LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Local.cpp
Go to the documentation of this file.
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
24 #include "llvm/DIBuilder.h"
25 #include "llvm/DebugInfo.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/Support/CFG.h"
39 #include "llvm/Support/Debug.h"
44 using namespace llvm;
45 
46 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
47 
48 //===----------------------------------------------------------------------===//
49 // Local constant propagation.
50 //
51 
52 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
53 /// constant value, convert it into an unconditional branch to the constant
54 /// destination. This is a nontrivial operation because the successors of this
55 /// basic block must have their PHI nodes updated.
56 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
57 /// conditions and indirectbr addresses this might make dead if
58 /// DeleteDeadConditions is true.
59 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
60  const TargetLibraryInfo *TLI) {
62  IRBuilder<> Builder(T);
63 
64  // Branch - See if we are conditional jumping on constant
65  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
66  if (BI->isUnconditional()) return false; // Can't optimize uncond branch
67  BasicBlock *Dest1 = BI->getSuccessor(0);
68  BasicBlock *Dest2 = BI->getSuccessor(1);
69 
70  if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
71  // Are we branching on constant?
72  // YES. Change to unconditional branch...
73  BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
74  BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
75 
76  //cerr << "Function: " << T->getParent()->getParent()
77  // << "\nRemoving branch from " << T->getParent()
78  // << "\n\nTo: " << OldDest << endl;
79 
80  // Let the basic block know that we are letting go of it. Based on this,
81  // it will adjust it's PHI nodes.
82  OldDest->removePredecessor(BB);
83 
84  // Replace the conditional branch with an unconditional one.
85  Builder.CreateBr(Destination);
86  BI->eraseFromParent();
87  return true;
88  }
89 
90  if (Dest2 == Dest1) { // Conditional branch to same location?
91  // This branch matches something like this:
92  // br bool %cond, label %Dest, label %Dest
93  // and changes it into: br label %Dest
94 
95  // Let the basic block know that we are letting go of one copy of it.
96  assert(BI->getParent() && "Terminator not inserted in block!");
97  Dest1->removePredecessor(BI->getParent());
98 
99  // Replace the conditional branch with an unconditional one.
100  Builder.CreateBr(Dest1);
101  Value *Cond = BI->getCondition();
102  BI->eraseFromParent();
103  if (DeleteDeadConditions)
105  return true;
106  }
107  return false;
108  }
109 
110  if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
111  // If we are switching on a constant, we can convert the switch into a
112  // single branch instruction!
113  ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
114  BasicBlock *TheOnlyDest = SI->getDefaultDest();
115  BasicBlock *DefaultDest = TheOnlyDest;
116 
117  // Figure out which case it goes to.
118  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
119  i != e; ++i) {
120  // Found case matching a constant operand?
121  if (i.getCaseValue() == CI) {
122  TheOnlyDest = i.getCaseSuccessor();
123  break;
124  }
125 
126  // Check to see if this branch is going to the same place as the default
127  // dest. If so, eliminate it as an explicit compare.
128  if (i.getCaseSuccessor() == DefaultDest) {
129  MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
130  // MD should have 2 + NumCases operands.
131  if (MD && MD->getNumOperands() == 2 + SI->getNumCases()) {
132  // Collect branch weights into a vector.
133  SmallVector<uint32_t, 8> Weights;
134  for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
135  ++MD_i) {
136  ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
137  assert(CI);
138  Weights.push_back(CI->getValue().getZExtValue());
139  }
140  // Merge weight of this case to the default weight.
141  unsigned idx = i.getCaseIndex();
142  Weights[0] += Weights[idx+1];
143  // Remove weight for this case.
144  std::swap(Weights[idx+1], Weights.back());
145  Weights.pop_back();
146  SI->setMetadata(LLVMContext::MD_prof,
147  MDBuilder(BB->getContext()).
148  createBranchWeights(Weights));
149  }
150  // Remove this entry.
151  DefaultDest->removePredecessor(SI->getParent());
152  SI->removeCase(i);
153  --i; --e;
154  continue;
155  }
156 
157  // Otherwise, check to see if the switch only branches to one destination.
158  // We do this by reseting "TheOnlyDest" to null when we find two non-equal
159  // destinations.
160  if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = 0;
161  }
162 
163  if (CI && !TheOnlyDest) {
164  // Branching on a constant, but not any of the cases, go to the default
165  // successor.
166  TheOnlyDest = SI->getDefaultDest();
167  }
168 
169  // If we found a single destination that we can fold the switch into, do so
170  // now.
171  if (TheOnlyDest) {
172  // Insert the new branch.
173  Builder.CreateBr(TheOnlyDest);
174  BasicBlock *BB = SI->getParent();
175 
176  // Remove entries from PHI nodes which we no longer branch to...
177  for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
178  // Found case matching a constant operand?
179  BasicBlock *Succ = SI->getSuccessor(i);
180  if (Succ == TheOnlyDest)
181  TheOnlyDest = 0; // Don't modify the first branch to TheOnlyDest
182  else
183  Succ->removePredecessor(BB);
184  }
185 
186  // Delete the old switch.
187  Value *Cond = SI->getCondition();
188  SI->eraseFromParent();
189  if (DeleteDeadConditions)
191  return true;
192  }
193 
194  if (SI->getNumCases() == 1) {
195  // Otherwise, we can fold this switch into a conditional branch
196  // instruction if it has only one non-default destination.
197  SwitchInst::CaseIt FirstCase = SI->case_begin();
198  Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
199  FirstCase.getCaseValue(), "cond");
200 
201  // Insert the new branch.
202  BranchInst *NewBr = Builder.CreateCondBr(Cond,
203  FirstCase.getCaseSuccessor(),
204  SI->getDefaultDest());
205  MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
206  if (MD && MD->getNumOperands() == 3) {
207  ConstantInt *SICase = dyn_cast<ConstantInt>(MD->getOperand(2));
208  ConstantInt *SIDef = dyn_cast<ConstantInt>(MD->getOperand(1));
209  assert(SICase && SIDef);
210  // The TrueWeight should be the weight for the single case of SI.
212  MDBuilder(BB->getContext()).
213  createBranchWeights(SICase->getValue().getZExtValue(),
214  SIDef->getValue().getZExtValue()));
215  }
216 
217  // Delete the old switch.
218  SI->eraseFromParent();
219  return true;
220  }
221  return false;
222  }
223 
224  if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
225  // indirectbr blockaddress(@F, @BB) -> br label @BB
226  if (BlockAddress *BA =
227  dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
228  BasicBlock *TheOnlyDest = BA->getBasicBlock();
229  // Insert the new branch.
230  Builder.CreateBr(TheOnlyDest);
231 
232  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
233  if (IBI->getDestination(i) == TheOnlyDest)
234  TheOnlyDest = 0;
235  else
236  IBI->getDestination(i)->removePredecessor(IBI->getParent());
237  }
238  Value *Address = IBI->getAddress();
239  IBI->eraseFromParent();
240  if (DeleteDeadConditions)
242 
243  // If we didn't find our destination in the IBI successor list, then we
244  // have undefined behavior. Replace the unconditional branch with an
245  // 'unreachable' instruction.
246  if (TheOnlyDest) {
248  new UnreachableInst(BB->getContext(), BB);
249  }
250 
251  return true;
252  }
253  }
254 
255  return false;
256 }
257 
258 
259 //===----------------------------------------------------------------------===//
260 // Local dead code elimination.
261 //
262 
263 /// isInstructionTriviallyDead - Return true if the result produced by the
264 /// instruction is not used, and the instruction has no side effects.
265 ///
267  const TargetLibraryInfo *TLI) {
268  if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
269 
270  // We don't want the landingpad instruction removed by anything this general.
271  if (isa<LandingPadInst>(I))
272  return false;
273 
274  // We don't want debug info removed by anything this general, unless
275  // debug info is empty.
276  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
277  if (DDI->getAddress())
278  return false;
279  return true;
280  }
281  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
282  if (DVI->getValue())
283  return false;
284  return true;
285  }
286 
287  if (!I->mayHaveSideEffects()) return true;
288 
289  // Special case intrinsics that "may have side effects" but can be deleted
290  // when dead.
291  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
292  // Safe to delete llvm.stacksave if dead.
293  if (II->getIntrinsicID() == Intrinsic::stacksave)
294  return true;
295 
296  // Lifetime intrinsics are dead when their right-hand is undef.
297  if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
298  II->getIntrinsicID() == Intrinsic::lifetime_end)
299  return isa<UndefValue>(II->getArgOperand(1));
300  }
301 
302  if (isAllocLikeFn(I, TLI)) return true;
303 
304  if (CallInst *CI = isFreeCall(I, TLI))
305  if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
306  return C->isNullValue() || isa<UndefValue>(C);
307 
308  return false;
309 }
310 
311 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
312 /// trivially dead instruction, delete it. If that makes any of its operands
313 /// trivially dead, delete them too, recursively. Return true if any
314 /// instructions were deleted.
315 bool
317  const TargetLibraryInfo *TLI) {
319  if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
320  return false;
321 
323  DeadInsts.push_back(I);
324 
325  do {
326  I = DeadInsts.pop_back_val();
327 
328  // Null out all of the instruction's operands to see if any operand becomes
329  // dead as we go.
330  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
331  Value *OpV = I->getOperand(i);
332  I->setOperand(i, 0);
333 
334  if (!OpV->use_empty()) continue;
335 
336  // If the operand is an instruction that became dead as we nulled out the
337  // operand, and if it is 'trivially' dead, delete it in a future loop
338  // iteration.
339  if (Instruction *OpI = dyn_cast<Instruction>(OpV))
340  if (isInstructionTriviallyDead(OpI, TLI))
341  DeadInsts.push_back(OpI);
342  }
343 
344  I->eraseFromParent();
345  } while (!DeadInsts.empty());
346 
347  return true;
348 }
349 
350 /// areAllUsesEqual - Check whether the uses of a value are all the same.
351 /// This is similar to Instruction::hasOneUse() except this will also return
352 /// true when there are no uses or multiple uses that all refer to the same
353 /// value.
355  Value::use_iterator UI = I->use_begin();
356  Value::use_iterator UE = I->use_end();
357  if (UI == UE)
358  return true;
359 
360  User *TheUse = *UI;
361  for (++UI; UI != UE; ++UI) {
362  if (*UI != TheUse)
363  return false;
364  }
365  return true;
366 }
367 
368 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
369 /// dead PHI node, due to being a def-use chain of single-use nodes that
370 /// either forms a cycle or is terminated by a trivially dead instruction,
371 /// delete it. If that makes any of its operands trivially dead, delete them
372 /// too, recursively. Return true if a change was made.
374  const TargetLibraryInfo *TLI) {
376  for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
377  I = cast<Instruction>(*I->use_begin())) {
378  if (I->use_empty())
380 
381  // If we find an instruction more than once, we're on a cycle that
382  // won't prove fruitful.
383  if (!Visited.insert(I)) {
384  // Break the cycle and delete the instruction and its operands.
385  I->replaceAllUsesWith(UndefValue::get(I->getType()));
387  return true;
388  }
389  }
390  return false;
391 }
392 
393 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
394 /// simplify any instructions in it and recursively delete dead instructions.
395 ///
396 /// This returns true if it changed the code, note that it can delete
397 /// instructions in other blocks as well in this block.
399  const TargetLibraryInfo *TLI) {
400  bool MadeChange = false;
401 
402 #ifndef NDEBUG
403  // In debug builds, ensure that the terminator of the block is never replaced
404  // or deleted by these simplifications. The idea of simplification is that it
405  // cannot introduce new instructions, and there is no way to replace the
406  // terminator of a block without introducing a new instruction.
407  AssertingVH<Instruction> TerminatorVH(--BB->end());
408 #endif
409 
410  for (BasicBlock::iterator BI = BB->begin(), E = --BB->end(); BI != E; ) {
411  assert(!BI->isTerminator());
412  Instruction *Inst = BI++;
413 
414  WeakVH BIHandle(BI);
415  if (recursivelySimplifyInstruction(Inst, TD, TLI)) {
416  MadeChange = true;
417  if (BIHandle != BI)
418  BI = BB->begin();
419  continue;
420  }
421 
422  MadeChange |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
423  if (BIHandle != BI)
424  BI = BB->begin();
425  }
426  return MadeChange;
427 }
428 
429 //===----------------------------------------------------------------------===//
430 // Control Flow Graph Restructuring.
431 //
432 
433 
434 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
435 /// method is called when we're about to delete Pred as a predecessor of BB. If
436 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
437 ///
438 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
439 /// nodes that collapse into identity values. For example, if we have:
440 /// x = phi(1, 0, 0, 0)
441 /// y = and x, z
442 ///
443 /// .. and delete the predecessor corresponding to the '1', this will attempt to
444 /// recursively fold the and to 0.
446  DataLayout *TD) {
447  // This only adjusts blocks with PHI nodes.
448  if (!isa<PHINode>(BB->begin()))
449  return;
450 
451  // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
452  // them down. This will leave us with single entry phi nodes and other phis
453  // that can be removed.
454  BB->removePredecessor(Pred, true);
455 
456  WeakVH PhiIt = &BB->front();
457  while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
458  PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
459  Value *OldPhiIt = PhiIt;
460 
461  if (!recursivelySimplifyInstruction(PN, TD))
462  continue;
463 
464  // If recursive simplification ended up deleting the next PHI node we would
465  // iterate to, then our iterator is invalid, restart scanning from the top
466  // of the block.
467  if (PhiIt != OldPhiIt) PhiIt = &BB->front();
468  }
469 }
470 
471 
472 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
473 /// predecessor is known to have one successor (DestBB!). Eliminate the edge
474 /// between them, moving the instructions in the predecessor into DestBB and
475 /// deleting the predecessor block.
476 ///
478  // If BB has single-entry PHI nodes, fold them.
479  while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
480  Value *NewVal = PN->getIncomingValue(0);
481  // Replace self referencing PHI with undef, it must be dead.
482  if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
483  PN->replaceAllUsesWith(NewVal);
484  PN->eraseFromParent();
485  }
486 
487  BasicBlock *PredBB = DestBB->getSinglePredecessor();
488  assert(PredBB && "Block doesn't have a single predecessor!");
489 
490  // Zap anything that took the address of DestBB. Not doing this will give the
491  // address an invalid value.
492  if (DestBB->hasAddressTaken()) {
493  BlockAddress *BA = BlockAddress::get(DestBB);
494  Constant *Replacement =
497  BA->getType()));
498  BA->destroyConstant();
499  }
500 
501  // Anything that branched to PredBB now branches to DestBB.
502  PredBB->replaceAllUsesWith(DestBB);
503 
504  // Splice all the instructions from PredBB to DestBB.
505  PredBB->getTerminator()->eraseFromParent();
506  DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
507 
508  if (P) {
510  if (DT) {
511  BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
512  DT->changeImmediateDominator(DestBB, PredBBIDom);
513  DT->eraseNode(PredBB);
514  }
515  }
516  // Nuke BB.
517  PredBB->eraseFromParent();
518 }
519 
520 /// CanMergeValues - Return true if we can choose one of these values to use
521 /// in place of the other. Note that we will always choose the non-undef
522 /// value to keep.
523 static bool CanMergeValues(Value *First, Value *Second) {
524  return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
525 }
526 
527 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
528 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
529 ///
530 /// Assumption: Succ is the single successor for BB.
531 ///
533  assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
534 
535  DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
536  << Succ->getName() << "\n");
537  // Shortcut, if there is only a single predecessor it must be BB and merging
538  // is always safe
539  if (Succ->getSinglePredecessor()) return true;
540 
541  // Make a list of the predecessors of BB
543 
544  // Look at all the phi nodes in Succ, to see if they present a conflict when
545  // merging these blocks
546  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
547  PHINode *PN = cast<PHINode>(I);
548 
549  // If the incoming value from BB is again a PHINode in
550  // BB which has the same incoming value for *PI as PN does, we can
551  // merge the phi nodes and then the blocks can still be merged
553  if (BBPN && BBPN->getParent() == BB) {
554  for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
555  BasicBlock *IBB = PN->getIncomingBlock(PI);
556  if (BBPreds.count(IBB) &&
557  !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
558  PN->getIncomingValue(PI))) {
559  DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
560  << Succ->getName() << " is conflicting with "
561  << BBPN->getName() << " with regard to common predecessor "
562  << IBB->getName() << "\n");
563  return false;
564  }
565  }
566  } else {
567  Value* Val = PN->getIncomingValueForBlock(BB);
568  for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
569  // See if the incoming value for the common predecessor is equal to the
570  // one for BB, in which case this phi node will not prevent the merging
571  // of the block.
572  BasicBlock *IBB = PN->getIncomingBlock(PI);
573  if (BBPreds.count(IBB) &&
574  !CanMergeValues(Val, PN->getIncomingValue(PI))) {
575  DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
576  << Succ->getName() << " is conflicting with regard to common "
577  << "predecessor " << IBB->getName() << "\n");
578  return false;
579  }
580  }
581  }
582  }
583 
584  return true;
585 }
586 
589 
590 /// \brief Determines the value to use as the phi node input for a block.
591 ///
592 /// Select between \p OldVal any value that we know flows from \p BB
593 /// to a particular phi on the basis of which one (if either) is not
594 /// undef. Update IncomingValues based on the selected value.
595 ///
596 /// \param OldVal The value we are considering selecting.
597 /// \param BB The block that the value flows in from.
598 /// \param IncomingValues A map from block-to-value for other phi inputs
599 /// that we have examined.
600 ///
601 /// \returns the selected value.
603  IncomingValueMap &IncomingValues) {
604  if (!isa<UndefValue>(OldVal)) {
605  assert((!IncomingValues.count(BB) ||
606  IncomingValues.find(BB)->second == OldVal) &&
607  "Expected OldVal to match incoming value from BB!");
608 
609  IncomingValues.insert(std::make_pair(BB, OldVal));
610  return OldVal;
611  }
612 
613  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
614  if (It != IncomingValues.end()) return It->second;
615 
616  return OldVal;
617 }
618 
619 /// \brief Create a map from block to value for the operands of a
620 /// given phi.
621 ///
622 /// Create a map from block to value for each non-undef value flowing
623 /// into \p PN.
624 ///
625 /// \param PN The phi we are collecting the map for.
626 /// \param IncomingValues [out] The map from block to value for this phi.
628  IncomingValueMap &IncomingValues) {
629  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
630  BasicBlock *BB = PN->getIncomingBlock(i);
631  Value *V = PN->getIncomingValue(i);
632 
633  if (!isa<UndefValue>(V))
634  IncomingValues.insert(std::make_pair(BB, V));
635  }
636 }
637 
638 /// \brief Replace the incoming undef values to a phi with the values
639 /// from a block-to-value map.
640 ///
641 /// \param PN The phi we are replacing the undefs in.
642 /// \param IncomingValues A map from block to value.
644  const IncomingValueMap &IncomingValues) {
645  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
646  Value *V = PN->getIncomingValue(i);
647 
648  if (!isa<UndefValue>(V)) continue;
649 
650  BasicBlock *BB = PN->getIncomingBlock(i);
651  IncomingValueMap::const_iterator It = IncomingValues.find(BB);
652  if (It == IncomingValues.end()) continue;
653 
654  PN->setIncomingValue(i, It->second);
655  }
656 }
657 
658 /// \brief Replace a value flowing from a block to a phi with
659 /// potentially multiple instances of that value flowing from the
660 /// block's predecessors to the phi.
661 ///
662 /// \param BB The block with the value flowing into the phi.
663 /// \param BBPreds The predecessors of BB.
664 /// \param PN The phi that we are updating.
666  const PredBlockVector &BBPreds,
667  PHINode *PN) {
668  Value *OldVal = PN->removeIncomingValue(BB, false);
669  assert(OldVal && "No entry in PHI for Pred BB!");
670 
671  IncomingValueMap IncomingValues;
672 
673  // We are merging two blocks - BB, and the block containing PN - and
674  // as a result we need to redirect edges from the predecessors of BB
675  // to go to the block containing PN, and update PN
676  // accordingly. Since we allow merging blocks in the case where the
677  // predecessor and successor blocks both share some predecessors,
678  // and where some of those common predecessors might have undef
679  // values flowing into PN, we want to rewrite those values to be
680  // consistent with the non-undef values.
681 
682  gatherIncomingValuesToPhi(PN, IncomingValues);
683 
684  // If this incoming value is one of the PHI nodes in BB, the new entries
685  // in the PHI node are the entries from the old PHI.
686  if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
687  PHINode *OldValPN = cast<PHINode>(OldVal);
688  for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
689  // Note that, since we are merging phi nodes and BB and Succ might
690  // have common predecessors, we could end up with a phi node with
691  // identical incoming branches. This will be cleaned up later (and
692  // will trigger asserts if we try to clean it up now, without also
693  // simplifying the corresponding conditional branch).
694  BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
695  Value *PredVal = OldValPN->getIncomingValue(i);
696  Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
697  IncomingValues);
698 
699  // And add a new incoming value for this predecessor for the
700  // newly retargeted branch.
701  PN->addIncoming(Selected, PredBB);
702  }
703  } else {
704  for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
705  // Update existing incoming values in PN for this
706  // predecessor of BB.
707  BasicBlock *PredBB = BBPreds[i];
708  Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
709  IncomingValues);
710 
711  // And add a new incoming value for this predecessor for the
712  // newly retargeted branch.
713  PN->addIncoming(Selected, PredBB);
714  }
715  }
716 
717  replaceUndefValuesInPhi(PN, IncomingValues);
718 }
719 
720 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
721 /// unconditional branch, and contains no instructions other than PHI nodes,
722 /// potential side-effect free intrinsics and the branch. If possible,
723 /// eliminate BB by rewriting all the predecessors to branch to the successor
724 /// block and return true. If we can't transform, return false.
726  assert(BB != &BB->getParent()->getEntryBlock() &&
727  "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
728 
729  // We can't eliminate infinite loops.
730  BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
731  if (BB == Succ) return false;
732 
733  // Check to see if merging these blocks would cause conflicts for any of the
734  // phi nodes in BB or Succ. If not, we can safely merge.
735  if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
736 
737  // Check for cases where Succ has multiple predecessors and a PHI node in BB
738  // has uses which will not disappear when the PHI nodes are merged. It is
739  // possible to handle such cases, but difficult: it requires checking whether
740  // BB dominates Succ, which is non-trivial to calculate in the case where
741  // Succ has multiple predecessors. Also, it requires checking whether
742  // constructing the necessary self-referential PHI node doesn't introduce any
743  // conflicts; this isn't too difficult, but the previous code for doing this
744  // was incorrect.
745  //
746  // Note that if this check finds a live use, BB dominates Succ, so BB is
747  // something like a loop pre-header (or rarely, a part of an irreducible CFG);
748  // folding the branch isn't profitable in that case anyway.
749  if (!Succ->getSinglePredecessor()) {
750  BasicBlock::iterator BBI = BB->begin();
751  while (isa<PHINode>(*BBI)) {
752  for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
753  UI != E; ++UI) {
754  if (PHINode* PN = dyn_cast<PHINode>(*UI)) {
755  if (PN->getIncomingBlock(UI) != BB)
756  return false;
757  } else {
758  return false;
759  }
760  }
761  ++BBI;
762  }
763  }
764 
765  DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
766 
767  if (isa<PHINode>(Succ->begin())) {
768  // If there is more than one pred of succ, and there are PHI nodes in
769  // the successor, then we need to add incoming edges for the PHI nodes
770  //
771  const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
772 
773  // Loop over all of the PHI nodes in the successor of BB.
774  for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
775  PHINode *PN = cast<PHINode>(I);
776 
777  redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
778  }
779  }
780 
781  if (Succ->getSinglePredecessor()) {
782  // BB is the only predecessor of Succ, so Succ will end up with exactly
783  // the same predecessors BB had.
784 
785  // Copy over any phi, debug or lifetime instruction.
787  Succ->getInstList().splice(Succ->getFirstNonPHI(), BB->getInstList());
788  } else {
789  while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
790  // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
791  assert(PN->use_empty() && "There shouldn't be any uses here!");
792  PN->eraseFromParent();
793  }
794  }
795 
796  // Everything that jumped to BB now goes to Succ.
797  BB->replaceAllUsesWith(Succ);
798  if (!Succ->hasName()) Succ->takeName(BB);
799  BB->eraseFromParent(); // Delete the old basic block.
800  return true;
801 }
802 
803 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
804 /// nodes in this block. This doesn't try to be clever about PHI nodes
805 /// which differ only in the order of the incoming values, but instcombine
806 /// orders them so it usually won't matter.
807 ///
809  bool Changed = false;
810 
811  // This implementation doesn't currently consider undef operands
812  // specially. Theoretically, two phis which are identical except for
813  // one having an undef where the other doesn't could be collapsed.
814 
815  // Map from PHI hash values to PHI nodes. If multiple PHIs have
816  // the same hash value, the element is the first PHI in the
817  // linked list in CollisionMap.
819 
820  // Maintain linked lists of PHI nodes with common hash values.
821  DenseMap<PHINode *, PHINode *> CollisionMap;
822 
823  // Examine each PHI.
824  for (BasicBlock::iterator I = BB->begin();
825  PHINode *PN = dyn_cast<PHINode>(I++); ) {
826  // Compute a hash value on the operands. Instcombine will likely have sorted
827  // them, which helps expose duplicates, but we have to check all the
828  // operands to be safe in case instcombine hasn't run.
829  uintptr_t Hash = 0;
830  // This hash algorithm is quite weak as hash functions go, but it seems
831  // to do a good enough job for this particular purpose, and is very quick.
832  for (User::op_iterator I = PN->op_begin(), E = PN->op_end(); I != E; ++I) {
833  Hash ^= reinterpret_cast<uintptr_t>(static_cast<Value *>(*I));
834  Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
835  }
836  for (PHINode::block_iterator I = PN->block_begin(), E = PN->block_end();
837  I != E; ++I) {
838  Hash ^= reinterpret_cast<uintptr_t>(static_cast<BasicBlock *>(*I));
839  Hash = (Hash << 7) | (Hash >> (sizeof(uintptr_t) * CHAR_BIT - 7));
840  }
841  // Avoid colliding with the DenseMap sentinels ~0 and ~0-1.
842  Hash >>= 1;
843  // If we've never seen this hash value before, it's a unique PHI.
844  std::pair<DenseMap<uintptr_t, PHINode *>::iterator, bool> Pair =
845  HashMap.insert(std::make_pair(Hash, PN));
846  if (Pair.second) continue;
847  // Otherwise it's either a duplicate or a hash collision.
848  for (PHINode *OtherPN = Pair.first->second; ; ) {
849  if (OtherPN->isIdenticalTo(PN)) {
850  // A duplicate. Replace this PHI with its duplicate.
851  PN->replaceAllUsesWith(OtherPN);
852  PN->eraseFromParent();
853  Changed = true;
854  break;
855  }
856  // A non-duplicate hash collision.
857  DenseMap<PHINode *, PHINode *>::iterator I = CollisionMap.find(OtherPN);
858  if (I == CollisionMap.end()) {
859  // Set this PHI to be the head of the linked list of colliding PHIs.
860  PHINode *Old = Pair.first->second;
861  Pair.first->second = PN;
862  CollisionMap[PN] = Old;
863  break;
864  }
865  // Proceed to the next PHI in the list.
866  OtherPN = I->second;
867  }
868  }
869 
870  return Changed;
871 }
872 
873 /// enforceKnownAlignment - If the specified pointer points to an object that
874 /// we control, modify the object's alignment to PrefAlign. This isn't
875 /// often possible though. If alignment is important, a more reliable approach
876 /// is to simply align all global variables and allocation instructions to
877 /// their preferred alignment from the beginning.
878 ///
879 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
880  unsigned PrefAlign, const DataLayout *TD) {
881  V = V->stripPointerCasts();
882 
883  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
884  // If the preferred alignment is greater than the natural stack alignment
885  // then don't round up. This avoids dynamic stack realignment.
886  if (TD && TD->exceedsNaturalStackAlignment(PrefAlign))
887  return Align;
888  // If there is a requested alignment and if this is an alloca, round up.
889  if (AI->getAlignment() >= PrefAlign)
890  return AI->getAlignment();
891  AI->setAlignment(PrefAlign);
892  return PrefAlign;
893  }
894 
895  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
896  // If there is a large requested alignment and we can, bump up the alignment
897  // of the global.
898  if (GV->isDeclaration()) return Align;
899  // If the memory we set aside for the global may not be the memory used by
900  // the final program then it is impossible for us to reliably enforce the
901  // preferred alignment.
902  if (GV->isWeakForLinker()) return Align;
903 
904  if (GV->getAlignment() >= PrefAlign)
905  return GV->getAlignment();
906  // We can only increase the alignment of the global if it has no alignment
907  // specified or if it is not assigned a section. If it is assigned a
908  // section, the global could be densely packed with other objects in the
909  // section, increasing the alignment could cause padding issues.
910  if (!GV->hasSection() || GV->getAlignment() == 0)
911  GV->setAlignment(PrefAlign);
912  return GV->getAlignment();
913  }
914 
915  return Align;
916 }
917 
918 /// getOrEnforceKnownAlignment - If the specified pointer has an alignment that
919 /// we can determine, return it, otherwise return 0. If PrefAlign is specified,
920 /// and it is more than the alignment of the ultimate object, see if we can
921 /// increase the alignment of the ultimate object, making this check succeed.
922 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
923  const DataLayout *DL) {
924  assert(V->getType()->isPointerTy() &&
925  "getOrEnforceKnownAlignment expects a pointer!");
926  unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(V->getType()) : 64;
927 
928  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
929  ComputeMaskedBits(V, KnownZero, KnownOne, DL);
930  unsigned TrailZ = KnownZero.countTrailingOnes();
931 
932  // Avoid trouble with ridiculously large TrailZ values, such as
933  // those computed from a null pointer.
934  TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
935 
936  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
937 
938  // LLVM doesn't support alignments larger than this currently.
939  Align = std::min(Align, +Value::MaximumAlignment);
940 
941  if (PrefAlign > Align)
942  Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
943 
944  // We don't need to make any adjustment.
945  return Align;
946 }
947 
948 ///===---------------------------------------------------------------------===//
949 /// Dbg Intrinsic utilities
950 ///
951 
952 /// See if there is a dbg.value intrinsic for DIVar before I.
953 static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I) {
954  // Since we can't guarantee that the original dbg.declare instrinsic
955  // is removed by LowerDbgDeclare(), we need to make sure that we are
956  // not inserting the same dbg.value intrinsic over and over.
958  if (PrevI != I->getParent()->getInstList().begin()) {
959  --PrevI;
960  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
961  if (DVI->getValue() == I->getOperand(0) &&
962  DVI->getOffset() == 0 &&
963  DVI->getVariable() == DIVar)
964  return true;
965  }
966  return false;
967 }
968 
969 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
970 /// that has an associated llvm.dbg.decl intrinsic.
972  StoreInst *SI, DIBuilder &Builder) {
973  DIVariable DIVar(DDI->getVariable());
974  assert((!DIVar || DIVar.isVariable()) &&
975  "Variable in DbgDeclareInst should be either null or a DIVariable.");
976  if (!DIVar)
977  return false;
978 
979  if (LdStHasDebugValue(DIVar, SI))
980  return true;
981 
982  Instruction *DbgVal = NULL;
983  // If an argument is zero extended then use argument directly. The ZExt
984  // may be zapped by an optimization pass in future.
985  Argument *ExtendedArg = NULL;
986  if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
987  ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
988  if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
989  ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
990  if (ExtendedArg)
991  DbgVal = Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, SI);
992  else
993  DbgVal = Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, SI);
994 
995  // Propagate any debug metadata from the store onto the dbg.value.
996  DebugLoc SIDL = SI->getDebugLoc();
997  if (!SIDL.isUnknown())
998  DbgVal->setDebugLoc(SIDL);
999  // Otherwise propagate debug metadata from dbg.declare.
1000  else
1001  DbgVal->setDebugLoc(DDI->getDebugLoc());
1002  return true;
1003 }
1004 
1005 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1006 /// that has an associated llvm.dbg.decl intrinsic.
1008  LoadInst *LI, DIBuilder &Builder) {
1009  DIVariable DIVar(DDI->getVariable());
1010  assert((!DIVar || DIVar.isVariable()) &&
1011  "Variable in DbgDeclareInst should be either null or a DIVariable.");
1012  if (!DIVar)
1013  return false;
1014 
1015  if (LdStHasDebugValue(DIVar, LI))
1016  return true;
1017 
1018  Instruction *DbgVal =
1019  Builder.insertDbgValueIntrinsic(LI->getOperand(0), 0,
1020  DIVar, LI);
1021 
1022  // Propagate any debug metadata from the store onto the dbg.value.
1023  DebugLoc LIDL = LI->getDebugLoc();
1024  if (!LIDL.isUnknown())
1025  DbgVal->setDebugLoc(LIDL);
1026  // Otherwise propagate debug metadata from dbg.declare.
1027  else
1028  DbgVal->setDebugLoc(DDI->getDebugLoc());
1029  return true;
1030 }
1031 
1032 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1033 /// of llvm.dbg.value intrinsics.
1035  DIBuilder DIB(*F.getParent());
1037  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
1038  for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) {
1039  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(BI))
1040  Dbgs.push_back(DDI);
1041  }
1042  if (Dbgs.empty())
1043  return false;
1044 
1045  for (SmallVectorImpl<DbgDeclareInst *>::iterator I = Dbgs.begin(),
1046  E = Dbgs.end(); I != E; ++I) {
1047  DbgDeclareInst *DDI = *I;
1048  AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1049  // If this is an alloca for a scalar variable, insert a dbg.value
1050  // at each load and store to the alloca and erase the dbg.declare.
1051  if (AI && !AI->isArrayAllocation()) {
1052 
1053  // We only remove the dbg.declare intrinsic if all uses are
1054  // converted to dbg.value intrinsics.
1055  bool RemoveDDI = true;
1056  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1057  UI != E; ++UI)
1058  if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
1059  ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1060  else if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1062  else
1063  RemoveDDI = false;
1064  if (RemoveDDI)
1065  DDI->eraseFromParent();
1066  }
1067  }
1068  return true;
1069 }
1070 
1071 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1072 /// alloca 'V', if any.
1074  if (MDNode *DebugNode = MDNode::getIfExists(V->getContext(), V))
1075  for (Value::use_iterator UI = DebugNode->use_begin(),
1076  E = DebugNode->use_end(); UI != E; ++UI)
1077  if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1078  return DDI;
1079 
1080  return 0;
1081 }
1082 
1084  DIBuilder &Builder) {
1086  if (!DDI)
1087  return false;
1088  DIVariable DIVar(DDI->getVariable());
1089  assert((!DIVar || DIVar.isVariable()) &&
1090  "Variable in DbgDeclareInst should be either null or a DIVariable.");
1091  if (!DIVar)
1092  return false;
1093 
1094  // Create a copy of the original DIDescriptor for user variable, appending
1095  // "deref" operation to a list of address elements, as new llvm.dbg.declare
1096  // will take a value storing address of the memory for variable, not
1097  // alloca itself.
1098  Type *Int64Ty = Type::getInt64Ty(AI->getContext());
1099  SmallVector<Value*, 4> NewDIVarAddress;
1100  if (DIVar.hasComplexAddress()) {
1101  for (unsigned i = 0, n = DIVar.getNumAddrElements(); i < n; ++i) {
1102  NewDIVarAddress.push_back(
1103  ConstantInt::get(Int64Ty, DIVar.getAddrElement(i)));
1104  }
1105  }
1106  NewDIVarAddress.push_back(ConstantInt::get(Int64Ty, DIBuilder::OpDeref));
1107  DIVariable NewDIVar = Builder.createComplexVariable(
1108  DIVar.getTag(), DIVar.getContext(), DIVar.getName(),
1109  DIVar.getFile(), DIVar.getLineNumber(), DIVar.getType(),
1110  NewDIVarAddress, DIVar.getArgNumber());
1111 
1112  // Insert llvm.dbg.declare in the same basic block as the original alloca,
1113  // and remove old llvm.dbg.declare.
1114  BasicBlock *BB = AI->getParent();
1115  Builder.insertDeclare(NewAllocaAddress, NewDIVar, BB);
1116  DDI->eraseFromParent();
1117  return true;
1118 }
1119 
1120 /// changeToUnreachable - Insert an unreachable instruction before the specified
1121 /// instruction, making it and the rest of the code in the block dead.
1122 static void changeToUnreachable(Instruction *I, bool UseLLVMTrap) {
1123  BasicBlock *BB = I->getParent();
1124  // Loop over all of the successors, removing BB's entry from any PHI
1125  // nodes.
1126  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1127  (*SI)->removePredecessor(BB);
1128 
1129  // Insert a call to llvm.trap right before this. This turns the undefined
1130  // behavior into a hard fail instead of falling through into random code.
1131  if (UseLLVMTrap) {
1132  Function *TrapFn =
1134  CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1135  CallTrap->setDebugLoc(I->getDebugLoc());
1136  }
1137  new UnreachableInst(I->getContext(), I);
1138 
1139  // All instructions after this are dead.
1140  BasicBlock::iterator BBI = I, BBE = BB->end();
1141  while (BBI != BBE) {
1142  if (!BBI->use_empty())
1143  BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1144  BB->getInstList().erase(BBI++);
1145  }
1146 }
1147 
1148 /// changeToCall - Convert the specified invoke into a normal call.
1149 static void changeToCall(InvokeInst *II) {
1150  SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
1151  CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, "", II);
1152  NewCall->takeName(II);
1153  NewCall->setCallingConv(II->getCallingConv());
1154  NewCall->setAttributes(II->getAttributes());
1155  NewCall->setDebugLoc(II->getDebugLoc());
1156  II->replaceAllUsesWith(NewCall);
1157 
1158  // Follow the call by a branch to the normal destination.
1159  BranchInst::Create(II->getNormalDest(), II);
1160 
1161  // Update PHI nodes in the unwind destination
1163  II->eraseFromParent();
1164 }
1165 
1166 static bool markAliveBlocks(BasicBlock *BB,
1167  SmallPtrSet<BasicBlock*, 128> &Reachable) {
1168 
1170  Worklist.push_back(BB);
1171  Reachable.insert(BB);
1172  bool Changed = false;
1173  do {
1174  BB = Worklist.pop_back_val();
1175 
1176  // Do a quick scan of the basic block, turning any obviously unreachable
1177  // instructions into LLVM unreachable insts. The instruction combining pass
1178  // canonicalizes unreachable insts into stores to null or undef.
1179  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;++BBI){
1180  if (CallInst *CI = dyn_cast<CallInst>(BBI)) {
1181  if (CI->doesNotReturn()) {
1182  // If we found a call to a no-return function, insert an unreachable
1183  // instruction after it. Make sure there isn't *already* one there
1184  // though.
1185  ++BBI;
1186  if (!isa<UnreachableInst>(BBI)) {
1187  // Don't insert a call to llvm.trap right before the unreachable.
1188  changeToUnreachable(BBI, false);
1189  Changed = true;
1190  }
1191  break;
1192  }
1193  }
1194 
1195  // Store to undef and store to null are undefined and used to signal that
1196  // they should be changed to unreachable by passes that can't modify the
1197  // CFG.
1198  if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
1199  // Don't touch volatile stores.
1200  if (SI->isVolatile()) continue;
1201 
1202  Value *Ptr = SI->getOperand(1);
1203 
1204  if (isa<UndefValue>(Ptr) ||
1205  (isa<ConstantPointerNull>(Ptr) &&
1206  SI->getPointerAddressSpace() == 0)) {
1207  changeToUnreachable(SI, true);
1208  Changed = true;
1209  break;
1210  }
1211  }
1212  }
1213 
1214  // Turn invokes that call 'nounwind' functions into ordinary calls.
1215  if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
1216  Value *Callee = II->getCalledValue();
1217  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1218  changeToUnreachable(II, true);
1219  Changed = true;
1220  } else if (II->doesNotThrow()) {
1221  if (II->use_empty() && II->onlyReadsMemory()) {
1222  // jump to the normal destination branch.
1223  BranchInst::Create(II->getNormalDest(), II);
1224  II->getUnwindDest()->removePredecessor(II->getParent());
1225  II->eraseFromParent();
1226  } else
1227  changeToCall(II);
1228  Changed = true;
1229  }
1230  }
1231 
1232  Changed |= ConstantFoldTerminator(BB, true);
1233  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1234  if (Reachable.insert(*SI))
1235  Worklist.push_back(*SI);
1236  } while (!Worklist.empty());
1237  return Changed;
1238 }
1239 
1240 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1241 /// if they are in a dead cycle. Return true if a change was made, false
1242 /// otherwise.
1245  bool Changed = markAliveBlocks(F.begin(), Reachable);
1246 
1247  // If there are unreachable blocks in the CFG...
1248  if (Reachable.size() == F.size())
1249  return Changed;
1250 
1251  assert(Reachable.size() < F.size());
1252  NumRemoved += F.size()-Reachable.size();
1253 
1254  // Loop over all of the basic blocks that are not reachable, dropping all of
1255  // their internal references...
1256  for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1257  if (Reachable.count(BB))
1258  continue;
1259 
1260  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI)
1261  if (Reachable.count(*SI))
1262  (*SI)->removePredecessor(BB);
1263  BB->dropAllReferences();
1264  }
1265 
1266  for (Function::iterator I = ++F.begin(); I != F.end();)
1267  if (!Reachable.count(I))
1268  I = F.getBasicBlockList().erase(I);
1269  else
1270  ++I;
1271 
1272  return true;
1273 }
STATISTIC(NumRemoved,"Number of unreachable basic blocks removed")
use_iterator use_end()
Definition: Value.h:152
DomTreeNode * getNode(BasicBlock *BB) const
Definition: Dominators.h:844
ConstantIntTy * getCaseValue()
Resolves case value for current case.
void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs=false)
Notify the BasicBlock that the predecessor Pred is no longer able to reach it.
Definition: BasicBlock.cpp:216
void addIncoming(Value *V, BasicBlock *BB)
LLVM Argument representation.
Definition: Argument.h:35
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ)
Definition: Local.cpp:532
DbgDeclareInst * FindAllocaDbgDeclare(Value *V)
Definition: Local.cpp:1073
iterator end()
Definition: Function.h:397
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
This class represents zero extension of integer types.
unsigned getNumOperands() const
Definition: User.h:108
unsigned getNumOperands() const
getNumOperands - Return number of MDNode operands.
Definition: Metadata.h:142
unsigned getPointerTypeSizeInBits(Type *) const
Definition: DataLayout.cpp:510
DIVariable createComplexVariable(unsigned Tag, DIDescriptor Scope, StringRef Name, DIFile F, unsigned LineNo, DIType Ty, ArrayRef< Value * > Addr, unsigned ArgNo=0)
Definition: DIBuilder.cpp:1024
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:316
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, Pass *P=0)
Definition: Local.cpp:477
void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, DataLayout *TD=0)
Definition: Local.cpp:445
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
bool mayHaveSideEffects() const
Definition: Instruction.h:324
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
static void replaceUndefValuesInPhi(PHINode *PN, const IncomingValueMap &IncomingValues)
Replace the incoming undef values to a phi with the values from a block-to-value map.
Definition: Local.cpp:643
const Instruction & front() const
Definition: BasicBlock.h:205
MDNode - a tuple of other values.
Definition: Metadata.h:69
F(f)
This class represents a sign extension of integer types.
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
iterator begin()
Definition: ilist.h:359
Value * CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1206
static Value * selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, IncomingValueMap &IncomingValues)
Determines the value to use as the phi node input for a block.
Definition: Local.cpp:602
static unsigned enforceKnownAlignment(Value *V, unsigned Align, unsigned PrefAlign, const DataLayout *TD)
Definition: Local.cpp:879
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
op_iterator op_begin()
Definition: User.h:116
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
const CallInst * isFreeCall(const Value *I, const TargetLibraryInfo *TLI)
isFreeCall - Returns non-null if the value is a call to the builtin free()
StringRef getName() const
Definition: Value.cpp:167
block_iterator block_end()
iterator begin()
Definition: BasicBlock.h:193
Value * getOperand(unsigned i) const LLVM_READONLY
getOperand - Return specified operand.
Definition: Metadata.cpp:307
bool isArrayAllocation() const
DomTreeNodeBase< NodeT > * getIDom() const
Definition: Dominators.h:83
bool isUnknown() const
isUnknown - Return true if this is an unknown location.
Definition: DebugLoc.h:70
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
static bool markAliveBlocks(BasicBlock *BB, SmallPtrSet< BasicBlock *, 128 > &Reachable)
Definition: Local.cpp:1166
AnalysisType * getAnalysisIfAvailable() const
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
Definition: Use.h:60
void changeImmediateDominator(BasicBlock *N, BasicBlock *NewIDom)
Definition: Dominators.h:858
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=0)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Definition: IRBuilder.h:532
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
const Value * getCalledValue() const
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc. to it.
Definition: BasicBlock.h:268
static const unsigned MaximumAlignment
Definition: Value.h:335
block_iterator block_begin()
bool replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, DIBuilder &Builder)
Definition: Local.cpp:1083
Interval::succ_iterator succ_begin(Interval *I)
Definition: Interval.h:107
bool RecursivelyDeleteDeadPHINode(PHINode *PN, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:373
static void changeToCall(InvokeInst *II)
changeToCall - Convert the specified invoke into a normal call.
Definition: Local.cpp:1149
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
void eraseNode(BasicBlock *BB)
Definition: Dominators.h:869
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
static bool areAllUsesEqual(Instruction *I)
Definition: Local.cpp:354
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:683
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
bool EliminateDuplicatePHINodes(BasicBlock *BB)
Definition: Local.cpp:808
static void gatherIncomingValuesToPhi(PHINode *PN, IncomingValueMap &IncomingValues)
Create a map from block to value for the operands of a given phi.
Definition: Local.cpp:627
static Constant * getIntToPtr(Constant *C, Type *Ty)
Definition: Constants.cpp:1649
iterator begin()
Definition: Function.h:395
MDNode * getVariable() const
Definition: IntrinsicInst.h:84
BasicBlock * getNormalDest() const
void ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, const DataLayout *TD=0, unsigned Depth=0)
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:110
unsigned getNumIncomingValues() const
bool SimplifyInstructionsInBlock(BasicBlock *BB, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:398
DenseMap< BasicBlock *, Value * > IncomingValueMap
Definition: Local.cpp:588
#define P(N)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB)
Definition: Local.cpp:725
static BlockAddress * get(Function *F, BasicBlock *BB)
get - Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1358
LLVM Constant Representation.
Definition: Constant.h:41
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:266
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
Instruction * insertDbgValueIntrinsic(llvm::Value *Val, uint64_t Offset, DIVariable VarInfo, BasicBlock *InsertAtEnd)
insertDbgValueIntrinsic - Insert a new llvm.dbg.value intrinsic call.
Definition: DIBuilder.cpp:1251
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static bool CanMergeValues(Value *First, Value *Second)
Definition: Local.cpp:523
op_iterator op_end()
Definition: User.h:118
BasicBlock * getIncomingBlock(unsigned i) const
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
size_t size() const
Definition: Function.h:400
iterator end()
Definition: DenseMap.h:57
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
bool count(const KeyT &Val) const
count - Return true if the specified key is in the map.
Definition: DenseMap.h:103
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
bool LowerDbgDeclare(Function &F)
Definition: Local.cpp:1034
Instruction * insertDeclare(llvm::Value *Storage, DIVariable VarInfo, BasicBlock *InsertAtEnd)
insertDeclare - Insert a new llvm.dbg.declare intrinsic call.
Definition: DIBuilder.cpp:1216
iterator erase(iterator where)
Definition: ilist.h:465
void setMetadata(unsigned KindID, MDNode *Node)
Definition: Metadata.cpp:589
CallingConv::ID getCallingConv() const
static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, const PredBlockVector &BBPreds, PHINode *PN)
Replace a value flowing from a block to a phi with potentially multiple instances of that value flowi...
Definition: Local.cpp:665
static CallInst * Create(Value *Func, ArrayRef< Value * > Args, const Twine &NameStr="", Instruction *InsertBefore=0)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
static void changeToUnreachable(Instruction *I, bool UseLLVMTrap)
Definition: Local.cpp:1122
const BasicBlockListType & getBasicBlockList() const
Definition: Function.h:374
BasicBlock * getUnwindDest() const
Class for constant integers.
Definition: Constants.h:51
Value * getIncomingValue(unsigned i) const
iterator end()
Definition: BasicBlock.h:195
bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI, DIBuilder &Builder)
Definition: Local.cpp:971
static MDNode * getIfExists(LLVMContext &Context, ArrayRef< Value * > Vals)
Definition: Metadata.cpp:278
Type * getType() const
Definition: Value.h:111
void eraseFromParent()
Unlink 'this' from the containing function and delete it.
Definition: BasicBlock.cpp:100
static bool LdStHasDebugValue(DIVariable &DIVar, Instruction *I)
See if there is a dbg.value intrinsic for DIVar before I.
Definition: Local.cpp:953
BasicBlockTy * getCaseSuccessor()
Resolves successor for current case.
unsigned size() const
Definition: SmallPtrSet.h:75
Value * stripPointerCasts()
Strips off any unneeded pointer casts, all-zero GEPs and aliases from the specified value...
Definition: Value.cpp:385
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:59
SmallVector< BasicBlock *, 16 > PredBlockVector
Definition: Local.cpp:587
void splice(iterator where, iplist &L2)
Definition: ilist.h:570
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
Class for arbitrary precision integers.
Definition: APInt.h:75
bool exceedsNaturalStackAlignment(unsigned Align) const
Returns true if the given alignment exceeds the natural stack alignment.
Definition: DataLayout.h:222
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
use_iterator use_begin()
Definition: Value.h:150
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, const DataLayout *TD=0)
Definition: Local.cpp:922
const AttributeSet & getAttributes() const
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates memory (either malloc...
virtual void destroyConstant()
Definition: Constants.cpp:1379
bool use_empty() const
Definition: Value.h:149
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
Value * getAddress() const
static const Function * getParent(const Value *V)
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:526
#define DEBUG(X)
Definition: Debug.h:97
bool removeUnreachableBlocks(Function &F)
Remove all blocks that can not be reached from the function's entry.
Definition: Local.cpp:1243
void setIncomingValue(unsigned i, Value *V)
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
const BasicBlock * getParent() const
Definition: Instruction.h:52
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:99
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
bool recursivelySimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
Recursively attempt to simplify an instruction.