "\n"
3835  " in favor of formula "; Best.print(dbgs());
3836  dbgs() << '\n');
3837  }
3838 #ifndef NDEBUG
3839  ChangedFormulae = true;
3840 #endif
3841  LU.DeleteFormula(F);
3842  --FIdx;
3843  --NumForms;
3844  Any = true;
3845  }
3846 
3847  // Now that we've filtered out some formulae, recompute the Regs set.
3848  if (Any)
3849  LU.RecomputeRegs(LUIdx, RegUses);
3850 
3851  // Reset this to prepare for the next use.
3852  BestFormulae.clear();
3853  }
3854 
3855  DEBUG(if (ChangedFormulae) {
3856  dbgs() << "\n"
3857  "After filtering out undesirable candidates:\n";
3858  print_uses(dbgs());
3859  });
3860 }
3861 
3862 // This is a rough guess that seems to work fairly well.
3863 static const size_t ComplexityLimit = UINT16_MAX;
3864 
3865 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of
3866 /// solutions the solver might have to consider. It almost never considers
3867 /// this many solutions because it prune the search space, but the pruning
3868 /// isn't always sufficient.
3869 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3870  size_t Power = 1;
3872  E = Uses.end(); I != E; ++I) {
3873  size_t FSize = I->Formulae.size();
3874  if (FSize >= ComplexityLimit) {
3875  Power = ComplexityLimit;
3876  break;
3877  }
3878  Power *= FSize;
3879  if (Power >= ComplexityLimit)
3880  break;
3881  }
3882  return Power;
3883 }
3884 
3885 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3886 /// of the registers of another formula, it won't help reduce register
3887 /// pressure (though it may not necessarily hurt register pressure); remove
3888 /// it to simplify the system.
3889 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3890  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3891  DEBUG(dbgs() << "The search space is too complex.\n");
3892 
3893  DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3894  "which use a superset of registers used by other "
3895  "formulae.\n");
3896 
3897  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3898  LSRUse &LU = Uses[LUIdx];
3899  bool Any = false;
3900  for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3901  Formula &F = LU.Formulae[i];
3902  // Look for a formula with a constant or GV in a register. If the use
3903  // also has a formula with that same value in an immediate field,
3904  // delete the one that uses a register.
3906  I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3907  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3908  Formula NewF = F;
3909  NewF.BaseOffset += C->getValue()->getSExtValue();
3910  NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3911  (I - F.BaseRegs.begin()));
3912  if (LU.HasFormulaWithSameRegs(NewF)) {
3913  DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
3914  LU.DeleteFormula(F);
3915  --i;
3916  --e;
3917  Any = true;
3918  break;
3919  }
3920  } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3921  if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3922  if (!F.BaseGV) {
3923  Formula NewF = F;
3924  NewF.BaseGV = GV;
3925  NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3926  (I - F.BaseRegs.begin()));
3927  if (LU.HasFormulaWithSameRegs(NewF)) {
3928  DEBUG(dbgs() << " Deleting "; F.print(dbgs());
3929  dbgs() << '\n');
3930  LU.DeleteFormula(F);
3931  --i;
3932  --e;
3933  Any = true;
3934  break;
3935  }
3936  }
3937  }
3938  }
3939  }
3940  if (Any)
3941  LU.RecomputeRegs(LUIdx, RegUses);
3942  }
3943 
3944  DEBUG(dbgs() << "After pre-selection:\n";
3945  print_uses(dbgs()));
3946  }
3947 }
3948 
3949 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3950 /// for expressions like A, A+1, A+2, etc., allocate a single register for
3951 /// them.
3952 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3953  if (EstimateSearchSpaceComplexity() < ComplexityLimit)
3954  return;
3955 
3956  DEBUG(dbgs() << "The search space is too complex.\n"
3957  "Narrowing the search space by assuming that uses separated "
3958  "by a constant offset will use the same registers.\n");
3959 
3960  // This is especially useful for unrolled loops.
3961 
3962  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3963  LSRUse &LU = Uses[LUIdx];
3964  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3965  E = LU.Formulae.end(); I != E; ++I) {
3966  const Formula &F = *I;
3967  if (F.BaseOffset == 0 || F.Scale != 0)
3968  continue;
3969 
3970  LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
3971  if (!LUThatHas)
3972  continue;
3973 
3974  if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
3975  LU.Kind, LU.AccessTy))
3976  continue;
3977 
3978  DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
3979 
3980  LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3981 
3982  // Update the relocs to reference the new use.
3984  E = Fixups.end(); I != E; ++I) {
3985  LSRFixup &Fixup = *I;
3986  if (Fixup.LUIdx == LUIdx) {
3987  Fixup.LUIdx = LUThatHas - &Uses.front();
3988  Fixup.Offset += F.BaseOffset;
3989  // Add the new offset to LUThatHas' offset list.
3990  if (LUThatHas->Offsets.back() != Fixup.Offset) {
3991  LUThatHas->Offsets.push_back(Fixup.Offset);
3992  if (Fixup.Offset > LUThatHas->MaxOffset)
3993  LUThatHas->MaxOffset = Fixup.Offset;
3994  if (Fixup.Offset < LUThatHas->MinOffset)
3995  LUThatHas->MinOffset = Fixup.Offset;
3996  }
3997  DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
3998  }
3999  if (Fixup.LUIdx == NumUses-1)
4000  Fixup.LUIdx = LUIdx;
4001  }
4002 
4003  // Delete formulae from the new use which are no longer legal.
4004  bool Any = false;
4005  for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4006  Formula &F = LUThatHas->Formulae[i];
4007  if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4008  LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4009  DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4010  dbgs() << '\n');
4011  LUThatHas->DeleteFormula(F);
4012  --i;
4013  --e;
4014  Any = true;
4015  }
4016  }
4017 
4018  if (Any)
4019  LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4020 
4021  // Delete the old use.
4022  DeleteUse(LU, LUIdx);
4023  --LUIdx;
4024  --NumUses;
4025  break;
4026  }
4027  }
4028 
4029  DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4030 }
4031 
4032 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
4033 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4034 /// we've done more filtering, as it may be able to find more formulae to
4035 /// eliminate.
4036 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4037  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4038  DEBUG(dbgs() << "The search space is too complex.\n");
4039 
4040  DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4041  "undesirable dedicated registers.\n");
4042 
4043  FilterOutUndesirableDedicatedRegisters();
4044 
4045  DEBUG(dbgs() << "After pre-selection:\n";
4046  print_uses(dbgs()));
4047  }
4048 }
4049 
4050 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
4051 /// to be profitable, and then in any use which has any reference to that
4052 /// register, delete all formulae which do not reference that register.
4053 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4054  // With all other options exhausted, loop until the system is simple
4055  // enough to handle.
4057  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4058  // Ok, we have too many of formulae on our hands to conveniently handle.
4059  // Use a rough heuristic to thin out the list.
4060  DEBUG(dbgs() << "The search space is too complex.\n");
4061 
4062  // Pick the register which is used by the most LSRUses, which is likely
4063  // to be a good reuse register candidate.
4064  const SCEV *Best = 0;
4065  unsigned BestNum = 0;
4066  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
4067  I != E; ++I) {
4068  const SCEV *Reg = *I;
4069  if (Taken.count(Reg))
4070  continue;
4071  if (!Best)
4072  Best = Reg;
4073  else {
4074  unsigned Count = RegUses.getUsedByIndices(Reg).count();
4075  if (Count > BestNum) {
4076  Best = Reg;
4077  BestNum = Count;
4078  }
4079  }
4080  }
4081 
4082  DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4083  << " will yield profitable reuse.\n");
4084  Taken.insert(Best);
4085 
4086  // In any use with formulae which references this register, delete formulae
4087  // which don't reference it.
4088  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4089  LSRUse &LU = Uses[LUIdx];
4090  if (!LU.Regs.count(Best)) continue;
4091 
4092  bool Any = false;
4093  for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4094  Formula &F = LU.Formulae[i];
4095  if (!F.referencesReg(Best)) {
4096  DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4097  LU.DeleteFormula(F);
4098  --e;
4099  --i;
4100  Any = true;
4101  assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4102  continue;
4103  }
4104  }
4105 
4106  if (Any)
4107  LU.RecomputeRegs(LUIdx, RegUses);
4108  }
4109 
4110  DEBUG(dbgs() << "After pre-selection:\n";
4111  print_uses(dbgs()));
4112  }
4113 }
4114 
4115 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
4116 /// formulae to choose from, use some rough heuristics to prune down the number
4117 /// of formulae. This keeps the main solver from taking an extraordinary amount
4118 /// of time in some worst-case scenarios.
4119 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4120  NarrowSearchSpaceByDetectingSupersets();
4121  NarrowSearchSpaceByCollapsingUnrolledCode();
4122  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4123  NarrowSearchSpaceByPickingWinnerRegs();
4124 }
4125 
4126 /// SolveRecurse - This is the recursive solver.
4127 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4128  Cost &SolutionCost,
4130  const Cost &CurCost,
4131  const SmallPtrSet<const SCEV *, 16> &CurRegs,
4132  DenseSet<const SCEV *> &VisitedRegs) const {
4133  // Some ideas:
4134  // - prune more:
4135  // - use more aggressive filtering
4136  // - sort the formula so that the most profitable solutions are found first
4137  // - sort the uses too
4138  // - search faster:
4139  // - don't compute a cost, and then compare. compare while computing a cost
4140  // and bail early.
4141  // - track register sets with SmallBitVector
4142 
4143  const LSRUse &LU = Uses[Workspace.size()];
4144 
4145  // If this use references any register that's already a part of the
4146  // in-progress solution, consider it a requirement that a formula must
4147  // reference that register in order to be considered. This prunes out
4148  // unprofitable searching.
4151  E = CurRegs.end(); I != E; ++I)
4152  if (LU.Regs.count(*I))
4153  ReqRegs.insert(*I);
4154 
4156  Cost NewCost;
4157  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
4158  E = LU.Formulae.end(); I != E; ++I) {
4159  const Formula &F = *I;
4160 
4161  // Ignore formulae which do not use any of the required registers.
4162  bool SatisfiedReqReg = true;
4164  JE = ReqRegs.end(); J != JE; ++J) {
4165  const SCEV *Reg = *J;
4166  if ((!F.ScaledReg || F.ScaledReg != Reg) &&
4167  std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
4168  F.BaseRegs.end()) {
4169  SatisfiedReqReg = false;
4170  break;
4171  }
4172  }
4173  if (!SatisfiedReqReg) {
4174  // If none of the formulae satisfied the required registers, then we could
4175  // clear ReqRegs and try again. Currently, we simply give up in this case.
4176  continue;
4177  }
4178 
4179  // Evaluate the cost of the current formula. If it's already worse than
4180  // the current best, prune the search at that point.
4181  NewCost = CurCost;
4182  NewRegs = CurRegs;
4183  NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
4184  LU);
4185  if (NewCost < SolutionCost) {
4186  Workspace.push_back(&F);
4187  if (Workspace.size() != Uses.size()) {
4188  SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4189  NewRegs, VisitedRegs);
4190  if (F.getNumRegs() == 1 && Workspace.size() == 1)
4191  VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4192  } else {
4193  DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4194  dbgs() << ".\n Regs:";
4196  I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
4197  dbgs() << ' ' << **I;
4198  dbgs() << '\n');
4199 
4200  SolutionCost = NewCost;
4201  Solution = Workspace;
4202  }
4203  Workspace.pop_back();
4204  }
4205  }
4206 }
4207 
4208 /// Solve - Choose one formula from each use. Return the results in the given
4209 /// Solution vector.
4210 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4212  Cost SolutionCost;
4213  SolutionCost.Loose();
4214  Cost CurCost;
4216  DenseSet<const SCEV *> VisitedRegs;
4217  Workspace.reserve(Uses.size());
4218 
4219  // SolveRecurse does all the work.
4220  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4221  CurRegs, VisitedRegs);
4222  if (Solution.empty()) {
4223  DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4224  return;
4225  }
4226 
4227  // Ok, we've now made all our decisions.
4228  DEBUG(dbgs() << "\n"
4229  "The chosen solution requires "; SolutionCost.print(dbgs());
4230  dbgs() << ":\n";
4231  for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4232  dbgs() << " ";
4233  Uses[i].print(dbgs());
4234  dbgs() << "\n"
4235  " ";
4236  Solution[i]->print(dbgs());
4237  dbgs() << '\n';
4238  });
4239 
4240  assert(Solution.size() == Uses.size() && "Malformed solution!");
4241 }
4242 
4243 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4244 /// the dominator tree far as we can go while still being dominated by the
4245 /// input positions. This helps canonicalize the insert position, which
4246 /// encourages sharing.
4248 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4249  const SmallVectorImpl<Instruction *> &Inputs)
4250  const {
4251  for (;;) {
4252  const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4253  unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4254 
4255  BasicBlock *IDom;
4256  for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4257  if (!Rung) return IP;
4258  Rung = Rung->getIDom();
4259  if (!Rung) return IP;
4260  IDom = Rung->getBlock();
4261 
4262  // Don't climb into a loop though.
4263  const Loop *IDomLoop = LI.getLoopFor(IDom);
4264  unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4265  if (IDomDepth <= IPLoopDepth &&
4266  (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4267  break;
4268  }
4269 
4270  bool AllDominate = true;
4271  Instruction *BetterPos = 0;
4272  Instruction *Tentative = IDom->getTerminator();
4274  E = Inputs.end(); I != E; ++I) {
4275  Instruction *Inst = *I;
4276  if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4277  AllDominate = false;
4278  break;
4279  }
4280  // Attempt to find an insert position in the middle of the block,
4281  // instead of at the end, so that it can be used for other expansions.
4282  if (IDom == Inst->getParent() &&
4283  (!BetterPos || !DT.dominates(Inst, BetterPos)))
4284  BetterPos = llvm::next(BasicBlock::iterator(Inst));
4285  }
4286  if (!AllDominate)
4287  break;
4288  if (BetterPos)
4289  IP = BetterPos;
4290  else
4291  IP = Tentative;
4292  }
4293 
4294  return IP;
4295 }
4296 
4297 /// AdjustInsertPositionForExpand - Determine an input position which will be
4298 /// dominated by the operands and which will dominate the result.
4300 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4301  const LSRFixup &LF,
4302  const LSRUse &LU,
4303  SCEVExpander &Rewriter) const {
4304  // Collect some instructions which must be dominated by the
4305  // expanding replacement. These must be dominated by any operands that
4306  // will be required in the expansion.
4308  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4309  Inputs.push_back(I);
4310  if (LU.Kind == LSRUse::ICmpZero)
4311  if (Instruction *I =
4312  dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4313  Inputs.push_back(I);
4314  if (LF.PostIncLoops.count(L)) {
4315  if (LF.isUseFullyOutsideLoop(L))
4316  Inputs.push_back(L->getLoopLatch()->getTerminator());
4317  else
4318  Inputs.push_back(IVIncInsertPos);
4319  }
4320  // The expansion must also be dominated by the increment positions of any
4321  // loops it for which it is using post-inc mode.
4322  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4323  E = LF.PostIncLoops.end(); I != E; ++I) {
4324  const Loop *PIL = *I;
4325  if (PIL == L) continue;
4326 
4327  // Be dominated by the loop exit.
4328  SmallVector<BasicBlock *, 4> ExitingBlocks;
4329  PIL->getExitingBlocks(ExitingBlocks);
4330  if (!ExitingBlocks.empty()) {
4331  BasicBlock *BB = ExitingBlocks[0];
4332  for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4333  BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4334  Inputs.push_back(BB->getTerminator());
4335  }
4336  }
4337 
4338  assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4339  && !isa<DbgInfoIntrinsic>(LowestIP) &&
4340  "Insertion point must be a normal instruction");
4341 
4342  // Then, climb up the immediate dominator tree as far as we can go while
4343  // still being dominated by the input positions.
4344  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4345 
4346  // Don't insert instructions before PHI nodes.
4347  while (isa<PHINode>(IP)) ++IP;
4348 
4349  // Ignore landingpad instructions.
4350  while (isa<LandingPadInst>(IP)) ++IP;
4351 
4352  // Ignore debug intrinsics.
4353  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4354 
4355  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4356  // IP consistent across expansions and allows the previously inserted
4357  // instructions to be reused by subsequent expansion.
4358  while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4359 
4360  return IP;
4361 }
4362 
4363 /// Expand - Emit instructions for the leading candidate expression for this
4364 /// LSRUse (this is called "expanding").
4365 Value *LSRInstance::Expand(const LSRFixup &LF,
4366  const Formula &F,
4368  SCEVExpander &Rewriter,
4369  SmallVectorImpl<WeakVH> &DeadInsts) const {
4370  const LSRUse &LU = Uses[LF.LUIdx];
4371  if (LU.RigidFormula)
4372  return LF.OperandValToReplace;
4373 
4374  // Determine an input position which will be dominated by the operands and
4375  // which will dominate the result.
4376  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4377 
4378  // Inform the Rewriter if we have a post-increment use, so that it can
4379  // perform an advantageous expansion.
4380  Rewriter.setPostInc(LF.PostIncLoops);
4381 
4382  // This is the type that the user actually needs.
4383  Type *OpTy = LF.OperandValToReplace->getType();
4384  // This will be the type that we'll initially expand to.
4385  Type *Ty = F.getType();
4386  if (!Ty)
4387  // No type known; just expand directly to the ultimate type.
4388  Ty = OpTy;
4389  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4390  // Expand directly to the ultimate type if it's the right size.
4391  Ty = OpTy;
4392  // This is the type to do integer arithmetic in.
4393  Type *IntTy = SE.getEffectiveSCEVType(Ty);
4394 
4395  // Build up a list of operands to add together to form the full base.
4397 
4398  // Expand the BaseRegs portion.
4399  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4400  E = F.BaseRegs.end(); I != E; ++I) {
4401  const SCEV *Reg = *I;
4402  assert(!Reg->isZero() && "Zero allocated in a base register!");
4403 
4404  // If we're expanding for a post-inc user, make the post-inc adjustment.
4405  PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4407  LF.UserInst, LF.OperandValToReplace,
4408  Loops, SE, DT);
4409 
4410  Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
4411  }
4412 
4413  // Expand the ScaledReg portion.
4414  Value *ICmpScaledV = 0;
4415  if (F.Scale != 0) {
4416  const SCEV *ScaledS = F.ScaledReg;
4417 
4418  // If we're expanding for a post-inc user, make the post-inc adjustment.
4419  PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4420  ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4421  LF.UserInst, LF.OperandValToReplace,
4422  Loops, SE, DT);
4423 
4424  if (LU.Kind == LSRUse::ICmpZero) {
4425  // An interesting way of "folding" with an icmp is to use a negated
4426  // scale, which we'll implement by inserting it into the other operand
4427  // of the icmp.
4428  assert(F.Scale == -1 &&
4429  "The only scale supported by ICmpZero uses is -1!");
4430  ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
4431  } else {
4432  // Otherwise just expand the scaled register and an explicit scale,
4433  // which is expected to be matched as part of the address.
4434 
4435  // Flush the operand list to suppress SCEVExpander hoisting address modes.
4436  if (!Ops.empty() && LU.Kind == LSRUse::Address) {
4437  Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4438  Ops.clear();
4439  Ops.push_back(SE.getUnknown(FullV));
4440  }
4441  ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
4442  ScaledS = SE.getMulExpr(ScaledS,
4443  SE.getConstant(ScaledS->getType(), F.Scale));
4444  Ops.push_back(ScaledS);
4445  }
4446  }
4447 
4448  // Expand the GV portion.
4449  if (F.BaseGV) {
4450  // Flush the operand list to suppress SCEVExpander hoisting.
4451  if (!Ops.empty()) {
4452  Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4453  Ops.clear();
4454  Ops.push_back(SE.getUnknown(FullV));
4455  }
4456  Ops.push_back(SE.getUnknown(F.BaseGV));
4457  }
4458 
4459  // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4460  // unfolded offsets. LSR assumes they both live next to their uses.
4461  if (!Ops.empty()) {
4462  Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4463  Ops.clear();
4464  Ops.push_back(SE.getUnknown(FullV));
4465  }
4466 
4467  // Expand the immediate portion.
4468  int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4469  if (Offset != 0) {
4470  if (LU.Kind == LSRUse::ICmpZero) {
4471  // The other interesting way of "folding" with an ICmpZero is to use a
4472  // negated immediate.
4473  if (!ICmpScaledV)
4474  ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4475  else {
4476  Ops.push_back(SE.getUnknown(ICmpScaledV));
4477  ICmpScaledV = ConstantInt::get(IntTy, Offset);
4478  }
4479  } else {
4480  // Just add the immediate values. These again are expected to be matched
4481  // as part of the address.
4482  Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4483  }
4484  }
4485 
4486  // Expand the unfolded offset portion.
4487  int64_t UnfoldedOffset = F.UnfoldedOffset;
4488  if (UnfoldedOffset != 0) {
4489  // Just add the immediate values.
4490  Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4491  UnfoldedOffset)));
4492  }
4493 
4494  // Emit instructions summing all the operands.
4495  const SCEV *FullS = Ops.empty() ?
4496  SE.getConstant(IntTy, 0) :
4497  SE.getAddExpr(Ops);
4498  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4499 
4500  // We're done expanding now, so reset the rewriter.
4501  Rewriter.clearPostInc();
4502 
4503  // An ICmpZero Formula represents an ICmp which we're handling as a
4504  // comparison against zero. Now that we've expanded an expression for that
4505  // form, update the ICmp's other operand.
4506  if (LU.Kind == LSRUse::ICmpZero) {
4507  ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4508  DeadInsts.push_back(CI->getOperand(1));
4509  assert(!F.BaseGV && "ICmp does not support folding a global value and "
4510  "a scale at the same time!");
4511  if (F.Scale == -1) {
4512  if (ICmpScaledV->getType() != OpTy) {
4513  Instruction *Cast =
4514  CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4515  OpTy, false),
4516  ICmpScaledV, OpTy, "tmp", CI);
4517  ICmpScaledV = Cast;
4518  }
4519  CI->setOperand(1, ICmpScaledV);
4520  } else {
4521  assert(F.Scale == 0 &&
4522  "ICmp does not support folding a global value and "
4523  "a scale at the same time!");
4524  Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4525  -(uint64_t)Offset);
4526  if (C->getType() != OpTy)
4527  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4528  OpTy, false),
4529  C, OpTy);
4530 
4531  CI->setOperand(1, C);
4532  }
4533  }
4534 
4535  return FullV;
4536 }
4537 
4538 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4539 /// of their operands effectively happens in their predecessor blocks, so the
4540 /// expression may need to be expanded in multiple places.
4541 void LSRInstance::RewriteForPHI(PHINode *PN,
4542  const LSRFixup &LF,
4543  const Formula &F,
4544  SCEVExpander &Rewriter,
4545  SmallVectorImpl<WeakVH> &DeadInsts,
4546  Pass *P) const {
4548  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4549  if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4550  BasicBlock *BB = PN->getIncomingBlock(i);
4551 
4552  // If this is a critical edge, split the edge so that we do not insert
4553  // the code on all predecessor/successor paths. We do this unless this
4554  // is the canonical backedge for this loop, which complicates post-inc
4555  // users.
4556  if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4557  !isa<IndirectBrInst>(BB->getTerminator())) {
4558  BasicBlock *Parent = PN->getParent();
4559  Loop *PNLoop = LI.getLoopFor(Parent);
4560  if (!PNLoop || Parent != PNLoop->getHeader()) {
4561  // Split the critical edge.
4562  BasicBlock *NewBB = 0;
4563  if (!Parent->isLandingPad()) {
4564  NewBB = SplitCriticalEdge(BB, Parent, P,
4565  /*MergeIdenticalEdges=*/true,
4566  /*DontDeleteUselessPhis=*/true);
4567  } else {
4569  SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
4570  NewBB = NewBBs[0];
4571  }
4572  // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4573  // phi predecessors are identical. The simple thing to do is skip
4574  // splitting in this case rather than complicate the API.
4575  if (NewBB) {
4576  // If PN is outside of the loop and BB is in the loop, we want to
4577  // move the block to be immediately before the PHI block, not
4578  // immediately after BB.
4579  if (L->contains(BB) && !L->contains(PN))
4580  NewBB->moveBefore(PN->getParent());
4581 
4582  // Splitting the edge can reduce the number of PHI entries we have.
4583  e = PN->getNumIncomingValues();
4584  BB = NewBB;
4585  i = PN->getBasicBlockIndex(BB);
4586  }
4587  }
4588  }
4589 
4590  std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4591  Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
4592  if (!Pair.second)
4593  PN->setIncomingValue(i, Pair.first->second);
4594  else {
4595  Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
4596 
4597  // If this is reuse-by-noop-cast, insert the noop cast.
4598  Type *OpTy = LF.OperandValToReplace->getType();
4599  if (FullV->getType() != OpTy)
4600  FullV =
4601  CastInst::Create(CastInst::getCastOpcode(FullV, false,
4602  OpTy, false),
4603  FullV, LF.OperandValToReplace->getType(),
4604  "tmp", BB->getTerminator());
4605 
4606  PN->setIncomingValue(i, FullV);
4607  Pair.first->second = FullV;
4608  }
4609  }
4610 }
4611 
4612 /// Rewrite - Emit instructions for the leading candidate expression for this
4613 /// LSRUse (this is called "expanding"), and update the UserInst to reference
4614 /// the newly expanded value.
4615 void LSRInstance::Rewrite(const LSRFixup &LF,
4616  const Formula &F,
4617  SCEVExpander &Rewriter,
4618  SmallVectorImpl<WeakVH> &DeadInsts,
4619  Pass *P) const {
4620  // First, find an insertion point that dominates UserInst. For PHI nodes,
4621  // find the nearest block which dominates all the relevant uses.
4622  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4623  RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
4624  } else {
4625  Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
4626 
4627  // If this is reuse-by-noop-cast, insert the noop cast.
4628  Type *OpTy = LF.OperandValToReplace->getType();
4629  if (FullV->getType() != OpTy) {
4630  Instruction *Cast =
4631  CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4632  FullV, OpTy, "tmp", LF.UserInst);
4633  FullV = Cast;
4634  }
4635 
4636  // Update the user. ICmpZero is handled specially here (for now) because
4637  // Expand may have updated one of the operands of the icmp already, and
4638  // its new value may happen to be equal to LF.OperandValToReplace, in
4639  // which case doing replaceUsesOfWith leads to replacing both operands
4640  // with the same value. TODO: Reorganize this.
4641  if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4642  LF.UserInst->setOperand(0, FullV);
4643  else
4644  LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4645  }
4646 
4647  DeadInsts.push_back(LF.OperandValToReplace);
4648 }
4649 
4650 /// ImplementSolution - Rewrite all the fixup locations with new values,
4651 /// following the chosen solution.
4652 void
4653 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4654  Pass *P) {
4655  // Keep track of instructions we may have made dead, so that
4656  // we can remove them after we are done working.
4657  SmallVector<WeakVH, 16> DeadInsts;
4658 
4659  SCEVExpander Rewriter(SE, "lsr");
4660 #ifndef NDEBUG
4661  Rewriter.setDebugType(DEBUG_TYPE);
4662 #endif
4663  Rewriter.disableCanonicalMode();
4664  Rewriter.enableLSRMode();
4665  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4666 
4667  // Mark phi nodes that terminate chains so the expander tries to reuse them.
4668  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4669  ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4670  if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
4671  Rewriter.setChainedPhi(PN);
4672  }
4673 
4674  // Expand the new value definitions and update the users.
4676  E = Fixups.end(); I != E; ++I) {
4677  const LSRFixup &Fixup = *I;
4678 
4679  Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
4680 
4681  Changed = true;
4682  }
4683 
4684  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4685  ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4686  GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4687  Changed = true;
4688  }
4689  // Clean up after ourselves. This must be done before deleting any
4690  // instructions.
4691  Rewriter.clear();
4692 
4693  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4694 }
4695 
4696 LSRInstance::LSRInstance(Loop *L, Pass *P)
4697  : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()),
4698  DT(P->getAnalysis<DominatorTree>()), LI(P->getAnalysis<LoopInfo>()),
4699  TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false),
4700  IVIncInsertPos(0) {
4701  // If LoopSimplify form is not available, stay out of trouble.
4702  if (!L->isLoopSimplifyForm())
4703  return;
4704 
4705  // If there's no interesting work to be done, bail early.
4706  if (IU.empty()) return;
4707 
4708  // If there's too much analysis to be done, bail early. We won't be able to
4709  // model the problem anyway.
4710  unsigned NumUsers = 0;
4711  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
4712  if (++NumUsers > MaxIVUsers) {
4713  DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
4714  << "\n");
4715  return;
4716  }
4717  }
4718 
4719 #ifndef NDEBUG
4720  // All dominating loops must have preheaders, or SCEVExpander may not be able
4721  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4722  //
4723  // IVUsers analysis should only create users that are dominated by simple loop
4724  // headers. Since this loop should dominate all of its users, its user list
4725  // should be empty if this loop itself is not within a simple loop nest.
4726  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4727  Rung; Rung = Rung->getIDom()) {
4728  BasicBlock *BB = Rung->getBlock();
4729  const Loop *DomLoop = LI.getLoopFor(BB);
4730  if (DomLoop && DomLoop->getHeader() == BB) {
4731  assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4732  }
4733  }
4734 #endif // DEBUG
4735 
4736  DEBUG(dbgs() << "\nLSR on loop ";
4737  WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
4738  dbgs() << ":\n");
4739 
4740  // First, perform some low-level loop optimizations.
4741  OptimizeShadowIV();
4742  OptimizeLoopTermCond();
4743 
4744  // If loop preparation eliminates all interesting IV users, bail.
4745  if (IU.empty()) return;
4746 
4747  // Skip nested loops until we can model them better with formulae.
4748  if (!L->empty()) {
4749  DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4750  return;
4751  }
4752 
4753  // Start collecting data and preparing for the solver.
4754  CollectChains();
4755  CollectInterestingTypesAndFactors();
4756  CollectFixupsAndInitialFormulae();
4757  CollectLoopInvariantFixupsAndFormulae();
4758 
4759  assert(!Uses.empty() && "IVUsers reported at least one use");
4760  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4761  print_uses(dbgs()));
4762 
4763  // Now use the reuse data to generate a bunch of interesting ways
4764  // to formulate the values needed for the uses.
4765  GenerateAllReuseFormulae();
4766 
4767  FilterOutUndesirableDedicatedRegisters();
4768  NarrowSearchSpaceUsingHeuristics();
4769 
4771  Solve(Solution);
4772 
4773  // Release memory that is no longer needed.
4774  Factors.clear();
4775  Types.clear();
4776  RegUses.clear();
4777 
4778  if (Solution.empty())
4779  return;
4780 
4781 #ifndef NDEBUG
4782  // Formulae should be legal.
4783  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end();
4784  I != E; ++I) {
4785  const LSRUse &LU = *I;
4786  for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4787  JE = LU.Formulae.end();
4788  J != JE; ++J)
4789  assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4790  *J) && "Illegal formula generated!");
4791  };
4792 #endif
4793 
4794  // Now that we've decided what we want, make it so.
4795  ImplementSolution(Solution, P);
4796 }
4797 
4798 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4799  if (Factors.empty() && Types.empty()) return;
4800 
4801  OS << "LSR has identified the following interesting factors and types: ";
4802  bool First = true;
4803 
4805  I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4806  if (!First) OS << ", ";
4807  First = false;
4808  OS << '*' << *I;
4809  }
4810 
4812  I = Types.begin(), E = Types.end(); I != E; ++I) {
4813  if (!First) OS << ", ";
4814  First = false;
4815  OS << '(' << **I << ')';
4816  }
4817  OS << '\n';
4818 }
4819 
4820 void LSRInstance::print_fixups(raw_ostream &OS) const {
4821  OS << "LSR is examining the following fixup sites:\n";
4823  E = Fixups.end(); I != E; ++I) {
4824  dbgs() << " ";
4825  I->print(OS);
4826  OS << '\n';
4827  }
4828 }
4829 
4830 void LSRInstance::print_uses(raw_ostream &OS) const {
4831  OS << "LSR is examining the following uses:\n";
4833  E = Uses.end(); I != E; ++I) {
4834  const LSRUse &LU = *I;
4835  dbgs() << " ";
4836  LU.print(OS);
4837  OS << '\n';
4838  for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4839  JE = LU.Formulae.end(); J != JE; ++J) {
4840  OS << " ";
4841  J->print(OS);
4842  OS << '\n';
4843  }
4844  }
4845 }
4846 
4847 void LSRInstance::print(raw_ostream &OS) const {
4848  print_factors_and_types(OS);
4849  print_fixups(OS);
4850  print_uses(OS);
4851 }
4852 
4853 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4854 void LSRInstance::dump() const {
4855  print(errs()); errs() << '\n';
4856 }
4857 #endif
4858 
4859 namespace {
4860 
4861 class LoopStrengthReduce : public LoopPass {
4862 public:
4863  static char ID; // Pass ID, replacement for typeid
4864  LoopStrengthReduce();
4865 
4866 private:
4867  bool runOnLoop(Loop *L, LPPassManager &LPM);
4868  void getAnalysisUsage(AnalysisUsage &AU) const;
4869 };
4870 
4871 }
4872 
4873 char LoopStrengthReduce::ID = 0;
4874 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4875  "Loop Strength Reduction", false, false)
4881 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4882 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4883  "Loop Strength Reduction", false, false)
4884 
4885 
4887  return new LoopStrengthReduce();
4888 }
4889 
4890 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
4892 }
4893 
4894 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4895  // We split critical edges, so we change the CFG. However, we do update
4896  // many analyses if they are around.
4898 
4899  AU.addRequired<LoopInfo>();
4900  AU.addPreserved<LoopInfo>();
4902  AU.addRequired<DominatorTree>();
4906  // Requiring LoopSimplify a second time here prevents IVUsers from running
4907  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4909  AU.addRequired<IVUsers>();
4910  AU.addPreserved<IVUsers>();
4912 }
4913 
4914 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4915  bool Changed = false;
4916 
4917  // Run the main LSR transformation.
4918  Changed |= LSRInstance(L, this).getChanged();
4919 
4920  // Remove any extra phis created by processing inner loops.
4921  Changed |= DeleteDeadPHIs(L->getHeader());
4922  if (EnablePhiElim && L->isLoopSimplifyForm()) {
4923  SmallVector<WeakVH, 16> DeadInsts;
4924  SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
4925 #ifndef NDEBUG
4926  Rewriter.setDebugType(DEBUG_TYPE);
4927 #endif
4928  unsigned numFolded =
4929  Rewriter.replaceCongruentIVs(L, &getAnalysis<DominatorTree>(),
4930  DeadInsts,
4931  &getAnalysis<TargetTransformInfo>());
4932  if (numFolded) {
4933  Changed = true;
4935  DeleteDeadPHIs(L->getHeader());
4936  }
4937  }
4938  return Changed;
4939 }
use_iterator use_end()
Definition: Value.h:152
DomTreeNode * getNode(BasicBlock *BB) const
Definition: Dominators.h:844
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
AnalysisUsage & addPreserved()
raw_ostream & errs()
void reserve(unsigned N)
Definition: SmallVector.h:425
APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const
Get the absolute value;.
Definition: APInt.h:1521
static PassRegistry * getPassRegistry()
const SCEV * TransformForPostIncUse(TransformKind Kind, const SCEV *S, Instruction *User, Value *OperandValToReplace, PostIncLoopSet &Loops, ScalarEvolution &SE, DominatorTree &DT)
void SetCurrentDebugLocation(const DebugLoc &L)
Set location information used by debugging information.
Definition: IRBuilder.h:118
static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE)
isExistingPhi - Return true if this AddRec is already a phi in its loop.
Pass * createLoopStrengthReducePass()
const SCEV * getConstant(ConstantInt *V)
static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind, Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale)
int abs(int j);
LLVMContext & getContext() const
bool isZero() const
BasicBlock * SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P=0, bool MergeIdenticalEdges=false, bool DontDeleteUselessPHIs=false, bool SplitLandingPads=false)
static const size_t ComplexityLimit
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
virtual void getAnalysisUsage(AnalysisUsage &) const
Definition: Pass.cpp:75
static PointerType * get(Type *ElementType, unsigned AddressSpace)
Definition: Type.cpp:730
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
unsigned MaxOffset
static const unsigned MaxIVUsers
bool properlyDominates(const SCEV *S, const BasicBlock *BB)
bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:818
void operator<(const Optional< T > &X, const Optional< U > &Y)
Poison comparison between two Optional objects. Clients needs to explicitly compare the underlying va...
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
iterator insert(iterator I, const T &Elt)
Definition: SmallVector.h:537
void initializeLoopStrengthReducePass(PassRegistry &)
void setDebugType(const char *s)
const_iterator begin(StringRef path)
Get begin iterator over path.
Definition: Path.cpp:173
int getFPMantissaWidth() const
Definition: Type.cpp:142
bool isLoopInvariant(const SCEV *S, const Loop *L)
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
F(f)
FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:657
iv Induction Variable Users
Definition: IVUsers.cpp:39
virtual bool isLegalAddImmediate(int64_t Imm) const
bool isTrueWhenEqual(CondCode Cond)
Definition: ISDOpcodes.h:765
iterator end()
Get an iterator to the end of the SetVector.
Definition: SetVector.h:79
op_iterator op_begin()
Definition: User.h:116
BlockT * getHeader() const
Definition: LoopInfo.h:95
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
const SCEV * getStart() const
BlockT * getLoopLatch() const
Definition: LoopInfoImpl.h:154
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:322
DomTreeNodeBase< NodeT > * getIDom() const
Definition: Dominators.h:83
void WriteAsOperand(raw_ostream &, const Value *, bool PrintTy=true, const Module *Context=0)
Definition: AsmWriter.cpp:1179
#define DEBUG_TYPE
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
Hexagon Hardware Loops
bool isUnconditional() const
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
void clearPostInc()
clearPostInc - Disable all post-inc expansion.
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define llvm_unreachable(msg)
Definition: Use.h:60
static User::op_iterator findIVOperand(User::op_iterator OI, User::op_iterator OE, Loop *L, ScalarEvolution &SE)
const SCEV *const * op_iterator
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Definition: LoopInfoImpl.h:33
uint64_t getTypeSizeInBits(Type *Ty) const
int find_first() const
int64_t abs64(int64_t x)
Definition: MathExtras.h:579
void setName(const Twine &Name)
Definition: Value.cpp:175
static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, const LSRUse &LU, const Formula &F)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
Instruction * clone() const
op_iterator op_begin() const
#define G(x, y, z)
Definition: MD5.cpp:52
bool isLoopSimplifyForm() const
Definition: LoopInfo.cpp:207
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
loop Loop Strength false
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:102
void clear()
Definition: SmallSet.h:97
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:250
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
virtual bool isTypeLegal(Type *Ty) const
Is this type legal.
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:49
static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, unsigned len)
General addition of 64-bit integer arrays.
Definition: APInt.cpp:237
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition: SetVector.h:69
AnalysisUsage & addPreservedID(const void *ID)
bool insert(const T &V)
Definition: SmallSet.h:59
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU, const Formula &F)
Type * getEffectiveSCEVType(Type *Ty) const
Sequence
A sequence of states that a pointer may go through in which an objc_retain and objc_release are actua...
unsigned getMinSignedBits() const
Get the minimum bit size for this signed APInt.
Definition: APInt.h:1295
This class represents a truncation of integer types.
const SCEV * getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L, SCEV::NoWrapFlags Flags)
NodeT * getBlock() const
Definition: Dominators.h:82
unsigned getNumIncomingValues() const
void replaceUsesOfWith(Value *From, Value *To)
Definition: User.cpp:26
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
static bool isCompatibleIVType(Value *LVal, Value *RVal)
#define P(N)
#define true
Definition: ConvertUTF.c:65
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
friend const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
bool isSCEVable(Type *Ty) const
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
void setUser(Instruction *NewUser)
setUser - Assign a new user instruction for this use.
Definition: IVUsers.h:49
* if(!EatIfPresent(lltok::kw_thread_local)) return false
BlockT * getLoopPreheader() const
Definition: LoopInfoImpl.h:106
static bool isAlwaysFoldable(const TargetTransformInfo &TTI, LSRUse::KindType Kind, Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg)
static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
static void DoInitialMatch(const SCEV *S, Loop *L, SmallVectorImpl< const SCEV * > &Good, SmallVectorImpl< const SCEV * > &Bad, ScalarEvolution &SE)
DoInitialMatch - Recursion helper for InitialMatch.
Type * getType() const
LLVM Constant Representation.
Definition: Constant.h:41
const SCEV * getOperand(unsigned i) const
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1318
Normalize - Normalize according to the given loops.
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:266
static cl::opt< bool > EnablePhiElim("enable-lsr-phielim", cl::Hidden, cl::init(true), cl::desc("Enable LSR phi elimination"))
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
op_iterator op_end()
Definition: User.h:118
BasicBlock * getIncomingBlock(unsigned i) const
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
bool contains(const LoopT *L) const
Definition: LoopInfo.h:104
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang","erlang-compatible garbage collector")
Represent an integer comparison operator.
Definition: Instructions.h:911
const SCEV * getMinusSCEV(const SCEV *LHS, const SCEV *RHS, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
iterator insert(iterator where, NodeTy *New)
Definition: ilist.h:412
Value * expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I)
int find_next(unsigned Prev) const
for(unsigned i=0, e=MI->getNumOperands();i!=e;++i)
static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE)
APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const
Signed division function for APInt.
Definition: APInt.cpp:1879
Value * getOperand(unsigned i) const
Definition: User.h:88
static Type * getAccessType(const Instruction *Inst)
getAccessType - Return the type of the memory being accessed.
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallPtrSet.h:74
static Constant * getAllOnesValue(Type *Ty)
Get the all ones value.
Definition: Constants.cpp:163
bool dominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:801
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
bool isPointerTy() const
Definition: Type.h:220
iterator erase(iterator I)
Definition: SmallVector.h:478
static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE)
unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, SmallVectorImpl< WeakVH > &DeadInsts, const TargetTransformInfo *TTI=NULL)
APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const
Function for signed remainder operation.
Definition: APInt.cpp:1927
char & LoopSimplifyID
void setChainedPhi(PHINode *PN)
SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
Definition: SmallPtrSet.h:174
static const SCEV * getExactSDiv(const SCEV *LHS, const SCEV *RHS, ScalarEvolution &SE, bool IgnoreSignificantBits=false)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
static IntegerType * get(LLVMContext &C, unsigned NumBits)
Get or create an IntegerType instance.
Definition: Type.cpp:305
bool count(const ValueT &V) const
Definition: DenseSet.h:45
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:218
void clear()
clear - Clear all bits.
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:117
Class for constant integers.
Definition: Constants.h:51
static bool isHighCostExpansion(const SCEV *S, SmallPtrSet< const SCEV *, 8 > &Processed, ScalarEvolution &SE)
Value * getIncomingValue(unsigned i) const
static cl::opt< bool > StressIVChain("stress-ivchain", cl::Hidden, cl::init(false), cl::desc("Stress test LSR IV chains"))
friend const_iterator begin(StringRef path)
Get begin iterator over path.
Definition: Path.cpp:173
AnalysisUsage & addRequiredID(const void *ID)
Definition: Pass.cpp:262
Value * getOperandValToReplace() const
Definition: IVUsers.h:55
Type * getType() const
Definition: Value.h:111
const SCEV * getNoopOrSignExtend(const SCEV *V, Type *Ty)
void setIVIncInsertPos(const Loop *L, Instruction *Pos)
setIVIncInsertPos - Set the current IV increment loop and position.
static Value * getWideOperand(Value *Oper)
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition: APInt.h:335
ConstantInt * getValue() const
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
bool isAllOnesValue() const
Definition: Constants.cpp:88
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
size_t size() const
size - Returns the number of bits in this bitvector.
Class for arbitrary precision integers.
Definition: APInt.h:75
const SCEV * getSignExtendExpr(const SCEV *Op, Type *Ty)
Value * getIncomingValueForBlock(const BasicBlock *BB) const
static bool isAddressUse(Instruction *Inst, Value *OperandVal)
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
loop Loop Strength Reduction
virtual bool runOnLoop(Loop *L, LPPassManager &LPM)=0
Virtual Register Rewriter
Definition: VirtRegMap.cpp:185
use_iterator use_begin()
Definition: Value.h:150
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:340
virtual bool isLegalICmpImmediate(int64_t Imm) const
Value * getCondition() const
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition: APInt.h:371
virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale) const
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool isLandingPad() const
Return true if this basic block is a landing pad.
Definition: BasicBlock.cpp:360
bool hasOneUse() const
Definition: Value.h:161
static const SCEV * getExprBase(const SCEV *S)
INITIALIZE_PASS_BEGIN(LoopStrengthReduce,"loop-reduce","Loop Strength Reduction", false, false) INITIALIZE_PASS_END(LoopStrengthReduce
This class represents a cast unsigned integer to floating point.
iterator end() const
Definition: SmallPtrSet.h:279
void resize(unsigned N)
Definition: SmallVector.h:401
BasicBlock * findNearestCommonDominator(BasicBlock *A, BasicBlock *B)
Definition: Dominators.h:828
const Loop * getLoop() const
static bool isProfitableChain(IVChain &Chain, SmallPtrSet< Instruction *, 4 > &Users, ScalarEvolution &SE, const TargetTransformInfo &TTI)
void transformToPostInc(const Loop *L)
Definition: IVUsers.cpp:326
loop reduce
static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, Value *Operand, const TargetTransformInfo &TTI)
Return true if the IVInc can be folded into an addressing mode.
const SCEV * getBackedgeTakenCount(const Loop *L)
bool use_empty() const
Definition: Value.h:149
This class represents a cast from signed integer to floating point.
static bool DeleteTriviallyDeadInstructions(SmallVectorImpl< WeakVH > &DeadInsts)
unsigned getSCEVType() const
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
const SCEV * getSCEV(Value *V)
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
static GlobalValue * ExtractSymbol(const SCEV *&S, ScalarEvolution &SE)
iterator begin() const
Definition: SmallPtrSet.h:276
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const
static const SCEV * CollectSubexprs(const SCEV *S, const SCEVConstant *C, SmallVectorImpl< const SCEV * > &Ops, const Loop *L, ScalarEvolution &SE, unsigned Depth=0)
bool DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI=0)
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
bool isInsertedInstruction(Instruction *I) const
bool empty() const
Definition: LoopInfo.h:134
#define DEBUG(X)
Definition: Debug.h:97
const SCEV * getUnknown(Value *V)
inline cost
op_iterator op_end() const
virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale) const
Return the cost of the scaling factor used in the addressing mode represented by AM for this target...
void SplitLandingPadPredecessors(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix, const char *Suffix2, Pass *P, SmallVectorImpl< BasicBlock * > &NewBBs)
bool hasComputableLoopEvolution(const SCEV *S, const Loop *L)
void setIncomingValue(unsigned i, Value *V)
void setPostInc(const PostIncLoopSet &L)
int64_t getSExtValue() const
Return the sign extended value.
Definition: Constants.h:124
bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE)
unsigned getLoopDepth() const
Definition: LoopInfo.h:88
const SCEV * getMulExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap)
int getBasicBlockIndex(const BasicBlock *BB) const
void moveBefore(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it into the function that MovePos lives ...
Definition: BasicBlock.cpp:106
const BasicBlock * getParent() const
Definition: Instruction.h:52
bool isOne() const
Determine if the value is one.
Definition: Constants.h:168
static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE)
const SCEV * getAnyExtendExpr(const SCEV *Op, Type *Ty)