LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
ScheduleDAGVLIW.cpp
Go to the documentation of this file.
1 //===- ScheduleDAGVLIW.cpp - SelectionDAG list scheduler for VLIW -*- C++ -*-=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a top-down list scheduler, using standard algorithms.
11 // The basic approach uses a priority queue of available nodes to schedule.
12 // One at a time, nodes are taken from the priority queue (thus in priority
13 // order), checked for legality to schedule, and emitted if legal.
14 //
15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
16 // pipeline or resource constraints) or because an input to the instruction has
17 // not completed execution.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #define DEBUG_TYPE "pre-RA-sched"
23 #include "ScheduleDAGSDNodes.h"
24 #include "llvm/ADT/Statistic.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/Support/Debug.h"
35 #include <climits>
36 using namespace llvm;
37 
38 STATISTIC(NumNoops , "Number of noops inserted");
39 STATISTIC(NumStalls, "Number of pipeline stalls");
40 
41 static RegisterScheduler
42  VLIWScheduler("vliw-td", "VLIW scheduler",
44 
45 namespace {
46 //===----------------------------------------------------------------------===//
47 /// ScheduleDAGVLIW - The actual DFA list scheduler implementation. This
48 /// supports / top-down scheduling.
49 ///
50 class ScheduleDAGVLIW : public ScheduleDAGSDNodes {
51 private:
52  /// AvailableQueue - The priority queue to use for the available SUnits.
53  ///
54  SchedulingPriorityQueue *AvailableQueue;
55 
56  /// PendingQueue - This contains all of the instructions whose operands have
57  /// been issued, but their results are not ready yet (due to the latency of
58  /// the operation). Once the operands become available, the instruction is
59  /// added to the AvailableQueue.
60  std::vector<SUnit*> PendingQueue;
61 
62  /// HazardRec - The hazard recognizer to use.
63  ScheduleHazardRecognizer *HazardRec;
64 
65  /// AA - AliasAnalysis for making memory reference queries.
66  AliasAnalysis *AA;
67 
68 public:
69  ScheduleDAGVLIW(MachineFunction &mf,
71  SchedulingPriorityQueue *availqueue)
72  : ScheduleDAGSDNodes(mf), AvailableQueue(availqueue), AA(aa) {
73 
74  const TargetMachine &tm = mf.getTarget();
75  HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(&tm, this);
76  }
77 
78  ~ScheduleDAGVLIW() {
79  delete HazardRec;
80  delete AvailableQueue;
81  }
82 
83  void Schedule();
84 
85 private:
86  void releaseSucc(SUnit *SU, const SDep &D);
87  void releaseSuccessors(SUnit *SU);
88  void scheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
89  void listScheduleTopDown();
90 };
91 } // end anonymous namespace
92 
93 /// Schedule - Schedule the DAG using list scheduling.
94 void ScheduleDAGVLIW::Schedule() {
95  DEBUG(dbgs()
96  << "********** List Scheduling BB#" << BB->getNumber()
97  << " '" << BB->getName() << "' **********\n");
98 
99  // Build the scheduling graph.
100  BuildSchedGraph(AA);
101 
102  AvailableQueue->initNodes(SUnits);
103 
104  listScheduleTopDown();
105 
106  AvailableQueue->releaseState();
107 }
108 
109 //===----------------------------------------------------------------------===//
110 // Top-Down Scheduling
111 //===----------------------------------------------------------------------===//
112 
113 /// releaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
114 /// the PendingQueue if the count reaches zero. Also update its cycle bound.
115 void ScheduleDAGVLIW::releaseSucc(SUnit *SU, const SDep &D) {
116  SUnit *SuccSU = D.getSUnit();
117 
118 #ifndef NDEBUG
119  if (SuccSU->NumPredsLeft == 0) {
120  dbgs() << "*** Scheduling failed! ***\n";
121  SuccSU->dump(this);
122  dbgs() << " has been released too many times!\n";
123  llvm_unreachable(0);
124  }
125 #endif
126  assert(!D.isWeak() && "unexpected artificial DAG edge");
127 
128  --SuccSU->NumPredsLeft;
129 
130  SuccSU->setDepthToAtLeast(SU->getDepth() + D.getLatency());
131 
132  // If all the node's predecessors are scheduled, this node is ready
133  // to be scheduled. Ignore the special ExitSU node.
134  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) {
135  PendingQueue.push_back(SuccSU);
136  }
137 }
138 
139 void ScheduleDAGVLIW::releaseSuccessors(SUnit *SU) {
140  // Top down: release successors.
141  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
142  I != E; ++I) {
143  assert(!I->isAssignedRegDep() &&
144  "The list-td scheduler doesn't yet support physreg dependencies!");
145 
146  releaseSucc(SU, *I);
147  }
148 }
149 
150 /// scheduleNodeTopDown - Add the node to the schedule. Decrement the pending
151 /// count of its successors. If a successor pending count is zero, add it to
152 /// the Available queue.
153 void ScheduleDAGVLIW::scheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
154  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
155  DEBUG(SU->dump(this));
156 
157  Sequence.push_back(SU);
158  assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
159  SU->setDepthToAtLeast(CurCycle);
160 
161  releaseSuccessors(SU);
162  SU->isScheduled = true;
163  AvailableQueue->scheduledNode(SU);
164 }
165 
166 /// listScheduleTopDown - The main loop of list scheduling for top-down
167 /// schedulers.
168 void ScheduleDAGVLIW::listScheduleTopDown() {
169  unsigned CurCycle = 0;
170 
171  // Release any successors of the special Entry node.
172  releaseSuccessors(&EntrySU);
173 
174  // All leaves to AvailableQueue.
175  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
176  // It is available if it has no predecessors.
177  if (SUnits[i].Preds.empty()) {
178  AvailableQueue->push(&SUnits[i]);
179  SUnits[i].isAvailable = true;
180  }
181  }
182 
183  // While AvailableQueue is not empty, grab the node with the highest
184  // priority. If it is not ready put it back. Schedule the node.
185  std::vector<SUnit*> NotReady;
186  Sequence.reserve(SUnits.size());
187  while (!AvailableQueue->empty() || !PendingQueue.empty()) {
188  // Check to see if any of the pending instructions are ready to issue. If
189  // so, add them to the available queue.
190  for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
191  if (PendingQueue[i]->getDepth() == CurCycle) {
192  AvailableQueue->push(PendingQueue[i]);
193  PendingQueue[i]->isAvailable = true;
194  PendingQueue[i] = PendingQueue.back();
195  PendingQueue.pop_back();
196  --i; --e;
197  }
198  else {
199  assert(PendingQueue[i]->getDepth() > CurCycle && "Negative latency?");
200  }
201  }
202 
203  // If there are no instructions available, don't try to issue anything, and
204  // don't advance the hazard recognizer.
205  if (AvailableQueue->empty()) {
206  // Reset DFA state.
207  AvailableQueue->scheduledNode(0);
208  ++CurCycle;
209  continue;
210  }
211 
212  SUnit *FoundSUnit = 0;
213 
214  bool HasNoopHazards = false;
215  while (!AvailableQueue->empty()) {
216  SUnit *CurSUnit = AvailableQueue->pop();
217 
219  HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
221  FoundSUnit = CurSUnit;
222  break;
223  }
224 
225  // Remember if this is a noop hazard.
226  HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
227 
228  NotReady.push_back(CurSUnit);
229  }
230 
231  // Add the nodes that aren't ready back onto the available list.
232  if (!NotReady.empty()) {
233  AvailableQueue->push_all(NotReady);
234  NotReady.clear();
235  }
236 
237  // If we found a node to schedule, do it now.
238  if (FoundSUnit) {
239  scheduleNodeTopDown(FoundSUnit, CurCycle);
240  HazardRec->EmitInstruction(FoundSUnit);
241 
242  // If this is a pseudo-op node, we don't want to increment the current
243  // cycle.
244  if (FoundSUnit->Latency) // Don't increment CurCycle for pseudo-ops!
245  ++CurCycle;
246  } else if (!HasNoopHazards) {
247  // Otherwise, we have a pipeline stall, but no other problem, just advance
248  // the current cycle and try again.
249  DEBUG(dbgs() << "*** Advancing cycle, no work to do\n");
250  HazardRec->AdvanceCycle();
251  ++NumStalls;
252  ++CurCycle;
253  } else {
254  // Otherwise, we have no instructions to issue and we have instructions
255  // that will fault if we don't do this right. This is the case for
256  // processors without pipeline interlocks and other cases.
257  DEBUG(dbgs() << "*** Emitting noop\n");
258  HazardRec->EmitNoop();
259  Sequence.push_back(0); // NULL here means noop
260  ++NumNoops;
261  ++CurCycle;
262  }
263  }
264 
265 #ifndef NDEBUG
266  VerifyScheduledSequence(/*isBottomUp=*/false);
267 #endif
268 }
269 
270 //===----------------------------------------------------------------------===//
271 // Public Constructor Functions
272 //===----------------------------------------------------------------------===//
273 
274 /// createVLIWDAGScheduler - This creates a top-down list scheduler.
277  return new ScheduleDAGVLIW(*IS->MF, IS->AA, new ResourcePriorityQueue(IS));
278 }
MachineFunction * MF
bool isScheduled
Definition: ScheduleDAG.h:291
bool isWeak() const
Definition: ScheduleDAG.h:198
globalsmodref aa
#define llvm_unreachable(msg)
static RegisterScheduler VLIWScheduler("vliw-td","VLIW scheduler", createVLIWDAGScheduler)
unsigned NumPredsLeft
Definition: ScheduleDAG.h:275
Sequence
A sequence of states that a pointer may go through in which an objc_retain and objc_release are actua...
void setDepthToAtLeast(unsigned NewDepth)
ScheduleDAGSDNodes * createVLIWDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level OptLevel)
createVLIWDAGScheduler - This creates a top-down list scheduler.
unsigned short Latency
Definition: ScheduleDAG.h:280
unsigned getLatency() const
Definition: ScheduleDAG.h:150
virtual const TargetInstrInfo * getInstrInfo() const
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
SUnit * getSUnit() const
Definition: ScheduleDAG.h:160
virtual ScheduleHazardRecognizer * CreateTargetHazardRecognizer(const TargetMachine *TM, const ScheduleDAG *DAG) const
unsigned getDepth() const
Definition: ScheduleDAG.h:403
#define I(x, y, z)
Definition: MD5.cpp:54
const TargetMachine & getTarget() const
STATISTIC(NumNoops,"Number of noops inserted")
SmallVector< SDep, 4 > Succs
Definition: ScheduleDAG.h:264
#define DEBUG(X)
Definition: Debug.h:97
void dump(const ScheduleDAG *G) const
SUnit - Scheduling unit. This is a node in the scheduling DAG.
Definition: ScheduleDAG.h:249