LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
CloneFunction.cpp
Go to the documentation of this file.
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner. This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
17 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/DebugInfo.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Support/CFG.h"
33 #include <map>
34 using namespace llvm;
35 
36 // CloneBasicBlock - See comments in Cloning.h
38  ValueToValueMapTy &VMap,
39  const Twine &NameSuffix, Function *F,
40  ClonedCodeInfo *CodeInfo) {
41  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
42  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
43 
44  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
45 
46  // Loop over all instructions, and copy them over.
47  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
48  II != IE; ++II) {
49  Instruction *NewInst = II->clone();
50  if (II->hasName())
51  NewInst->setName(II->getName()+NameSuffix);
52  NewBB->getInstList().push_back(NewInst);
53  VMap[II] = NewInst; // Add instruction map to value.
54 
55  hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
56  if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
57  if (isa<ConstantInt>(AI->getArraySize()))
58  hasStaticAllocas = true;
59  else
60  hasDynamicAllocas = true;
61  }
62  }
63 
64  if (CodeInfo) {
65  CodeInfo->ContainsCalls |= hasCalls;
66  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
67  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
68  BB != &BB->getParent()->getEntryBlock();
69  }
70  return NewBB;
71 }
72 
73 // Clone OldFunc into NewFunc, transforming the old arguments into references to
74 // VMap values.
75 //
76 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
77  ValueToValueMapTy &VMap,
78  bool ModuleLevelChanges,
80  const char *NameSuffix, ClonedCodeInfo *CodeInfo,
81  ValueMapTypeRemapper *TypeMapper,
82  ValueMaterializer *Materializer) {
83  assert(NameSuffix && "NameSuffix cannot be null!");
84 
85 #ifndef NDEBUG
86  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
87  E = OldFunc->arg_end(); I != E; ++I)
88  assert(VMap.count(I) && "No mapping from source argument specified!");
89 #endif
90 
91  AttributeSet OldAttrs = OldFunc->getAttributes();
92  // Clone any argument attributes that are present in the VMap.
93  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
94  E = OldFunc->arg_end();
95  I != E; ++I)
96  if (Argument *Anew = dyn_cast<Argument>(VMap[I])) {
97  AttributeSet attrs =
98  OldAttrs.getParamAttributes(I->getArgNo() + 1);
99  if (attrs.getNumSlots() > 0)
100  Anew->addAttr(attrs);
101  }
102 
103  NewFunc->setAttributes(NewFunc->getAttributes()
104  .addAttributes(NewFunc->getContext(),
105  AttributeSet::ReturnIndex,
106  OldAttrs.getRetAttributes()));
107  NewFunc->setAttributes(NewFunc->getAttributes()
108  .addAttributes(NewFunc->getContext(),
109  AttributeSet::FunctionIndex,
110  OldAttrs.getFnAttributes()));
111 
112  // Loop over all of the basic blocks in the function, cloning them as
113  // appropriate. Note that we save BE this way in order to handle cloning of
114  // recursive functions into themselves.
115  //
116  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
117  BI != BE; ++BI) {
118  const BasicBlock &BB = *BI;
119 
120  // Create a new basic block and copy instructions into it!
121  BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
122 
123  // Add basic block mapping.
124  VMap[&BB] = CBB;
125 
126  // It is only legal to clone a function if a block address within that
127  // function is never referenced outside of the function. Given that, we
128  // want to map block addresses from the old function to block addresses in
129  // the clone. (This is different from the generic ValueMapper
130  // implementation, which generates an invalid blockaddress when
131  // cloning a function.)
132  if (BB.hasAddressTaken()) {
133  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
134  const_cast<BasicBlock*>(&BB));
135  VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
136  }
137 
138  // Note return instructions for the caller.
139  if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
140  Returns.push_back(RI);
141  }
142 
143  // Loop over all of the instructions in the function, fixing up operand
144  // references as we go. This uses VMap to do all the hard work.
145  for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
146  BE = NewFunc->end(); BB != BE; ++BB)
147  // Loop over all instructions, fixing each one as we find it...
148  for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
149  RemapInstruction(II, VMap,
150  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
151  TypeMapper, Materializer);
152 }
153 
154 /// CloneFunction - Return a copy of the specified function, but without
155 /// embedding the function into another module. Also, any references specified
156 /// in the VMap are changed to refer to their mapped value instead of the
157 /// original one. If any of the arguments to the function are in the VMap,
158 /// the arguments are deleted from the resultant function. The VMap is
159 /// updated to include mappings from all of the instructions and basicblocks in
160 /// the function from their old to new values.
161 ///
163  bool ModuleLevelChanges,
164  ClonedCodeInfo *CodeInfo) {
165  std::vector<Type*> ArgTypes;
166 
167  // The user might be deleting arguments to the function by specifying them in
168  // the VMap. If so, we need to not add the arguments to the arg ty vector
169  //
170  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
171  I != E; ++I)
172  if (VMap.count(I) == 0) // Haven't mapped the argument to anything yet?
173  ArgTypes.push_back(I->getType());
174 
175  // Create a new function type...
177  ArgTypes, F->getFunctionType()->isVarArg());
178 
179  // Create the new function...
180  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
181 
182  // Loop over the arguments, copying the names of the mapped arguments over...
183  Function::arg_iterator DestI = NewF->arg_begin();
184  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
185  I != E; ++I)
186  if (VMap.count(I) == 0) { // Is this argument preserved?
187  DestI->setName(I->getName()); // Copy the name over...
188  VMap[I] = DestI++; // Add mapping to VMap
189  }
190 
191  SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
192  CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
193  return NewF;
194 }
195 
196 
197 
198 namespace {
199  /// PruningFunctionCloner - This class is a private class used to implement
200  /// the CloneAndPruneFunctionInto method.
201  struct PruningFunctionCloner {
202  Function *NewFunc;
203  const Function *OldFunc;
204  ValueToValueMapTy &VMap;
205  bool ModuleLevelChanges;
206  const char *NameSuffix;
207  ClonedCodeInfo *CodeInfo;
208  const DataLayout *TD;
209  public:
210  PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
211  ValueToValueMapTy &valueMap,
212  bool moduleLevelChanges,
213  const char *nameSuffix,
214  ClonedCodeInfo *codeInfo,
215  const DataLayout *td)
216  : NewFunc(newFunc), OldFunc(oldFunc),
217  VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
218  NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
219  }
220 
221  /// CloneBlock - The specified block is found to be reachable, clone it and
222  /// anything that it can reach.
223  void CloneBlock(const BasicBlock *BB,
224  std::vector<const BasicBlock*> &ToClone);
225  };
226 }
227 
228 /// CloneBlock - The specified block is found to be reachable, clone it and
229 /// anything that it can reach.
230 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
231  std::vector<const BasicBlock*> &ToClone){
232  WeakVH &BBEntry = VMap[BB];
233 
234  // Have we already cloned this block?
235  if (BBEntry) return;
236 
237  // Nope, clone it now.
238  BasicBlock *NewBB;
239  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
240  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
241 
242  // It is only legal to clone a function if a block address within that
243  // function is never referenced outside of the function. Given that, we
244  // want to map block addresses from the old function to block addresses in
245  // the clone. (This is different from the generic ValueMapper
246  // implementation, which generates an invalid blockaddress when
247  // cloning a function.)
248  //
249  // Note that we don't need to fix the mapping for unreachable blocks;
250  // the default mapping there is safe.
251  if (BB->hasAddressTaken()) {
252  Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
253  const_cast<BasicBlock*>(BB));
254  VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
255  }
256 
257 
258  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
259 
260  // Loop over all instructions, and copy them over, DCE'ing as we go. This
261  // loop doesn't include the terminator.
262  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
263  II != IE; ++II) {
264  Instruction *NewInst = II->clone();
265 
266  // Eagerly remap operands to the newly cloned instruction, except for PHI
267  // nodes for which we defer processing until we update the CFG.
268  if (!isa<PHINode>(NewInst)) {
269  RemapInstruction(NewInst, VMap,
270  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
271 
272  // If we can simplify this instruction to some other value, simply add
273  // a mapping to that value rather than inserting a new instruction into
274  // the basic block.
275  if (Value *V = SimplifyInstruction(NewInst, TD)) {
276  // On the off-chance that this simplifies to an instruction in the old
277  // function, map it back into the new function.
278  if (Value *MappedV = VMap.lookup(V))
279  V = MappedV;
280 
281  VMap[II] = V;
282  delete NewInst;
283  continue;
284  }
285  }
286 
287  if (II->hasName())
288  NewInst->setName(II->getName()+NameSuffix);
289  VMap[II] = NewInst; // Add instruction map to value.
290  NewBB->getInstList().push_back(NewInst);
291  hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
292  if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
293  if (isa<ConstantInt>(AI->getArraySize()))
294  hasStaticAllocas = true;
295  else
296  hasDynamicAllocas = true;
297  }
298  }
299 
300  // Finally, clone over the terminator.
301  const TerminatorInst *OldTI = BB->getTerminator();
302  bool TerminatorDone = false;
303  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
304  if (BI->isConditional()) {
305  // If the condition was a known constant in the callee...
306  ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
307  // Or is a known constant in the caller...
308  if (Cond == 0) {
309  Value *V = VMap[BI->getCondition()];
310  Cond = dyn_cast_or_null<ConstantInt>(V);
311  }
312 
313  // Constant fold to uncond branch!
314  if (Cond) {
315  BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
316  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
317  ToClone.push_back(Dest);
318  TerminatorDone = true;
319  }
320  }
321  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
322  // If switching on a value known constant in the caller.
323  ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
324  if (Cond == 0) { // Or known constant after constant prop in the callee...
325  Value *V = VMap[SI->getCondition()];
326  Cond = dyn_cast_or_null<ConstantInt>(V);
327  }
328  if (Cond) { // Constant fold to uncond branch!
329  SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
330  BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
331  VMap[OldTI] = BranchInst::Create(Dest, NewBB);
332  ToClone.push_back(Dest);
333  TerminatorDone = true;
334  }
335  }
336 
337  if (!TerminatorDone) {
338  Instruction *NewInst = OldTI->clone();
339  if (OldTI->hasName())
340  NewInst->setName(OldTI->getName()+NameSuffix);
341  NewBB->getInstList().push_back(NewInst);
342  VMap[OldTI] = NewInst; // Add instruction map to value.
343 
344  // Recursively clone any reachable successor blocks.
345  const TerminatorInst *TI = BB->getTerminator();
346  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
347  ToClone.push_back(TI->getSuccessor(i));
348  }
349 
350  if (CodeInfo) {
351  CodeInfo->ContainsCalls |= hasCalls;
352  CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
353  CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
354  BB != &BB->getParent()->front();
355  }
356 }
357 
358 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
359 /// except that it does some simple constant prop and DCE on the fly. The
360 /// effect of this is to copy significantly less code in cases where (for
361 /// example) a function call with constant arguments is inlined, and those
362 /// constant arguments cause a significant amount of code in the callee to be
363 /// dead. Since this doesn't produce an exact copy of the input, it can't be
364 /// used for things like CloneFunction or CloneModule.
365 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
366  ValueToValueMapTy &VMap,
367  bool ModuleLevelChanges,
369  const char *NameSuffix,
370  ClonedCodeInfo *CodeInfo,
371  const DataLayout *TD,
372  Instruction *TheCall) {
373  assert(NameSuffix && "NameSuffix cannot be null!");
374 
375 #ifndef NDEBUG
376  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
377  E = OldFunc->arg_end(); II != E; ++II)
378  assert(VMap.count(II) && "No mapping from source argument specified!");
379 #endif
380 
381  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
382  NameSuffix, CodeInfo, TD);
383 
384  // Clone the entry block, and anything recursively reachable from it.
385  std::vector<const BasicBlock*> CloneWorklist;
386  CloneWorklist.push_back(&OldFunc->getEntryBlock());
387  while (!CloneWorklist.empty()) {
388  const BasicBlock *BB = CloneWorklist.back();
389  CloneWorklist.pop_back();
390  PFC.CloneBlock(BB, CloneWorklist);
391  }
392 
393  // Loop over all of the basic blocks in the old function. If the block was
394  // reachable, we have cloned it and the old block is now in the value map:
395  // insert it into the new function in the right order. If not, ignore it.
396  //
397  // Defer PHI resolution until rest of function is resolved.
398  SmallVector<const PHINode*, 16> PHIToResolve;
399  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
400  BI != BE; ++BI) {
401  Value *V = VMap[BI];
402  BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
403  if (NewBB == 0) continue; // Dead block.
404 
405  // Add the new block to the new function.
406  NewFunc->getBasicBlockList().push_back(NewBB);
407 
408  // Handle PHI nodes specially, as we have to remove references to dead
409  // blocks.
410  for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
411  if (const PHINode *PN = dyn_cast<PHINode>(I))
412  PHIToResolve.push_back(PN);
413  else
414  break;
415 
416  // Finally, remap the terminator instructions, as those can't be remapped
417  // until all BBs are mapped.
418  RemapInstruction(NewBB->getTerminator(), VMap,
419  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
420  }
421 
422  // Defer PHI resolution until rest of function is resolved, PHI resolution
423  // requires the CFG to be up-to-date.
424  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
425  const PHINode *OPN = PHIToResolve[phino];
426  unsigned NumPreds = OPN->getNumIncomingValues();
427  const BasicBlock *OldBB = OPN->getParent();
428  BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
429 
430  // Map operands for blocks that are live and remove operands for blocks
431  // that are dead.
432  for (; phino != PHIToResolve.size() &&
433  PHIToResolve[phino]->getParent() == OldBB; ++phino) {
434  OPN = PHIToResolve[phino];
435  PHINode *PN = cast<PHINode>(VMap[OPN]);
436  for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
437  Value *V = VMap[PN->getIncomingBlock(pred)];
438  if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
439  Value *InVal = MapValue(PN->getIncomingValue(pred),
440  VMap,
441  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
442  assert(InVal && "Unknown input value?");
443  PN->setIncomingValue(pred, InVal);
444  PN->setIncomingBlock(pred, MappedBlock);
445  } else {
446  PN->removeIncomingValue(pred, false);
447  --pred, --e; // Revisit the next entry.
448  }
449  }
450  }
451 
452  // The loop above has removed PHI entries for those blocks that are dead
453  // and has updated others. However, if a block is live (i.e. copied over)
454  // but its terminator has been changed to not go to this block, then our
455  // phi nodes will have invalid entries. Update the PHI nodes in this
456  // case.
457  PHINode *PN = cast<PHINode>(NewBB->begin());
458  NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
459  if (NumPreds != PN->getNumIncomingValues()) {
460  assert(NumPreds < PN->getNumIncomingValues());
461  // Count how many times each predecessor comes to this block.
462  std::map<BasicBlock*, unsigned> PredCount;
463  for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
464  PI != E; ++PI)
465  --PredCount[*PI];
466 
467  // Figure out how many entries to remove from each PHI.
468  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
469  ++PredCount[PN->getIncomingBlock(i)];
470 
471  // At this point, the excess predecessor entries are positive in the
472  // map. Loop over all of the PHIs and remove excess predecessor
473  // entries.
474  BasicBlock::iterator I = NewBB->begin();
475  for (; (PN = dyn_cast<PHINode>(I)); ++I) {
476  for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
477  E = PredCount.end(); PCI != E; ++PCI) {
478  BasicBlock *Pred = PCI->first;
479  for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
480  PN->removeIncomingValue(Pred, false);
481  }
482  }
483  }
484 
485  // If the loops above have made these phi nodes have 0 or 1 operand,
486  // replace them with undef or the input value. We must do this for
487  // correctness, because 0-operand phis are not valid.
488  PN = cast<PHINode>(NewBB->begin());
489  if (PN->getNumIncomingValues() == 0) {
490  BasicBlock::iterator I = NewBB->begin();
491  BasicBlock::const_iterator OldI = OldBB->begin();
492  while ((PN = dyn_cast<PHINode>(I++))) {
493  Value *NV = UndefValue::get(PN->getType());
494  PN->replaceAllUsesWith(NV);
495  assert(VMap[OldI] == PN && "VMap mismatch");
496  VMap[OldI] = NV;
497  PN->eraseFromParent();
498  ++OldI;
499  }
500  }
501  }
502 
503  // Make a second pass over the PHINodes now that all of them have been
504  // remapped into the new function, simplifying the PHINode and performing any
505  // recursive simplifications exposed. This will transparently update the
506  // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
507  // two PHINodes, the iteration over the old PHIs remains valid, and the
508  // mapping will just map us to the new node (which may not even be a PHI
509  // node).
510  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
511  if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
513 
514  // Now that the inlined function body has been fully constructed, go through
515  // and zap unconditional fall-through branches. This happen all the time when
516  // specializing code: code specialization turns conditional branches into
517  // uncond branches, and this code folds them.
518  Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
519  Function::iterator I = Begin;
520  while (I != NewFunc->end()) {
521  // Check if this block has become dead during inlining or other
522  // simplifications. Note that the first block will appear dead, as it has
523  // not yet been wired up properly.
524  if (I != Begin && (pred_begin(I) == pred_end(I) ||
525  I->getSinglePredecessor() == I)) {
526  BasicBlock *DeadBB = I++;
527  DeleteDeadBlock(DeadBB);
528  continue;
529  }
530 
531  // We need to simplify conditional branches and switches with a constant
532  // operand. We try to prune these out when cloning, but if the
533  // simplification required looking through PHI nodes, those are only
534  // available after forming the full basic block. That may leave some here,
535  // and we still want to prune the dead code as early as possible.
537 
538  BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
539  if (!BI || BI->isConditional()) { ++I; continue; }
540 
541  BasicBlock *Dest = BI->getSuccessor(0);
542  if (!Dest->getSinglePredecessor()) {
543  ++I; continue;
544  }
545 
546  // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
547  // above should have zapped all of them..
548  assert(!isa<PHINode>(Dest->begin()));
549 
550  // We know all single-entry PHI nodes in the inlined function have been
551  // removed, so we just need to splice the blocks.
552  BI->eraseFromParent();
553 
554  // Make all PHI nodes that referred to Dest now refer to I as their source.
555  Dest->replaceAllUsesWith(I);
556 
557  // Move all the instructions in the succ to the pred.
558  I->getInstList().splice(I->end(), Dest->getInstList());
559 
560  // Remove the dest block.
561  Dest->eraseFromParent();
562 
563  // Do not increment I, iteratively merge all things this block branches to.
564  }
565 
566  // Make a final pass over the basic blocks from theh old function to gather
567  // any return instructions which survived folding. We have to do this here
568  // because we can iteratively remove and merge returns above.
569  for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
570  E = NewFunc->end();
571  I != E; ++I)
572  if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
573  Returns.push_back(RI);
574 }
LinkageTypes getLinkage() const
Definition: GlobalValue.h:218
LLVMContext & getContext() const
Definition: Function.cpp:167
LLVM Argument representation.
Definition: Argument.h:35
const Instruction & back() const
Definition: BasicBlock.h:207
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=0, const DataLayout *TD=0, Instruction *TheCall=0)
bool hasName() const
Definition: Value.h:117
AttributeSet getParamAttributes(unsigned Index) const
The attributes for the specified index are returned.
Definition: Attributes.cpp:792
iterator end()
Definition: Function.h:397
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
void DeleteDeadBlock(BasicBlock *BB)
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
arg_iterator arg_end()
Definition: Function.h:418
F(f)
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=0, ValueMaterializer *Materializer=0)
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=0, ValueMapTypeRemapper *TypeMapper=0, ValueMaterializer *Materializer=0)
Value * MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=0, ValueMaterializer *Materializer=0)
Definition: ValueMapper.cpp:27
AttributeSet getRetAttributes() const
The attributes for the ret value are returned.
Definition: Attributes.cpp:800
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
void push_back(NodeTy *val)
Definition: ilist.h:554
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc. to it.
Definition: BasicBlock.h:268
void setName(const Twine &Name)
Definition: Value.cpp:175
Instruction * clone() const
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
bool count(const KeyT &Val) const
count - Return true if the specified key is in the map.
Definition: ValueMap.h:112
BasicBlock * getSuccessor(unsigned i) const
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
Definition: Type.cpp:361
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
iterator begin()
Definition: Function.h:395
unsigned getNumIncomingValues() const
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
unsigned getNumSlots() const
Return the number of slots used in this attribute list. This is the number of arguments that have an ...
Definition: Attributes.cpp:906
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
static BlockAddress * get(Function *F, BasicBlock *BB)
get - Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1358
LLVM Constant Representation.
Definition: Constant.h:41
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
BasicBlock * getIncomingBlock(unsigned i) const
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
arg_iterator arg_begin()
Definition: Function.h:410
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
bool isConditional() const
const BasicBlockListType & getBasicBlockList() const
Definition: Function.h:374
See the file comment.
Definition: ValueMap.h:75
Class for constant integers.
Definition: Constants.h:51
void setIncomingBlock(unsigned i, BasicBlock *BB)
Value * getIncomingValue(unsigned i) const
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
void eraseFromParent()
Unlink 'this' from the containing function and delete it.
Definition: BasicBlock.cpp:100
BasicBlockTy * getCaseSuccessor()
Resolves successor for current case.
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:59
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:170
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=0, ClonedCodeInfo *CodeInfo=0)
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
FunctionType * getFunctionType() const
Definition: Function.cpp:171
Function * CloneFunction(const Function *F, ValueToValueMapTy &VMap, bool ModuleLevelChanges, ClonedCodeInfo *CodeInfo=0)
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=0, BasicBlock *InsertBefore=0)
Creates a new BasicBlock.
Definition: BasicBlock.h:109
void setAttributes(AttributeSet attrs)
Set the attribute list for this Function.
Definition: Function.h:173
bool isVarArg() const
Definition: DerivedTypes.h:120
Type * getReturnType() const
Definition: DerivedTypes.h:121
bool ContainsDynamicAllocas
Definition: Cloning.h:63
const BasicBlock & front() const
Definition: Function.h:402
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
LLVM Value Representation.
Definition: Value.h:66
void setIncomingValue(unsigned i, Value *V)
AttributeSet addAttributes(LLVMContext &C, unsigned Index, AttributeSet Attrs) const
Add attributes to the attribute set at the given index. Since attribute sets are immutable, this returns a new set.
Definition: Attributes.cpp:684
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, const Twine &N="", Module *M=0)
Definition: Function.h:128
bool recursivelySimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
Recursively attempt to simplify an instruction.
AttributeSet getFnAttributes() const
The function attributes are returned.
Definition: Attributes.cpp:809