LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
TailRecursionElimination.cpp
Go to the documentation of this file.
1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file transforms calls of the current function (self recursion) followed
11 // by a return instruction with a branch to the entry of the function, creating
12 // a loop. This pass also implements the following extensions to the basic
13 // algorithm:
14 //
15 // 1. Trivial instructions between the call and return do not prevent the
16 // transformation from taking place, though currently the analysis cannot
17 // support moving any really useful instructions (only dead ones).
18 // 2. This pass transforms functions that are prevented from being tail
19 // recursive by an associative and commutative expression to use an
20 // accumulator variable, thus compiling the typical naive factorial or
21 // 'fib' implementation into efficient code.
22 // 3. TRE is performed if the function returns void, if the return
23 // returns the result returned by the call, or if the function returns a
24 // run-time constant on all exits from the function. It is possible, though
25 // unlikely, that the return returns something else (like constant 0), and
26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in
27 // the function return the exact same value.
28 // 4. If it can prove that callees do not access their caller stack frame,
29 // they are marked as eligible for tail call elimination (by the code
30 // generator).
31 //
32 // There are several improvements that could be made:
33 //
34 // 1. If the function has any alloca instructions, these instructions will be
35 // moved out of the entry block of the function, causing them to be
36 // evaluated each time through the tail recursion. Safely keeping allocas
37 // in the entry block requires analysis to proves that the tail-called
38 // function does not read or write the stack object.
39 // 2. Tail recursion is only performed if the call immediately precedes the
40 // return instruction. It's possible that there could be a jump between
41 // the call and the return.
42 // 3. There can be intervening operations between the call and the return that
43 // prevent the TRE from occurring. For example, there could be GEP's and
44 // stores to memory that will not be read or written by the call. This
45 // requires some substantial analysis (such as with DSA) to prove safe to
46 // move ahead of the call, but doing so could allow many more TREs to be
47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48 // 4. The algorithm we use to detect if callees access their caller stack
49 // frames is very primitive.
50 //
51 //===----------------------------------------------------------------------===//
52 
53 #define DEBUG_TYPE "tailcallelim"
54 #include "llvm/Transforms/Scalar.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/SmallPtrSet.h"
57 #include "llvm/ADT/Statistic.h"
61 #include "llvm/Analysis/Loads.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/IntrinsicInst.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/CFG.h"
71 #include "llvm/Support/CallSite.h"
72 #include "llvm/Support/Debug.h"
77 using namespace llvm;
78 
79 STATISTIC(NumEliminated, "Number of tail calls removed");
80 STATISTIC(NumRetDuped, "Number of return duplicated");
81 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
82 
83 namespace {
84  struct TailCallElim : public FunctionPass {
85  const TargetTransformInfo *TTI;
86 
87  static char ID; // Pass identification, replacement for typeid
88  TailCallElim() : FunctionPass(ID) {
90  }
91 
92  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
93 
94  virtual bool runOnFunction(Function &F);
95 
96  private:
97  CallInst *FindTRECandidate(Instruction *I,
98  bool CannotTailCallElimCallsMarkedTail);
99  bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
100  BasicBlock *&OldEntry,
101  bool &TailCallsAreMarkedTail,
102  SmallVectorImpl<PHINode *> &ArgumentPHIs,
103  bool CannotTailCallElimCallsMarkedTail);
104  bool FoldReturnAndProcessPred(BasicBlock *BB,
105  ReturnInst *Ret, BasicBlock *&OldEntry,
106  bool &TailCallsAreMarkedTail,
107  SmallVectorImpl<PHINode *> &ArgumentPHIs,
108  bool CannotTailCallElimCallsMarkedTail);
109  bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
110  bool &TailCallsAreMarkedTail,
111  SmallVectorImpl<PHINode *> &ArgumentPHIs,
112  bool CannotTailCallElimCallsMarkedTail);
113  bool CanMoveAboveCall(Instruction *I, CallInst *CI);
114  Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
115  };
116 }
117 
118 char TailCallElim::ID = 0;
119 INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
120  "Tail Call Elimination", false, false)
123  "Tail Call Elimination", false, false)
124 
125 // Public interface to the TailCallElimination pass
127  return new TailCallElim();
128 }
129 
130 void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
132 }
133 
134 /// CanTRE - Scan the specified basic block for alloca instructions.
135 /// If it contains any that are variable-sized or not in the entry block,
136 /// returns false.
137 static bool CanTRE(AllocaInst *AI) {
138  // Because of PR962, we don't TRE allocas outside the entry block.
139 
140  // If this alloca is in the body of the function, or if it is a variable
141  // sized allocation, we cannot tail call eliminate calls marked 'tail'
142  // with this mechanism.
143  BasicBlock *BB = AI->getParent();
144  return BB == &BB->getParent()->getEntryBlock() &&
145  isa<ConstantInt>(AI->getArraySize());
146 }
147 
148 namespace {
149 struct AllocaCaptureTracker : public CaptureTracker {
150  AllocaCaptureTracker() : Captured(false) {}
151 
152  void tooManyUses() LLVM_OVERRIDE { Captured = true; }
153 
154  bool shouldExplore(Use *U) LLVM_OVERRIDE {
155  Value *V = U->getUser();
156  if (isa<CallInst>(V) || isa<InvokeInst>(V))
157  UsesAlloca.insert(V);
158  return true;
159  }
160 
161  bool captured(Use *U) LLVM_OVERRIDE {
162  if (isa<ReturnInst>(U->getUser()))
163  return false;
164  Captured = true;
165  return true;
166  }
167 
168  bool Captured;
170 };
171 } // end anonymous namespace
172 
173 bool TailCallElim::runOnFunction(Function &F) {
174  // If this function is a varargs function, we won't be able to PHI the args
175  // right, so don't even try to convert it...
176  if (F.getFunctionType()->isVarArg()) return false;
177 
178  TTI = &getAnalysis<TargetTransformInfo>();
179  BasicBlock *OldEntry = 0;
180  bool TailCallsAreMarkedTail = false;
181  SmallVector<PHINode*, 8> ArgumentPHIs;
182  bool MadeChange = false;
183 
184  // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls
185  // marked with the 'tail' attribute, because doing so would cause the stack
186  // size to increase (real TRE would deallocate variable sized allocas, TRE
187  // doesn't).
188  bool CanTRETailMarkedCall = true;
189 
190  // Find calls that can be marked tail.
191  AllocaCaptureTracker ACT;
192  for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB) {
193  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
194  if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
195  CanTRETailMarkedCall &= CanTRE(AI);
196  PointerMayBeCaptured(AI, &ACT);
197  // If any allocas are captured, exit.
198  if (ACT.Captured)
199  return false;
200  }
201  }
202  }
203 
204  // Second pass, change any tail recursive calls to loops.
205  //
206  // FIXME: The code generator produces really bad code when an 'escaping
207  // alloca' is changed from being a static alloca to being a dynamic alloca.
208  // Until this is resolved, disable this transformation if that would ever
209  // happen. This bug is PR962.
210  if (ACT.UsesAlloca.empty()) {
211  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
212  if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
213  bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
214  ArgumentPHIs, !CanTRETailMarkedCall);
215  if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
216  Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
217  TailCallsAreMarkedTail, ArgumentPHIs,
218  !CanTRETailMarkedCall);
219  MadeChange |= Change;
220  }
221  }
222  }
223 
224  // If we eliminated any tail recursions, it's possible that we inserted some
225  // silly PHI nodes which just merge an initial value (the incoming operand)
226  // with themselves. Check to see if we did and clean up our mess if so. This
227  // occurs when a function passes an argument straight through to its tail
228  // call.
229  if (!ArgumentPHIs.empty()) {
230  for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
231  PHINode *PN = ArgumentPHIs[i];
232 
233  // If the PHI Node is a dynamic constant, replace it with the value it is.
234  if (Value *PNV = SimplifyInstruction(PN)) {
235  PN->replaceAllUsesWith(PNV);
236  PN->eraseFromParent();
237  }
238  }
239  }
240 
241  // At this point, we know that the function does not have any captured
242  // allocas. If additionally the function does not call setjmp, mark all calls
243  // in the function that do not access stack memory with the tail keyword. This
244  // implies ensuring that there does not exist any path from a call that takes
245  // in an alloca but does not capture it and the call which we wish to mark
246  // with "tail".
248  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
249  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
250  if (CallInst *CI = dyn_cast<CallInst>(I)) {
251  if (!ACT.UsesAlloca.count(CI)) {
252  CI->setTailCall();
253  MadeChange = true;
254  }
255  }
256  }
257  }
258  }
259 
260  return MadeChange;
261 }
262 
263 
264 /// CanMoveAboveCall - Return true if it is safe to move the specified
265 /// instruction from after the call to before the call, assuming that all
266 /// instructions between the call and this instruction are movable.
267 ///
268 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
269  // FIXME: We can move load/store/call/free instructions above the call if the
270  // call does not mod/ref the memory location being processed.
271  if (I->mayHaveSideEffects()) // This also handles volatile loads.
272  return false;
273 
274  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
275  // Loads may always be moved above calls without side effects.
276  if (CI->mayHaveSideEffects()) {
277  // Non-volatile loads may be moved above a call with side effects if it
278  // does not write to memory and the load provably won't trap.
279  // FIXME: Writes to memory only matter if they may alias the pointer
280  // being loaded from.
281  if (CI->mayWriteToMemory() ||
282  !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
283  L->getAlignment()))
284  return false;
285  }
286  }
287 
288  // Otherwise, if this is a side-effect free instruction, check to make sure
289  // that it does not use the return value of the call. If it doesn't use the
290  // return value of the call, it must only use things that are defined before
291  // the call, or movable instructions between the call and the instruction
292  // itself.
293  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
294  if (I->getOperand(i) == CI)
295  return false;
296  return true;
297 }
298 
299 // isDynamicConstant - Return true if the specified value is the same when the
300 // return would exit as it was when the initial iteration of the recursive
301 // function was executed.
302 //
303 // We currently handle static constants and arguments that are not modified as
304 // part of the recursion.
305 //
306 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
307  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
308 
309  // Check to see if this is an immutable argument, if so, the value
310  // will be available to initialize the accumulator.
311  if (Argument *Arg = dyn_cast<Argument>(V)) {
312  // Figure out which argument number this is...
313  unsigned ArgNo = 0;
314  Function *F = CI->getParent()->getParent();
315  for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
316  ++ArgNo;
317 
318  // If we are passing this argument into call as the corresponding
319  // argument operand, then the argument is dynamically constant.
320  // Otherwise, we cannot transform this function safely.
321  if (CI->getArgOperand(ArgNo) == Arg)
322  return true;
323  }
324 
325  // Switch cases are always constant integers. If the value is being switched
326  // on and the return is only reachable from one of its cases, it's
327  // effectively constant.
328  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
329  if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
330  if (SI->getCondition() == V)
331  return SI->getDefaultDest() != RI->getParent();
332 
333  // Not a constant or immutable argument, we can't safely transform.
334  return false;
335 }
336 
337 // getCommonReturnValue - Check to see if the function containing the specified
338 // tail call consistently returns the same runtime-constant value at all exit
339 // points except for IgnoreRI. If so, return the returned value.
340 //
342  Function *F = CI->getParent()->getParent();
343  Value *ReturnedValue = 0;
344 
345  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
346  ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
347  if (RI == 0 || RI == IgnoreRI) continue;
348 
349  // We can only perform this transformation if the value returned is
350  // evaluatable at the start of the initial invocation of the function,
351  // instead of at the end of the evaluation.
352  //
353  Value *RetOp = RI->getOperand(0);
354  if (!isDynamicConstant(RetOp, CI, RI))
355  return 0;
356 
357  if (ReturnedValue && RetOp != ReturnedValue)
358  return 0; // Cannot transform if differing values are returned.
359  ReturnedValue = RetOp;
360  }
361  return ReturnedValue;
362 }
363 
364 /// CanTransformAccumulatorRecursion - If the specified instruction can be
365 /// transformed using accumulator recursion elimination, return the constant
366 /// which is the start of the accumulator value. Otherwise return null.
367 ///
368 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
369  CallInst *CI) {
370  if (!I->isAssociative() || !I->isCommutative()) return 0;
371  assert(I->getNumOperands() == 2 &&
372  "Associative/commutative operations should have 2 args!");
373 
374  // Exactly one operand should be the result of the call instruction.
375  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
376  (I->getOperand(0) != CI && I->getOperand(1) != CI))
377  return 0;
378 
379  // The only user of this instruction we allow is a single return instruction.
380  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
381  return 0;
382 
383  // Ok, now we have to check all of the other return instructions in this
384  // function. If they return non-constants or differing values, then we cannot
385  // transform the function safely.
386  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
387 }
388 
390  while (isa<DbgInfoIntrinsic>(I))
391  ++I;
392  return &*I;
393 }
394 
395 CallInst*
396 TailCallElim::FindTRECandidate(Instruction *TI,
397  bool CannotTailCallElimCallsMarkedTail) {
398  BasicBlock *BB = TI->getParent();
399  Function *F = BB->getParent();
400 
401  if (&BB->front() == TI) // Make sure there is something before the terminator.
402  return 0;
403 
404  // Scan backwards from the return, checking to see if there is a tail call in
405  // this block. If so, set CI to it.
406  CallInst *CI = 0;
407  BasicBlock::iterator BBI = TI;
408  while (true) {
409  CI = dyn_cast<CallInst>(BBI);
410  if (CI && CI->getCalledFunction() == F)
411  break;
412 
413  if (BBI == BB->begin())
414  return 0; // Didn't find a potential tail call.
415  --BBI;
416  }
417 
418  // If this call is marked as a tail call, and if there are dynamic allocas in
419  // the function, we cannot perform this optimization.
420  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
421  return 0;
422 
423  // As a special case, detect code like this:
424  // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
425  // and disable this xform in this case, because the code generator will
426  // lower the call to fabs into inline code.
427  if (BB == &F->getEntryBlock() &&
428  FirstNonDbg(BB->front()) == CI &&
429  FirstNonDbg(llvm::next(BB->begin())) == TI &&
430  CI->getCalledFunction() &&
431  !TTI->isLoweredToCall(CI->getCalledFunction())) {
432  // A single-block function with just a call and a return. Check that
433  // the arguments match.
435  E = CallSite(CI).arg_end();
437  FE = F->arg_end();
438  for (; I != E && FI != FE; ++I, ++FI)
439  if (*I != &*FI) break;
440  if (I == E && FI == FE)
441  return 0;
442  }
443 
444  return CI;
445 }
446 
447 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
448  BasicBlock *&OldEntry,
449  bool &TailCallsAreMarkedTail,
450  SmallVectorImpl<PHINode *> &ArgumentPHIs,
451  bool CannotTailCallElimCallsMarkedTail) {
452  // If we are introducing accumulator recursion to eliminate operations after
453  // the call instruction that are both associative and commutative, the initial
454  // value for the accumulator is placed in this variable. If this value is set
455  // then we actually perform accumulator recursion elimination instead of
456  // simple tail recursion elimination. If the operation is an LLVM instruction
457  // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then
458  // we are handling the case when the return instruction returns a constant C
459  // which is different to the constant returned by other return instructions
460  // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a
461  // special case of accumulator recursion, the operation being "return C".
462  Value *AccumulatorRecursionEliminationInitVal = 0;
463  Instruction *AccumulatorRecursionInstr = 0;
464 
465  // Ok, we found a potential tail call. We can currently only transform the
466  // tail call if all of the instructions between the call and the return are
467  // movable to above the call itself, leaving the call next to the return.
468  // Check that this is the case now.
469  BasicBlock::iterator BBI = CI;
470  for (++BBI; &*BBI != Ret; ++BBI) {
471  if (CanMoveAboveCall(BBI, CI)) continue;
472 
473  // If we can't move the instruction above the call, it might be because it
474  // is an associative and commutative operation that could be transformed
475  // using accumulator recursion elimination. Check to see if this is the
476  // case, and if so, remember the initial accumulator value for later.
477  if ((AccumulatorRecursionEliminationInitVal =
478  CanTransformAccumulatorRecursion(BBI, CI))) {
479  // Yes, this is accumulator recursion. Remember which instruction
480  // accumulates.
481  AccumulatorRecursionInstr = BBI;
482  } else {
483  return false; // Otherwise, we cannot eliminate the tail recursion!
484  }
485  }
486 
487  // We can only transform call/return pairs that either ignore the return value
488  // of the call and return void, ignore the value of the call and return a
489  // constant, return the value returned by the tail call, or that are being
490  // accumulator recursion variable eliminated.
491  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
492  !isa<UndefValue>(Ret->getReturnValue()) &&
493  AccumulatorRecursionEliminationInitVal == 0 &&
494  !getCommonReturnValue(0, CI)) {
495  // One case remains that we are able to handle: the current return
496  // instruction returns a constant, and all other return instructions
497  // return a different constant.
498  if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
499  return false; // Current return instruction does not return a constant.
500  // Check that all other return instructions return a common constant. If
501  // so, record it in AccumulatorRecursionEliminationInitVal.
502  AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
503  if (!AccumulatorRecursionEliminationInitVal)
504  return false;
505  }
506 
507  BasicBlock *BB = Ret->getParent();
508  Function *F = BB->getParent();
509 
510  // OK! We can transform this tail call. If this is the first one found,
511  // create the new entry block, allowing us to branch back to the old entry.
512  if (OldEntry == 0) {
513  OldEntry = &F->getEntryBlock();
514  BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
515  NewEntry->takeName(OldEntry);
516  OldEntry->setName("tailrecurse");
517  BranchInst::Create(OldEntry, NewEntry);
518 
519  // If this tail call is marked 'tail' and if there are any allocas in the
520  // entry block, move them up to the new entry block.
521  TailCallsAreMarkedTail = CI->isTailCall();
522  if (TailCallsAreMarkedTail)
523  // Move all fixed sized allocas from OldEntry to NewEntry.
524  for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
525  NEBI = NewEntry->begin(); OEBI != E; )
526  if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
527  if (isa<ConstantInt>(AI->getArraySize()))
528  AI->moveBefore(NEBI);
529 
530  // Now that we have created a new block, which jumps to the entry
531  // block, insert a PHI node for each argument of the function.
532  // For now, we initialize each PHI to only have the real arguments
533  // which are passed in.
534  Instruction *InsertPos = OldEntry->begin();
535  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
536  I != E; ++I) {
537  PHINode *PN = PHINode::Create(I->getType(), 2,
538  I->getName() + ".tr", InsertPos);
539  I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
540  PN->addIncoming(I, NewEntry);
541  ArgumentPHIs.push_back(PN);
542  }
543  }
544 
545  // If this function has self recursive calls in the tail position where some
546  // are marked tail and some are not, only transform one flavor or another. We
547  // have to choose whether we move allocas in the entry block to the new entry
548  // block or not, so we can't make a good choice for both. NOTE: We could do
549  // slightly better here in the case that the function has no entry block
550  // allocas.
551  if (TailCallsAreMarkedTail && !CI->isTailCall())
552  return false;
553 
554  // Ok, now that we know we have a pseudo-entry block WITH all of the
555  // required PHI nodes, add entries into the PHI node for the actual
556  // parameters passed into the tail-recursive call.
557  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
558  ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
559 
560  // If we are introducing an accumulator variable to eliminate the recursion,
561  // do so now. Note that we _know_ that no subsequent tail recursion
562  // eliminations will happen on this function because of the way the
563  // accumulator recursion predicate is set up.
564  //
565  if (AccumulatorRecursionEliminationInitVal) {
566  Instruction *AccRecInstr = AccumulatorRecursionInstr;
567  // Start by inserting a new PHI node for the accumulator.
568  pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
569  PHINode *AccPN =
570  PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
571  std::distance(PB, PE) + 1,
572  "accumulator.tr", OldEntry->begin());
573 
574  // Loop over all of the predecessors of the tail recursion block. For the
575  // real entry into the function we seed the PHI with the initial value,
576  // computed earlier. For any other existing branches to this block (due to
577  // other tail recursions eliminated) the accumulator is not modified.
578  // Because we haven't added the branch in the current block to OldEntry yet,
579  // it will not show up as a predecessor.
580  for (pred_iterator PI = PB; PI != PE; ++PI) {
581  BasicBlock *P = *PI;
582  if (P == &F->getEntryBlock())
583  AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
584  else
585  AccPN->addIncoming(AccPN, P);
586  }
587 
588  if (AccRecInstr) {
589  // Add an incoming argument for the current block, which is computed by
590  // our associative and commutative accumulator instruction.
591  AccPN->addIncoming(AccRecInstr, BB);
592 
593  // Next, rewrite the accumulator recursion instruction so that it does not
594  // use the result of the call anymore, instead, use the PHI node we just
595  // inserted.
596  AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
597  } else {
598  // Add an incoming argument for the current block, which is just the
599  // constant returned by the current return instruction.
600  AccPN->addIncoming(Ret->getReturnValue(), BB);
601  }
602 
603  // Finally, rewrite any return instructions in the program to return the PHI
604  // node instead of the "initval" that they do currently. This loop will
605  // actually rewrite the return value we are destroying, but that's ok.
606  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
607  if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
608  RI->setOperand(0, AccPN);
609  ++NumAccumAdded;
610  }
611 
612  // Now that all of the PHI nodes are in place, remove the call and
613  // ret instructions, replacing them with an unconditional branch.
614  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
615  NewBI->setDebugLoc(CI->getDebugLoc());
616 
617  BB->getInstList().erase(Ret); // Remove return.
618  BB->getInstList().erase(CI); // Remove call.
619  ++NumEliminated;
620  return true;
621 }
622 
623 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
624  ReturnInst *Ret, BasicBlock *&OldEntry,
625  bool &TailCallsAreMarkedTail,
626  SmallVectorImpl<PHINode *> &ArgumentPHIs,
627  bool CannotTailCallElimCallsMarkedTail) {
628  bool Change = false;
629 
630  // If the return block contains nothing but the return and PHI's,
631  // there might be an opportunity to duplicate the return in its
632  // predecessors and perform TRC there. Look for predecessors that end
633  // in unconditional branch and recursive call(s).
634  SmallVector<BranchInst*, 8> UncondBranchPreds;
635  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
636  BasicBlock *Pred = *PI;
637  TerminatorInst *PTI = Pred->getTerminator();
638  if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
639  if (BI->isUnconditional())
640  UncondBranchPreds.push_back(BI);
641  }
642 
643  while (!UncondBranchPreds.empty()) {
644  BranchInst *BI = UncondBranchPreds.pop_back_val();
645  BasicBlock *Pred = BI->getParent();
646  if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
647  DEBUG(dbgs() << "FOLDING: " << *BB
648  << "INTO UNCOND BRANCH PRED: " << *Pred);
649  EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
650  OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
651  CannotTailCallElimCallsMarkedTail);
652  ++NumRetDuped;
653  Change = true;
654  }
655  }
656 
657  return Change;
658 }
659 
660 bool
661 TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
662  bool &TailCallsAreMarkedTail,
663  SmallVectorImpl<PHINode *> &ArgumentPHIs,
664  bool CannotTailCallElimCallsMarkedTail) {
665  CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
666  if (!CI)
667  return false;
668 
669  return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
670  ArgumentPHIs,
671  CannotTailCallElimCallsMarkedTail);
672 }
BasicBlock * getUniquePredecessor()
Return this block if it has a unique predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:196
void addIncoming(Value *V, BasicBlock *BB)
static PassRegistry * getPassRegistry()
LLVMContext & getContext() const
Definition: Function.cpp:167
LLVM Argument representation.
Definition: Argument.h:35
IterTy arg_end() const
Definition: CallSite.h:143
iterator end()
Definition: Function.h:397
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
bool mayHaveSideEffects() const
Definition: Instruction.h:324
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
arg_iterator arg_end()
Definition: Function.h:418
const Instruction & front() const
Definition: BasicBlock.h:205
F(f)
bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom, unsigned Align, const DataLayout *TD=0)
Definition: Loads.cpp:56
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
iterator begin()
Definition: BasicBlock.h:193
AnalysisUsage & addRequired()
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
Definition: Use.h:60
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
unsigned getNumArgOperands() const
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
void setName(const Twine &Name)
Definition: Value.cpp:175
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
STATISTIC(NumEliminated,"Number of tail calls removed")
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
bool isAssociative() const
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
void takeName(Value *V)
Definition: Value.cpp:239
iterator begin()
Definition: Function.h:395
#define P(N)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
FunctionPass * createTailCallEliminationPass()
static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI)
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
bool isCommutative() const
Definition: Instruction.h:269
arg_iterator arg_begin()
Definition: Function.h:410
Tail Call Elimination
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
bool PointerMayBeCaptured(const Value *V, bool ReturnCaptures, bool StoreCaptures)
iterator erase(iterator where)
Definition: ilist.h:465
static Value * getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI)
bool mayWriteToMemory() const
INITIALIZE_PASS_BEGIN(TailCallElim,"tailcallelim","Tail Call Elimination", false, false) INITIALIZE_PASS_END(TailCallElim
iterator end()
Definition: BasicBlock.h:195
static Instruction * FirstNonDbg(BasicBlock::iterator I)
Type * getType() const
Definition: Value.h:111
Function * getCalledFunction() const
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
static bool CanTRE(AllocaInst *AI)
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
Value * getArgOperand(unsigned i) const
void initializeTailCallElimPass(PassRegistry &)
Instruction * use_back()
Definition: Instruction.h:49
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
FunctionType * getFunctionType() const
Definition: Function.cpp:171
bool hasOneUse() const
Definition: Value.h:161
bool callsFunctionThatReturnsTwice() const
Definition: Function.cpp:728
bool isTailCall() const
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=0, BasicBlock *InsertBefore=0)
Creates a new BasicBlock.
Definition: BasicBlock.h:109
ReturnInst * FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, BasicBlock *Pred)
IterTy arg_begin() const
Definition: CallSite.h:137
Tail Call false
bool isVarArg() const
Definition: DerivedTypes.h:120
LLVM Value Representation.
Definition: Value.h:66
const Value * getArraySize() const
Definition: Instructions.h:86
#define DEBUG(X)
Definition: Debug.h:97
const BasicBlock * getParent() const
Definition: Instruction.h:52
#define LLVM_OVERRIDE
Definition: Compiler.h:155