LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
CFG.cpp
Go to the documentation of this file.
1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions performs analyses on basic blocks, and instructions
11 // contained within basic blocks.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/CFG.h"
16 
17 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 
21 using namespace llvm;
22 
23 /// FindFunctionBackedges - Analyze the specified function to find all of the
24 /// loop backedges in the function and return them. This is a relatively cheap
25 /// (compared to computing dominators and loop info) analysis.
26 ///
27 /// The output is added to Result, as pairs of <from,to> edge info.
29  SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
30  const BasicBlock *BB = &F.getEntryBlock();
31  if (succ_begin(BB) == succ_end(BB))
32  return;
33 
37 
38  Visited.insert(BB);
39  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
40  InStack.insert(BB);
41  do {
42  std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back();
43  const BasicBlock *ParentBB = Top.first;
44  succ_const_iterator &I = Top.second;
45 
46  bool FoundNew = false;
47  while (I != succ_end(ParentBB)) {
48  BB = *I++;
49  if (Visited.insert(BB)) {
50  FoundNew = true;
51  break;
52  }
53  // Successor is in VisitStack, it's a back edge.
54  if (InStack.count(BB))
55  Result.push_back(std::make_pair(ParentBB, BB));
56  }
57 
58  if (FoundNew) {
59  // Go down one level if there is a unvisited successor.
60  InStack.insert(BB);
61  VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
62  } else {
63  // Go up one level.
64  InStack.erase(VisitStack.pop_back_val().first);
65  }
66  } while (!VisitStack.empty());
67 }
68 
69 /// GetSuccessorNumber - Search for the specified successor of basic block BB
70 /// and return its position in the terminator instruction's list of
71 /// successors. It is an error to call this with a block that is not a
72 /// successor.
74  TerminatorInst *Term = BB->getTerminator();
75 #ifndef NDEBUG
76  unsigned e = Term->getNumSuccessors();
77 #endif
78  for (unsigned i = 0; ; ++i) {
79  assert(i != e && "Didn't find edge?");
80  if (Term->getSuccessor(i) == Succ)
81  return i;
82  }
83 }
84 
85 /// isCriticalEdge - Return true if the specified edge is a critical edge.
86 /// Critical edges are edges from a block with multiple successors to a block
87 /// with multiple predecessors.
88 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
89  bool AllowIdenticalEdges) {
90  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
91  if (TI->getNumSuccessors() == 1) return false;
92 
93  const BasicBlock *Dest = TI->getSuccessor(SuccNum);
94  const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
95 
96  // If there is more than one predecessor, this is a critical edge...
97  assert(I != E && "No preds, but we have an edge to the block?");
98  const BasicBlock *FirstPred = *I;
99  ++I; // Skip one edge due to the incoming arc from TI.
100  if (!AllowIdenticalEdges)
101  return I != E;
102 
103  // If AllowIdenticalEdges is true, then we allow this edge to be considered
104  // non-critical iff all preds come from TI's block.
105  while (I != E) {
106  const BasicBlock *P = *I;
107  if (P != FirstPred)
108  return true;
109  // Note: leave this as is until no one ever compiles with either gcc 4.0.1
110  // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
111  E = pred_end(P);
112  ++I;
113  }
114  return false;
115 }
116 
117 // LoopInfo contains a mapping from basic block to the innermost loop. Find
118 // the outermost loop in the loop nest that contains BB.
119 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
120  const Loop *L = LI->getLoopFor(BB);
121  if (L) {
122  while (const Loop *Parent = L->getParentLoop())
123  L = Parent;
124  }
125  return L;
126 }
127 
128 // True if there is a loop which contains both BB1 and BB2.
129 static bool loopContainsBoth(const LoopInfo *LI,
130  const BasicBlock *BB1, const BasicBlock *BB2) {
131  const Loop *L1 = getOutermostLoop(LI, BB1);
132  const Loop *L2 = getOutermostLoop(LI, BB2);
133  return L1 != NULL && L1 == L2;
134 }
135 
137  BasicBlock *StopBB,
138  const DominatorTree *DT,
139  const LoopInfo *LI) {
140  // When the stop block is unreachable, it's dominated from everywhere,
141  // regardless of whether there's a path between the two blocks.
142  if (DT && !DT->isReachableFromEntry(StopBB))
143  DT = 0;
144 
145  // Limit the number of blocks we visit. The goal is to avoid run-away compile
146  // times on large CFGs without hampering sensible code. Arbitrarily chosen.
147  unsigned Limit = 32;
149  do {
150  BasicBlock *BB = Worklist.pop_back_val();
151  if (!Visited.insert(BB))
152  continue;
153  if (BB == StopBB)
154  return true;
155  if (DT && DT->dominates(BB, StopBB))
156  return true;
157  if (LI && loopContainsBoth(LI, BB, StopBB))
158  return true;
159 
160  if (!--Limit) {
161  // We haven't been able to prove it one way or the other. Conservatively
162  // answer true -- that there is potentially a path.
163  return true;
164  }
165 
166  if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : 0) {
167  // All blocks in a single loop are reachable from all other blocks. From
168  // any of these blocks, we can skip directly to the exits of the loop,
169  // ignoring any other blocks inside the loop body.
170  Outer->getExitBlocks(Worklist);
171  } else {
172  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
173  Worklist.push_back(*I);
174  }
175  } while (!Worklist.empty());
176 
177  // We have exhausted all possible paths and are certain that 'To' can not be
178  // reached from 'From'.
179  return false;
180 }
181 
183  const DominatorTree *DT, const LoopInfo *LI) {
184  assert(A->getParent() == B->getParent() &&
185  "This analysis is function-local!");
186 
188  Worklist.push_back(const_cast<BasicBlock*>(A));
189 
190  return isPotentiallyReachableInner(Worklist, const_cast<BasicBlock*>(B),
191  DT, LI);
192 }
193 
195  const DominatorTree *DT, const LoopInfo *LI) {
196  assert(A->getParent()->getParent() == B->getParent()->getParent() &&
197  "This analysis is function-local!");
198 
200 
201  if (A->getParent() == B->getParent()) {
202  // The same block case is special because it's the only time we're looking
203  // within a single block to see which instruction comes first. Once we
204  // start looking at multiple blocks, the first instruction of the block is
205  // reachable, so we only need to determine reachability between whole
206  // blocks.
207  BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
208 
209  // If the block is in a loop then we can reach any instruction in the block
210  // from any other instruction in the block by going around a backedge.
211  if (LI && LI->getLoopFor(BB) != 0)
212  return true;
213 
214  // Linear scan, start at 'A', see whether we hit 'B' or the end first.
215  for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) {
216  if (&*I == B)
217  return true;
218  }
219 
220  // Can't be in a loop if it's the entry block -- the entry block may not
221  // have predecessors.
222  if (BB == &BB->getParent()->getEntryBlock())
223  return false;
224 
225  // Otherwise, continue doing the normal per-BB CFG walk.
226  for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
227  Worklist.push_back(*I);
228 
229  if (Worklist.empty()) {
230  // We've proven that there's no path!
231  return false;
232  }
233  } else {
234  Worklist.push_back(const_cast<BasicBlock*>(A->getParent()));
235  }
236 
237  if (A->getParent() == &A->getParent()->getParent()->getEntryBlock())
238  return true;
239  if (B->getParent() == &A->getParent()->getParent()->getEntryBlock())
240  return false;
241 
242  return isPotentiallyReachableInner(Worklist,
243  const_cast<BasicBlock*>(B->getParent()),
244  DT, LI);
245 }
bool isReachableFromEntry(const BasicBlock *A) const
Definition: Dominators.h:879
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
LoopT * getParentLoop() const
Definition: LoopInfo.h:96
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
F(f)
unsigned GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ)
Definition: CFG.cpp:73
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
Interval::succ_iterator succ_begin(Interval *I)
Definition: Interval.h:107
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
Loop * getLoopFor(const BasicBlock *BB) const
Definition: LoopInfo.h:618
bool insert(const T &V)
Definition: SmallSet.h:59
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:110
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
#define P(N)
static const Loop * getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB)
Definition: CFG.cpp:119
static bool loopContainsBoth(const LoopInfo *LI, const BasicBlock *BB1, const BasicBlock *BB2)
Definition: CFG.cpp:129
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
bool dominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:801
static bool isPotentiallyReachableInner(SmallVectorImpl< BasicBlock * > &Worklist, BasicBlock *StopBB, const DominatorTree *DT, const LoopInfo *LI)
Definition: CFG.cpp:136
void FindFunctionBackedges(const Function &F, SmallVectorImpl< std::pair< const BasicBlock *, const BasicBlock * > > &Result)
Definition: CFG.cpp:28
bool erase(PtrType Ptr)
Definition: SmallPtrSet.h:259
iterator end()
Definition: BasicBlock.h:195
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool isPotentiallyReachable(const Instruction *From, const Instruction *To, const DominatorTree *DT=0, const LoopInfo *LI=0)
Determine whether instruction 'To' is reachable from 'From', returning true if uncertain.
Definition: CFG.cpp:194
const BasicBlock * getParent() const
Definition: Instruction.h:52
bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum, bool AllowIdenticalEdges=false)
Definition: CFG.cpp:88