LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
DwarfException.cpp
Go to the documentation of this file.
1 //===-- CodeGen/AsmPrinter/DwarfException.cpp - Dwarf Exception Impl ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing DWARF exception info into asm files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "DwarfException.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Twine.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCContext.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCSection.h"
28 #include "llvm/MC/MCStreamer.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/Dwarf.h"
33 #include "llvm/Target/Mangler.h"
38 using namespace llvm;
39 
41  : Asm(A), MMI(Asm->MMI) {}
42 
44 
45 /// SharedTypeIds - How many leading type ids two landing pads have in common.
47  const LandingPadInfo *R) {
48  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
49  unsigned LSize = LIds.size(), RSize = RIds.size();
50  unsigned MinSize = LSize < RSize ? LSize : RSize;
51  unsigned Count = 0;
52 
53  for (; Count != MinSize; ++Count)
54  if (LIds[Count] != RIds[Count])
55  return Count;
56 
57  return Count;
58 }
59 
60 /// PadLT - Order landing pads lexicographically by type id.
62  const std::vector<int> &LIds = L->TypeIds, &RIds = R->TypeIds;
63  unsigned LSize = LIds.size(), RSize = RIds.size();
64  unsigned MinSize = LSize < RSize ? LSize : RSize;
65 
66  for (unsigned i = 0; i != MinSize; ++i)
67  if (LIds[i] != RIds[i])
68  return LIds[i] < RIds[i];
69 
70  return LSize < RSize;
71 }
72 
73 /// ComputeActionsTable - Compute the actions table and gather the first action
74 /// index for each landing pad site.
75 unsigned DwarfException::
78  SmallVectorImpl<unsigned> &FirstActions) {
79 
80  // The action table follows the call-site table in the LSDA. The individual
81  // records are of two types:
82  //
83  // * Catch clause
84  // * Exception specification
85  //
86  // The two record kinds have the same format, with only small differences.
87  // They are distinguished by the "switch value" field: Catch clauses
88  // (TypeInfos) have strictly positive switch values, and exception
89  // specifications (FilterIds) have strictly negative switch values. Value 0
90  // indicates a catch-all clause.
91  //
92  // Negative type IDs index into FilterIds. Positive type IDs index into
93  // TypeInfos. The value written for a positive type ID is just the type ID
94  // itself. For a negative type ID, however, the value written is the
95  // (negative) byte offset of the corresponding FilterIds entry. The byte
96  // offset is usually equal to the type ID (because the FilterIds entries are
97  // written using a variable width encoding, which outputs one byte per entry
98  // as long as the value written is not too large) but can differ. This kind
99  // of complication does not occur for positive type IDs because type infos are
100  // output using a fixed width encoding. FilterOffsets[i] holds the byte
101  // offset corresponding to FilterIds[i].
102 
103  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
104  SmallVector<int, 16> FilterOffsets;
105  FilterOffsets.reserve(FilterIds.size());
106  int Offset = -1;
107 
108  for (std::vector<unsigned>::const_iterator
109  I = FilterIds.begin(), E = FilterIds.end(); I != E; ++I) {
110  FilterOffsets.push_back(Offset);
111  Offset -= MCAsmInfo::getULEB128Size(*I);
112  }
113 
114  FirstActions.reserve(LandingPads.size());
115 
116  int FirstAction = 0;
117  unsigned SizeActions = 0;
118  const LandingPadInfo *PrevLPI = 0;
119 
121  I = LandingPads.begin(), E = LandingPads.end(); I != E; ++I) {
122  const LandingPadInfo *LPI = *I;
123  const std::vector<int> &TypeIds = LPI->TypeIds;
124  unsigned NumShared = PrevLPI ? SharedTypeIds(LPI, PrevLPI) : 0;
125  unsigned SizeSiteActions = 0;
126 
127  if (NumShared < TypeIds.size()) {
128  unsigned SizeAction = 0;
129  unsigned PrevAction = (unsigned)-1;
130 
131  if (NumShared) {
132  unsigned SizePrevIds = PrevLPI->TypeIds.size();
133  assert(Actions.size());
134  PrevAction = Actions.size() - 1;
135  SizeAction =
136  MCAsmInfo::getSLEB128Size(Actions[PrevAction].NextAction) +
137  MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
138 
139  for (unsigned j = NumShared; j != SizePrevIds; ++j) {
140  assert(PrevAction != (unsigned)-1 && "PrevAction is invalid!");
141  SizeAction -=
142  MCAsmInfo::getSLEB128Size(Actions[PrevAction].ValueForTypeID);
143  SizeAction += -Actions[PrevAction].NextAction;
144  PrevAction = Actions[PrevAction].Previous;
145  }
146  }
147 
148  // Compute the actions.
149  for (unsigned J = NumShared, M = TypeIds.size(); J != M; ++J) {
150  int TypeID = TypeIds[J];
151  assert(-1 - TypeID < (int)FilterOffsets.size() && "Unknown filter id!");
152  int ValueForTypeID = TypeID < 0 ? FilterOffsets[-1 - TypeID] : TypeID;
153  unsigned SizeTypeID = MCAsmInfo::getSLEB128Size(ValueForTypeID);
154 
155  int NextAction = SizeAction ? -(SizeAction + SizeTypeID) : 0;
156  SizeAction = SizeTypeID + MCAsmInfo::getSLEB128Size(NextAction);
157  SizeSiteActions += SizeAction;
158 
159  ActionEntry Action = { ValueForTypeID, NextAction, PrevAction };
160  Actions.push_back(Action);
161  PrevAction = Actions.size() - 1;
162  }
163 
164  // Record the first action of the landing pad site.
165  FirstAction = SizeActions + SizeSiteActions - SizeAction + 1;
166  } // else identical - re-use previous FirstAction
167 
168  // Information used when created the call-site table. The action record
169  // field of the call site record is the offset of the first associated
170  // action record, relative to the start of the actions table. This value is
171  // biased by 1 (1 indicating the start of the actions table), and 0
172  // indicates that there are no actions.
173  FirstActions.push_back(FirstAction);
174 
175  // Compute this sites contribution to size.
176  SizeActions += SizeSiteActions;
177 
178  PrevLPI = LPI;
179  }
180 
181  return SizeActions;
182 }
183 
184 /// CallToNoUnwindFunction - Return `true' if this is a call to a function
185 /// marked `nounwind'. Return `false' otherwise.
187  assert(MI->isCall() && "This should be a call instruction!");
188 
189  bool MarkedNoUnwind = false;
190  bool SawFunc = false;
191 
192  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
193  const MachineOperand &MO = MI->getOperand(I);
194 
195  if (!MO.isGlobal()) continue;
196 
197  const Function *F = dyn_cast<Function>(MO.getGlobal());
198  if (F == 0) continue;
199 
200  if (SawFunc) {
201  // Be conservative. If we have more than one function operand for this
202  // call, then we can't make the assumption that it's the callee and
203  // not a parameter to the call.
204  //
205  // FIXME: Determine if there's a way to say that `F' is the callee or
206  // parameter.
207  MarkedNoUnwind = false;
208  break;
209  }
210 
211  MarkedNoUnwind = F->doesNotThrow();
212  SawFunc = true;
213  }
214 
215  return MarkedNoUnwind;
216 }
217 
218 /// ComputeCallSiteTable - Compute the call-site table. The entry for an invoke
219 /// has a try-range containing the call, a non-zero landing pad, and an
220 /// appropriate action. The entry for an ordinary call has a try-range
221 /// containing the call and zero for the landing pad and the action. Calls
222 /// marked 'nounwind' have no entry and must not be contained in the try-range
223 /// of any entry - they form gaps in the table. Entries must be ordered by
224 /// try-range address.
225 void DwarfException::
227  const RangeMapType &PadMap,
228  const SmallVectorImpl<const LandingPadInfo *> &LandingPads,
229  const SmallVectorImpl<unsigned> &FirstActions) {
230  // The end label of the previous invoke or nounwind try-range.
231  MCSymbol *LastLabel = 0;
232 
233  // Whether there is a potentially throwing instruction (currently this means
234  // an ordinary call) between the end of the previous try-range and now.
235  bool SawPotentiallyThrowing = false;
236 
237  // Whether the last CallSite entry was for an invoke.
238  bool PreviousIsInvoke = false;
239 
240  // Visit all instructions in order of address.
241  for (MachineFunction::const_iterator I = Asm->MF->begin(), E = Asm->MF->end();
242  I != E; ++I) {
243  for (MachineBasicBlock::const_iterator MI = I->begin(), E = I->end();
244  MI != E; ++MI) {
245  if (!MI->isLabel()) {
246  if (MI->isCall())
247  SawPotentiallyThrowing |= !CallToNoUnwindFunction(MI);
248  continue;
249  }
250 
251  // End of the previous try-range?
252  MCSymbol *BeginLabel = MI->getOperand(0).getMCSymbol();
253  if (BeginLabel == LastLabel)
254  SawPotentiallyThrowing = false;
255 
256  // Beginning of a new try-range?
257  RangeMapType::const_iterator L = PadMap.find(BeginLabel);
258  if (L == PadMap.end())
259  // Nope, it was just some random label.
260  continue;
261 
262  const PadRange &P = L->second;
263  const LandingPadInfo *LandingPad = LandingPads[P.PadIndex];
264  assert(BeginLabel == LandingPad->BeginLabels[P.RangeIndex] &&
265  "Inconsistent landing pad map!");
266 
267  // For Dwarf exception handling (SjLj handling doesn't use this). If some
268  // instruction between the previous try-range and this one may throw,
269  // create a call-site entry with no landing pad for the region between the
270  // try-ranges.
271  if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
272  CallSiteEntry Site = { LastLabel, BeginLabel, 0, 0 };
273  CallSites.push_back(Site);
274  PreviousIsInvoke = false;
275  }
276 
277  LastLabel = LandingPad->EndLabels[P.RangeIndex];
278  assert(BeginLabel && LastLabel && "Invalid landing pad!");
279 
280  if (!LandingPad->LandingPadLabel) {
281  // Create a gap.
282  PreviousIsInvoke = false;
283  } else {
284  // This try-range is for an invoke.
285  CallSiteEntry Site = {
286  BeginLabel,
287  LastLabel,
288  LandingPad->LandingPadLabel,
289  FirstActions[P.PadIndex]
290  };
291 
292  // Try to merge with the previous call-site. SJLJ doesn't do this
293  if (PreviousIsInvoke && Asm->MAI->isExceptionHandlingDwarf()) {
294  CallSiteEntry &Prev = CallSites.back();
295  if (Site.PadLabel == Prev.PadLabel && Site.Action == Prev.Action) {
296  // Extend the range of the previous entry.
297  Prev.EndLabel = Site.EndLabel;
298  continue;
299  }
300  }
301 
302  // Otherwise, create a new call-site.
304  CallSites.push_back(Site);
305  else {
306  // SjLj EH must maintain the call sites in the order assigned
307  // to them by the SjLjPrepare pass.
308  unsigned SiteNo = MMI->getCallSiteBeginLabel(BeginLabel);
309  if (CallSites.size() < SiteNo)
310  CallSites.resize(SiteNo);
311  CallSites[SiteNo - 1] = Site;
312  }
313  PreviousIsInvoke = true;
314  }
315  }
316  }
317 
318  // If some instruction between the previous try-range and the end of the
319  // function may throw, create a call-site entry with no landing pad for the
320  // region following the try-range.
321  if (SawPotentiallyThrowing && Asm->MAI->isExceptionHandlingDwarf()) {
322  CallSiteEntry Site = { LastLabel, 0, 0, 0 };
323  CallSites.push_back(Site);
324  }
325 }
326 
327 /// EmitExceptionTable - Emit landing pads and actions.
328 ///
329 /// The general organization of the table is complex, but the basic concepts are
330 /// easy. First there is a header which describes the location and organization
331 /// of the three components that follow.
332 ///
333 /// 1. The landing pad site information describes the range of code covered by
334 /// the try. In our case it's an accumulation of the ranges covered by the
335 /// invokes in the try. There is also a reference to the landing pad that
336 /// handles the exception once processed. Finally an index into the actions
337 /// table.
338 /// 2. The action table, in our case, is composed of pairs of type IDs and next
339 /// action offset. Starting with the action index from the landing pad
340 /// site, each type ID is checked for a match to the current exception. If
341 /// it matches then the exception and type id are passed on to the landing
342 /// pad. Otherwise the next action is looked up. This chain is terminated
343 /// with a next action of zero. If no type id is found then the frame is
344 /// unwound and handling continues.
345 /// 3. Type ID table contains references to all the C++ typeinfo for all
346 /// catches in the function. This tables is reverse indexed base 1.
348  const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
349  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
350  const std::vector<LandingPadInfo> &PadInfos = MMI->getLandingPads();
351 
352  // Sort the landing pads in order of their type ids. This is used to fold
353  // duplicate actions.
355  LandingPads.reserve(PadInfos.size());
356 
357  for (unsigned i = 0, N = PadInfos.size(); i != N; ++i)
358  LandingPads.push_back(&PadInfos[i]);
359 
360  std::sort(LandingPads.begin(), LandingPads.end(), PadLT);
361 
362  // Compute the actions table and gather the first action index for each
363  // landing pad site.
365  SmallVector<unsigned, 64> FirstActions;
366  unsigned SizeActions=ComputeActionsTable(LandingPads, Actions, FirstActions);
367 
368  // Invokes and nounwind calls have entries in PadMap (due to being bracketed
369  // by try-range labels when lowered). Ordinary calls do not, so appropriate
370  // try-ranges for them need be deduced when using DWARF exception handling.
371  RangeMapType PadMap;
372  for (unsigned i = 0, N = LandingPads.size(); i != N; ++i) {
373  const LandingPadInfo *LandingPad = LandingPads[i];
374  for (unsigned j = 0, E = LandingPad->BeginLabels.size(); j != E; ++j) {
375  MCSymbol *BeginLabel = LandingPad->BeginLabels[j];
376  assert(!PadMap.count(BeginLabel) && "Duplicate landing pad labels!");
377  PadRange P = { i, j };
378  PadMap[BeginLabel] = P;
379  }
380  }
381 
382  // Compute the call-site table.
384  ComputeCallSiteTable(CallSites, PadMap, LandingPads, FirstActions);
385 
386  // Final tallies.
387 
388  // Call sites.
390  bool HaveTTData = IsSJLJ ? (!TypeInfos.empty() || !FilterIds.empty()) : true;
391 
392  unsigned CallSiteTableLength;
393  if (IsSJLJ)
394  CallSiteTableLength = 0;
395  else {
396  unsigned SiteStartSize = 4; // dwarf::DW_EH_PE_udata4
397  unsigned SiteLengthSize = 4; // dwarf::DW_EH_PE_udata4
398  unsigned LandingPadSize = 4; // dwarf::DW_EH_PE_udata4
399  CallSiteTableLength =
400  CallSites.size() * (SiteStartSize + SiteLengthSize + LandingPadSize);
401  }
402 
403  for (unsigned i = 0, e = CallSites.size(); i < e; ++i) {
404  CallSiteTableLength += MCAsmInfo::getULEB128Size(CallSites[i].Action);
405  if (IsSJLJ)
406  CallSiteTableLength += MCAsmInfo::getULEB128Size(i);
407  }
408 
409  // Type infos.
410  const MCSection *LSDASection = Asm->getObjFileLowering().getLSDASection();
411  unsigned TTypeEncoding;
412  unsigned TypeFormatSize;
413 
414  if (!HaveTTData) {
415  // For SjLj exceptions, if there is no TypeInfo, then we just explicitly say
416  // that we're omitting that bit.
417  TTypeEncoding = dwarf::DW_EH_PE_omit;
418  // dwarf::DW_EH_PE_absptr
419  TypeFormatSize = Asm->getDataLayout().getPointerSize();
420  } else {
421  // Okay, we have actual filters or typeinfos to emit. As such, we need to
422  // pick a type encoding for them. We're about to emit a list of pointers to
423  // typeinfo objects at the end of the LSDA. However, unless we're in static
424  // mode, this reference will require a relocation by the dynamic linker.
425  //
426  // Because of this, we have a couple of options:
427  //
428  // 1) If we are in -static mode, we can always use an absolute reference
429  // from the LSDA, because the static linker will resolve it.
430  //
431  // 2) Otherwise, if the LSDA section is writable, we can output the direct
432  // reference to the typeinfo and allow the dynamic linker to relocate
433  // it. Since it is in a writable section, the dynamic linker won't
434  // have a problem.
435  //
436  // 3) Finally, if we're in PIC mode and the LDSA section isn't writable,
437  // we need to use some form of indirection. For example, on Darwin,
438  // we can output a statically-relocatable reference to a dyld stub. The
439  // offset to the stub is constant, but the contents are in a section
440  // that is updated by the dynamic linker. This is easy enough, but we
441  // need to tell the personality function of the unwinder to indirect
442  // through the dyld stub.
443  //
444  // FIXME: When (3) is actually implemented, we'll have to emit the stubs
445  // somewhere. This predicate should be moved to a shared location that is
446  // in target-independent code.
447  //
448  TTypeEncoding = Asm->getObjFileLowering().getTTypeEncoding();
449  TypeFormatSize = Asm->GetSizeOfEncodedValue(TTypeEncoding);
450  }
451 
452  // Begin the exception table.
453  // Sometimes we want not to emit the data into separate section (e.g. ARM
454  // EHABI). In this case LSDASection will be NULL.
455  if (LSDASection)
456  Asm->OutStreamer.SwitchSection(LSDASection);
457  Asm->EmitAlignment(2);
458 
459  // Emit the LSDA.
460  MCSymbol *GCCETSym =
461  Asm->OutContext.GetOrCreateSymbol(Twine("GCC_except_table")+
463  Asm->OutStreamer.EmitLabel(GCCETSym);
464  Asm->OutStreamer.EmitLabel(Asm->GetTempSymbol("exception",
465  Asm->getFunctionNumber()));
466 
467  if (IsSJLJ)
469  Asm->getFunctionNumber()));
470 
471  // Emit the LSDA header.
473  Asm->EmitEncodingByte(TTypeEncoding, "@TType");
474 
475  // The type infos need to be aligned. GCC does this by inserting padding just
476  // before the type infos. However, this changes the size of the exception
477  // table, so you need to take this into account when you output the exception
478  // table size. However, the size is output using a variable length encoding.
479  // So by increasing the size by inserting padding, you may increase the number
480  // of bytes used for writing the size. If it increases, say by one byte, then
481  // you now need to output one less byte of padding to get the type infos
482  // aligned. However this decreases the size of the exception table. This
483  // changes the value you have to output for the exception table size. Due to
484  // the variable length encoding, the number of bytes used for writing the
485  // length may decrease. If so, you then have to increase the amount of
486  // padding. And so on. If you look carefully at the GCC code you will see that
487  // it indeed does this in a loop, going on and on until the values stabilize.
488  // We chose another solution: don't output padding inside the table like GCC
489  // does, instead output it before the table.
490  unsigned SizeTypes = TypeInfos.size() * TypeFormatSize;
491  unsigned CallSiteTableLengthSize =
492  MCAsmInfo::getULEB128Size(CallSiteTableLength);
493  unsigned TTypeBaseOffset =
494  sizeof(int8_t) + // Call site format
495  CallSiteTableLengthSize + // Call site table length size
496  CallSiteTableLength + // Call site table length
497  SizeActions + // Actions size
498  SizeTypes;
499  unsigned TTypeBaseOffsetSize = MCAsmInfo::getULEB128Size(TTypeBaseOffset);
500  unsigned TotalSize =
501  sizeof(int8_t) + // LPStart format
502  sizeof(int8_t) + // TType format
503  (HaveTTData ? TTypeBaseOffsetSize : 0) + // TType base offset size
504  TTypeBaseOffset; // TType base offset
505  unsigned SizeAlign = (4 - TotalSize) & 3;
506 
507  if (HaveTTData) {
508  // Account for any extra padding that will be added to the call site table
509  // length.
510  Asm->EmitULEB128(TTypeBaseOffset, "@TType base offset", SizeAlign);
511  SizeAlign = 0;
512  }
513 
514  bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
515 
516  // SjLj Exception handling
517  if (IsSJLJ) {
519 
520  // Add extra padding if it wasn't added to the TType base offset.
521  Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
522 
523  // Emit the landing pad site information.
524  unsigned idx = 0;
526  I = CallSites.begin(), E = CallSites.end(); I != E; ++I, ++idx) {
527  const CallSiteEntry &S = *I;
528 
529  // Offset of the landing pad, counted in 16-byte bundles relative to the
530  // @LPStart address.
531  if (VerboseAsm) {
532  Asm->OutStreamer.AddComment(">> Call Site " + Twine(idx) + " <<");
533  Asm->OutStreamer.AddComment(" On exception at call site "+Twine(idx));
534  }
535  Asm->EmitULEB128(idx);
536 
537  // Offset of the first associated action record, relative to the start of
538  // the action table. This value is biased by 1 (1 indicates the start of
539  // the action table), and 0 indicates that there are no actions.
540  if (VerboseAsm) {
541  if (S.Action == 0)
542  Asm->OutStreamer.AddComment(" Action: cleanup");
543  else
544  Asm->OutStreamer.AddComment(" Action: " +
545  Twine((S.Action - 1) / 2 + 1));
546  }
547  Asm->EmitULEB128(S.Action);
548  }
549  } else {
550  // DWARF Exception handling
551  assert(Asm->MAI->isExceptionHandlingDwarf());
552 
553  // The call-site table is a list of all call sites that may throw an
554  // exception (including C++ 'throw' statements) in the procedure
555  // fragment. It immediately follows the LSDA header. Each entry indicates,
556  // for a given call, the first corresponding action record and corresponding
557  // landing pad.
558  //
559  // The table begins with the number of bytes, stored as an LEB128
560  // compressed, unsigned integer. The records immediately follow the record
561  // count. They are sorted in increasing call-site address. Each record
562  // indicates:
563  //
564  // * The position of the call-site.
565  // * The position of the landing pad.
566  // * The first action record for that call site.
567  //
568  // A missing entry in the call-site table indicates that a call is not
569  // supposed to throw.
570 
571  // Emit the landing pad call site table.
573 
574  // Add extra padding if it wasn't added to the TType base offset.
575  Asm->EmitULEB128(CallSiteTableLength, "Call site table length", SizeAlign);
576 
577  unsigned Entry = 0;
579  I = CallSites.begin(), E = CallSites.end(); I != E; ++I) {
580  const CallSiteEntry &S = *I;
581 
582  MCSymbol *EHFuncBeginSym =
583  Asm->GetTempSymbol("eh_func_begin", Asm->getFunctionNumber());
584 
585  MCSymbol *BeginLabel = S.BeginLabel;
586  if (BeginLabel == 0)
587  BeginLabel = EHFuncBeginSym;
588  MCSymbol *EndLabel = S.EndLabel;
589  if (EndLabel == 0)
590  EndLabel = Asm->GetTempSymbol("eh_func_end", Asm->getFunctionNumber());
591 
592 
593  // Offset of the call site relative to the previous call site, counted in
594  // number of 16-byte bundles. The first call site is counted relative to
595  // the start of the procedure fragment.
596  if (VerboseAsm)
597  Asm->OutStreamer.AddComment(">> Call Site " + Twine(++Entry) + " <<");
598  Asm->EmitLabelDifference(BeginLabel, EHFuncBeginSym, 4);
599  if (VerboseAsm)
600  Asm->OutStreamer.AddComment(Twine(" Call between ") +
601  BeginLabel->getName() + " and " +
602  EndLabel->getName());
603  Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
604 
605  // Offset of the landing pad, counted in 16-byte bundles relative to the
606  // @LPStart address.
607  if (!S.PadLabel) {
608  if (VerboseAsm)
609  Asm->OutStreamer.AddComment(" has no landing pad");
610  Asm->OutStreamer.EmitIntValue(0, 4/*size*/);
611  } else {
612  if (VerboseAsm)
613  Asm->OutStreamer.AddComment(Twine(" jumps to ") +
614  S.PadLabel->getName());
615  Asm->EmitLabelDifference(S.PadLabel, EHFuncBeginSym, 4);
616  }
617 
618  // Offset of the first associated action record, relative to the start of
619  // the action table. This value is biased by 1 (1 indicates the start of
620  // the action table), and 0 indicates that there are no actions.
621  if (VerboseAsm) {
622  if (S.Action == 0)
623  Asm->OutStreamer.AddComment(" On action: cleanup");
624  else
625  Asm->OutStreamer.AddComment(" On action: " +
626  Twine((S.Action - 1) / 2 + 1));
627  }
628  Asm->EmitULEB128(S.Action);
629  }
630  }
631 
632  // Emit the Action Table.
633  int Entry = 0;
635  I = Actions.begin(), E = Actions.end(); I != E; ++I) {
636  const ActionEntry &Action = *I;
637 
638  if (VerboseAsm) {
639  // Emit comments that decode the action table.
640  Asm->OutStreamer.AddComment(">> Action Record " + Twine(++Entry) + " <<");
641  }
642 
643  // Type Filter
644  //
645  // Used by the runtime to match the type of the thrown exception to the
646  // type of the catch clauses or the types in the exception specification.
647  if (VerboseAsm) {
648  if (Action.ValueForTypeID > 0)
649  Asm->OutStreamer.AddComment(" Catch TypeInfo " +
650  Twine(Action.ValueForTypeID));
651  else if (Action.ValueForTypeID < 0)
652  Asm->OutStreamer.AddComment(" Filter TypeInfo " +
653  Twine(Action.ValueForTypeID));
654  else
655  Asm->OutStreamer.AddComment(" Cleanup");
656  }
657  Asm->EmitSLEB128(Action.ValueForTypeID);
658 
659  // Action Record
660  //
661  // Self-relative signed displacement in bytes of the next action record,
662  // or 0 if there is no next action record.
663  if (VerboseAsm) {
664  if (Action.NextAction == 0) {
665  Asm->OutStreamer.AddComment(" No further actions");
666  } else {
667  unsigned NextAction = Entry + (Action.NextAction + 1) / 2;
668  Asm->OutStreamer.AddComment(" Continue to action "+Twine(NextAction));
669  }
670  }
671  Asm->EmitSLEB128(Action.NextAction);
672  }
673 
674  EmitTypeInfos(TTypeEncoding);
675 
676  Asm->EmitAlignment(2);
677 }
678 
679 void DwarfException::EmitTypeInfos(unsigned TTypeEncoding) {
680  const std::vector<const GlobalVariable *> &TypeInfos = MMI->getTypeInfos();
681  const std::vector<unsigned> &FilterIds = MMI->getFilterIds();
682 
683  bool VerboseAsm = Asm->OutStreamer.isVerboseAsm();
684 
685  int Entry = 0;
686  // Emit the Catch TypeInfos.
687  if (VerboseAsm && !TypeInfos.empty()) {
688  Asm->OutStreamer.AddComment(">> Catch TypeInfos <<");
690  Entry = TypeInfos.size();
691  }
692 
693  for (std::vector<const GlobalVariable *>::const_reverse_iterator
694  I = TypeInfos.rbegin(), E = TypeInfos.rend(); I != E; ++I) {
695  const GlobalVariable *GV = *I;
696  if (VerboseAsm)
697  Asm->OutStreamer.AddComment("TypeInfo " + Twine(Entry--));
698  Asm->EmitTTypeReference(GV, TTypeEncoding);
699  }
700 
701  // Emit the Exception Specifications.
702  if (VerboseAsm && !FilterIds.empty()) {
703  Asm->OutStreamer.AddComment(">> Filter TypeInfos <<");
705  Entry = 0;
706  }
707  for (std::vector<unsigned>::const_iterator
708  I = FilterIds.begin(), E = FilterIds.end(); I < E; ++I) {
709  unsigned TypeID = *I;
710  if (VerboseAsm) {
711  --Entry;
712  if (TypeID != 0)
713  Asm->OutStreamer.AddComment("FilterInfo " + Twine(Entry));
714  }
715 
716  Asm->EmitULEB128(TypeID);
717  }
718 }
719 
720 /// EndModule - Emit all exception information that should come after the
721 /// content.
723  llvm_unreachable("Should be implemented");
724 }
725 
726 /// BeginFunction - Gather pre-function exception information. Assumes it's
727 /// being emitted immediately after the function entry point.
729  llvm_unreachable("Should be implemented");
730 }
731 
732 /// EndFunction - Gather and emit post-function exception information.
733 ///
735  llvm_unreachable("Should be implemented");
736 }
bool isExceptionHandlingDwarf() const
Definition: MCAsmInfo.h:522
virtual void AddComment(const Twine &T)
Definition: MCStreamer.h:207
void reserve(unsigned N)
Definition: SmallVector.h:425
const GlobalValue * getGlobal() const
MachineModuleInfo * MMI
MMI - Collected machine module information.
virtual void EndFunction()
EndFunction - Gather and emit post-function exception information.
const DataLayout & getDataLayout() const
getDataLayout - Return information about data layout.
Definition: AsmPrinter.cpp:134
virtual void AddBlankLine()
AddBlankLine - Emit a blank line to a .s file to pretty it up.
Definition: MCStreamer.h:215
MCContext & OutContext
Definition: AsmPrinter.h:72
const std::vector< const GlobalVariable * > & getTypeInfos() const
unsigned getPointerSize(unsigned AS=0) const
Definition: DataLayout.h:261
Type::TypeID TypeID
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
void EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, unsigned Size) const
ActionEntry - Structure describing an entry in the actions table.
const MachineFunction * MF
The current machine function.
Definition: AsmPrinter.h:81
static unsigned SharedTypeIds(const LandingPadInfo *L, const LandingPadInfo *R)
SharedTypeIds - How many leading type ids two landing pads have in common.
unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel)
getCallSiteBeginLabel - Get the call site number for a begin label.
ExceptionHandling::ExceptionsType getExceptionHandlingType() const
Definition: MCAsmInfo.h:519
unsigned getFunctionNumber() const
Definition: AsmPrinter.cpp:125
F(f)
MCSymbol * GetOrCreateSymbol(StringRef Name)
Definition: MCContext.cpp:118
bool CallToNoUnwindFunction(const MachineInstr *MI)
virtual void EndModule()
bool doesNotThrow() const
Determine if the function cannot unwind.
Definition: Function.h:265
SmallVector< MCSymbol *, 1 > BeginLabels
CallSiteEntry - Structure describing an entry in the call-site table.
static unsigned getSLEB128Size(int64_t Value)
Definition: MCAsmInfo.cpp:106
const std::vector< unsigned > & getFilterIds() const
#define llvm_unreachable(msg)
TypeID
Definition: Type.h:53
virtual bool isVerboseAsm() const
Definition: MCStreamer.h:194
unsigned getNumOperands() const
Definition: MachineInstr.h:265
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
unsigned getTTypeEncoding() const
void SwitchSection(const MCSection *Section, const MCExpr *Subsection=0)
Definition: MCStreamer.h:284
MCStreamer & OutStreamer
Definition: AsmPrinter.h:78
AsmPrinter * Asm
Asm - Target of Dwarf emission.
virtual void EmitIntValue(uint64_t Value, unsigned Size)
Definition: MCStreamer.cpp:104
void ComputeCallSiteTable(SmallVectorImpl< CallSiteEntry > &CallSites, const RangeMapType &PadMap, const SmallVectorImpl< const LandingPadInfo * > &LPs, const SmallVectorImpl< unsigned > &FirstActions)
virtual void BeginFunction(const MachineFunction *MF)
#define P(N)
PadRange - Structure holding a try-range and the associated landing pad.
const MCAsmInfo * MAI
Definition: AsmPrinter.h:66
unsigned GetSizeOfEncodedValue(unsigned Encoding) const
GetSizeOfEncodedValue - Return the size of the encoding in bytes.
SmallVector< MCSymbol *, 1 > EndLabels
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
std::vector< int > TypeIds
iterator end()
Definition: DenseMap.h:57
bool count(const KeyT &Val) const
count - Return true if the specified key is in the map.
Definition: DenseMap.h:103
void EmitSLEB128(int64_t Value, const char *Desc=0) const
EmitSLEB128 - emit the specified signed leb128 value.
virtual void EmitTypeInfos(unsigned TTypeEncoding)
virtual void EmitLabel(MCSymbol *Symbol)
Definition: MCStreamer.cpp:212
void EmitTTypeReference(const GlobalValue *GV, unsigned Encoding) const
EmitReference - Emit reference to a ttype global with a specified encoding.
const MCSection * getLSDASection() const
unsigned ComputeActionsTable(const SmallVectorImpl< const LandingPadInfo * > &LPs, SmallVectorImpl< ActionEntry > &Actions, SmallVectorImpl< unsigned > &FirstActions)
bundle_iterator< const MachineInstr, const_instr_iterator > const_iterator
StringRef getName() const
getName - Get the symbol name.
Definition: MCSymbol.h:70
void EmitULEB128(uint64_t Value, const char *Desc=0, unsigned PadTo=0) const
EmitULEB128 - emit the specified unsigned leb128 value.
void EmitEncodingByte(unsigned Val, const char *Desc=0) const
const std::vector< LandingPadInfo > & getLandingPads() const
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
bool isCall(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:349
void EmitAlignment(unsigned NumBits, const GlobalValue *GV=0) const
void resize(unsigned N)
Definition: SmallVector.h:401
static bool PadLT(const LandingPadInfo *L, const LandingPadInfo *R)
PadLT - Order landing pads lexicographically by type id.
const TargetLoweringObjectFile & getObjFileLowering() const
getObjFileLowering - Return information about object file lowering.
Definition: AsmPrinter.cpp:129
static unsigned getULEB128Size(uint64_t Value)
Definition: MCAsmInfo.cpp:97
DwarfException(AsmPrinter *A)
MCSymbol * GetTempSymbol(StringRef Name, unsigned ID) const
iterator find(const KeyT &Val)
Definition: DenseMap.h:108