LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
X86AsmBackend.cpp
Go to the documentation of this file.
1 //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
12 #include "llvm/ADT/StringSwitch.h"
13 #include "llvm/MC/MCAsmBackend.h"
14 #include "llvm/MC/MCAssembler.h"
16 #include "llvm/MC/MCExpr.h"
19 #include "llvm/MC/MCObjectWriter.h"
20 #include "llvm/MC/MCSectionCOFF.h"
21 #include "llvm/MC/MCSectionELF.h"
22 #include "llvm/MC/MCSectionMachO.h"
24 #include "llvm/Support/ELF.h"
26 #include "llvm/Support/MachO.h"
29 using namespace llvm;
30 
31 // Option to allow disabling arithmetic relaxation to workaround PR9807, which
32 // is useful when running bitwise comparison experiments on Darwin. We should be
33 // able to remove this once PR9807 is resolved.
34 static cl::opt<bool>
35 MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
36  cl::desc("Disable relaxation of arithmetic instruction for X86"));
37 
38 static unsigned getFixupKindLog2Size(unsigned Kind) {
39  switch (Kind) {
40  default: llvm_unreachable("invalid fixup kind!");
41  case FK_PCRel_1:
42  case FK_SecRel_1:
43  case FK_Data_1: return 0;
44  case FK_PCRel_2:
45  case FK_SecRel_2:
46  case FK_Data_2: return 1;
47  case FK_PCRel_4:
52  case FK_SecRel_4:
53  case FK_Data_4: return 2;
54  case FK_PCRel_8:
55  case FK_SecRel_8:
56  case FK_Data_8: return 3;
57  }
58 }
59 
60 namespace {
61 
62 class X86ELFObjectWriter : public MCELFObjectTargetWriter {
63 public:
64  X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
65  bool HasRelocationAddend, bool foobar)
66  : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
67 };
68 
69 class X86AsmBackend : public MCAsmBackend {
70  StringRef CPU;
71  bool HasNopl;
72 public:
73  X86AsmBackend(const Target &T, StringRef _CPU)
74  : MCAsmBackend(), CPU(_CPU) {
75  HasNopl = CPU != "generic" && CPU != "i386" && CPU != "i486" &&
76  CPU != "i586" && CPU != "pentium" && CPU != "pentium-mmx" &&
77  CPU != "i686" && CPU != "k6" && CPU != "k6-2" && CPU != "k6-3" &&
78  CPU != "geode" && CPU != "winchip-c6" && CPU != "winchip2" &&
79  CPU != "c3" && CPU != "c3-2";
80  }
81 
82  unsigned getNumFixupKinds() const {
84  }
85 
86  const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
87  const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
88  { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
89  { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
90  { "reloc_signed_4byte", 0, 4 * 8, 0},
91  { "reloc_global_offset_table", 0, 4 * 8, 0}
92  };
93 
94  if (Kind < FirstTargetFixupKind)
95  return MCAsmBackend::getFixupKindInfo(Kind);
96 
97  assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
98  "Invalid kind!");
99  return Infos[Kind - FirstTargetFixupKind];
100  }
101 
102  void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
103  uint64_t Value) const {
104  unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
105 
106  assert(Fixup.getOffset() + Size <= DataSize &&
107  "Invalid fixup offset!");
108 
109  // Check that uppper bits are either all zeros or all ones.
110  // Specifically ignore overflow/underflow as long as the leakage is
111  // limited to the lower bits. This is to remain compatible with
112  // other assemblers.
113  assert(isIntN(Size * 8 + 1, Value) &&
114  "Value does not fit in the Fixup field");
115 
116  for (unsigned i = 0; i != Size; ++i)
117  Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
118  }
119 
120  bool mayNeedRelaxation(const MCInst &Inst) const;
121 
122  bool fixupNeedsRelaxation(const MCFixup &Fixup,
123  uint64_t Value,
124  const MCRelaxableFragment *DF,
125  const MCAsmLayout &Layout) const;
126 
127  void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
128 
129  bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
130 };
131 } // end anonymous namespace
132 
133 static unsigned getRelaxedOpcodeBranch(unsigned Op) {
134  switch (Op) {
135  default:
136  return Op;
137 
138  case X86::JAE_1: return X86::JAE_4;
139  case X86::JA_1: return X86::JA_4;
140  case X86::JBE_1: return X86::JBE_4;
141  case X86::JB_1: return X86::JB_4;
142  case X86::JE_1: return X86::JE_4;
143  case X86::JGE_1: return X86::JGE_4;
144  case X86::JG_1: return X86::JG_4;
145  case X86::JLE_1: return X86::JLE_4;
146  case X86::JL_1: return X86::JL_4;
147  case X86::JMP_1: return X86::JMP_4;
148  case X86::JNE_1: return X86::JNE_4;
149  case X86::JNO_1: return X86::JNO_4;
150  case X86::JNP_1: return X86::JNP_4;
151  case X86::JNS_1: return X86::JNS_4;
152  case X86::JO_1: return X86::JO_4;
153  case X86::JP_1: return X86::JP_4;
154  case X86::JS_1: return X86::JS_4;
155  }
156 }
157 
158 static unsigned getRelaxedOpcodeArith(unsigned Op) {
159  switch (Op) {
160  default:
161  return Op;
162 
163  // IMUL
164  case X86::IMUL16rri8: return X86::IMUL16rri;
165  case X86::IMUL16rmi8: return X86::IMUL16rmi;
166  case X86::IMUL32rri8: return X86::IMUL32rri;
167  case X86::IMUL32rmi8: return X86::IMUL32rmi;
168  case X86::IMUL64rri8: return X86::IMUL64rri32;
169  case X86::IMUL64rmi8: return X86::IMUL64rmi32;
170 
171  // AND
172  case X86::AND16ri8: return X86::AND16ri;
173  case X86::AND16mi8: return X86::AND16mi;
174  case X86::AND32ri8: return X86::AND32ri;
175  case X86::AND32mi8: return X86::AND32mi;
176  case X86::AND64ri8: return X86::AND64ri32;
177  case X86::AND64mi8: return X86::AND64mi32;
178 
179  // OR
180  case X86::OR16ri8: return X86::OR16ri;
181  case X86::OR16mi8: return X86::OR16mi;
182  case X86::OR32ri8: return X86::OR32ri;
183  case X86::OR32mi8: return X86::OR32mi;
184  case X86::OR64ri8: return X86::OR64ri32;
185  case X86::OR64mi8: return X86::OR64mi32;
186 
187  // XOR
188  case X86::XOR16ri8: return X86::XOR16ri;
189  case X86::XOR16mi8: return X86::XOR16mi;
190  case X86::XOR32ri8: return X86::XOR32ri;
191  case X86::XOR32mi8: return X86::XOR32mi;
192  case X86::XOR64ri8: return X86::XOR64ri32;
193  case X86::XOR64mi8: return X86::XOR64mi32;
194 
195  // ADD
196  case X86::ADD16ri8: return X86::ADD16ri;
197  case X86::ADD16mi8: return X86::ADD16mi;
198  case X86::ADD32ri8: return X86::ADD32ri;
199  case X86::ADD32mi8: return X86::ADD32mi;
200  case X86::ADD64ri8: return X86::ADD64ri32;
201  case X86::ADD64mi8: return X86::ADD64mi32;
202 
203  // SUB
204  case X86::SUB16ri8: return X86::SUB16ri;
205  case X86::SUB16mi8: return X86::SUB16mi;
206  case X86::SUB32ri8: return X86::SUB32ri;
207  case X86::SUB32mi8: return X86::SUB32mi;
208  case X86::SUB64ri8: return X86::SUB64ri32;
209  case X86::SUB64mi8: return X86::SUB64mi32;
210 
211  // CMP
212  case X86::CMP16ri8: return X86::CMP16ri;
213  case X86::CMP16mi8: return X86::CMP16mi;
214  case X86::CMP32ri8: return X86::CMP32ri;
215  case X86::CMP32mi8: return X86::CMP32mi;
216  case X86::CMP64ri8: return X86::CMP64ri32;
217  case X86::CMP64mi8: return X86::CMP64mi32;
218 
219  // PUSH
220  case X86::PUSHi8: return X86::PUSHi32;
221  case X86::PUSHi16: return X86::PUSHi32;
222  case X86::PUSH64i8: return X86::PUSH64i32;
223  case X86::PUSH64i16: return X86::PUSH64i32;
224  }
225 }
226 
227 static unsigned getRelaxedOpcode(unsigned Op) {
228  unsigned R = getRelaxedOpcodeArith(Op);
229  if (R != Op)
230  return R;
231  return getRelaxedOpcodeBranch(Op);
232 }
233 
234 bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
235  // Branches can always be relaxed.
236  if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
237  return true;
238 
240  return false;
241 
242  // Check if this instruction is ever relaxable.
243  if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
244  return false;
245 
246 
247  // Check if it has an expression and is not RIP relative.
248  bool hasExp = false;
249  bool hasRIP = false;
250  for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
251  const MCOperand &Op = Inst.getOperand(i);
252  if (Op.isExpr())
253  hasExp = true;
254 
255  if (Op.isReg() && Op.getReg() == X86::RIP)
256  hasRIP = true;
257  }
258 
259  // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
260  // how we do relaxations?
261  return hasExp && !hasRIP;
262 }
263 
264 bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
265  uint64_t Value,
266  const MCRelaxableFragment *DF,
267  const MCAsmLayout &Layout) const {
268  // Relax if the value is too big for a (signed) i8.
269  return int64_t(Value) != int64_t(int8_t(Value));
270 }
271 
272 // FIXME: Can tblgen help at all here to verify there aren't other instructions
273 // we can relax?
274 void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
275  // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
276  unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
277 
278  if (RelaxedOp == Inst.getOpcode()) {
279  SmallString<256> Tmp;
280  raw_svector_ostream OS(Tmp);
281  Inst.dump_pretty(OS);
282  OS << "\n";
283  report_fatal_error("unexpected instruction to relax: " + OS.str());
284  }
285 
286  Res = Inst;
287  Res.setOpcode(RelaxedOp);
288 }
289 
290 /// \brief Write a sequence of optimal nops to the output, covering \p Count
291 /// bytes.
292 /// \return - true on success, false on failure
293 bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
294  static const uint8_t Nops[10][10] = {
295  // nop
296  {0x90},
297  // xchg %ax,%ax
298  {0x66, 0x90},
299  // nopl (%[re]ax)
300  {0x0f, 0x1f, 0x00},
301  // nopl 0(%[re]ax)
302  {0x0f, 0x1f, 0x40, 0x00},
303  // nopl 0(%[re]ax,%[re]ax,1)
304  {0x0f, 0x1f, 0x44, 0x00, 0x00},
305  // nopw 0(%[re]ax,%[re]ax,1)
306  {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
307  // nopl 0L(%[re]ax)
308  {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
309  // nopl 0L(%[re]ax,%[re]ax,1)
310  {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
311  // nopw 0L(%[re]ax,%[re]ax,1)
312  {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
313  // nopw %cs:0L(%[re]ax,%[re]ax,1)
314  {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
315  };
316 
317  // This CPU doesnt support long nops. If needed add more.
318  // FIXME: Can we get this from the subtarget somehow?
319  // FIXME: We could generated something better than plain 0x90.
320  if (!HasNopl) {
321  for (uint64_t i = 0; i < Count; ++i)
322  OW->Write8(0x90);
323  return true;
324  }
325 
326  // 15 is the longest single nop instruction. Emit as many 15-byte nops as
327  // needed, then emit a nop of the remaining length.
328  do {
329  const uint8_t ThisNopLength = (uint8_t) std::min(Count, (uint64_t) 15);
330  const uint8_t Prefixes = ThisNopLength <= 10 ? 0 : ThisNopLength - 10;
331  for (uint8_t i = 0; i < Prefixes; i++)
332  OW->Write8(0x66);
333  const uint8_t Rest = ThisNopLength - Prefixes;
334  for (uint8_t i = 0; i < Rest; i++)
335  OW->Write8(Nops[Rest - 1][i]);
336  Count -= ThisNopLength;
337  } while (Count != 0);
338 
339  return true;
340 }
341 
342 /* *** */
343 
344 namespace {
345 
346 class ELFX86AsmBackend : public X86AsmBackend {
347 public:
348  uint8_t OSABI;
349  ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
350  : X86AsmBackend(T, CPU), OSABI(_OSABI) {
351  HasReliableSymbolDifference = true;
352  }
353 
354  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
355  const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
356  return ES.getFlags() & ELF::SHF_MERGE;
357  }
358 };
359 
360 class ELFX86_32AsmBackend : public ELFX86AsmBackend {
361 public:
362  ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
363  : ELFX86AsmBackend(T, OSABI, CPU) {}
364 
365  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
366  return createX86ELFObjectWriter(OS, /*IsELF64*/ false, OSABI, ELF::EM_386);
367  }
368 };
369 
370 class ELFX86_64AsmBackend : public ELFX86AsmBackend {
371 public:
372  ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
373  : ELFX86AsmBackend(T, OSABI, CPU) {}
374 
375  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
376  return createX86ELFObjectWriter(OS, /*IsELF64*/ true, OSABI, ELF::EM_X86_64);
377  }
378 };
379 
380 class WindowsX86AsmBackend : public X86AsmBackend {
381  bool Is64Bit;
382 
383 public:
384  WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
385  : X86AsmBackend(T, CPU)
386  , Is64Bit(is64Bit) {
387  }
388 
389  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
390  return createX86WinCOFFObjectWriter(OS, Is64Bit);
391  }
392 };
393 
394 namespace CU {
395 
396  /// Compact unwind encoding values.
398  /// [RE]BP based frame where [RE]BP is pused on the stack immediately after
399  /// the return address, then [RE]SP is moved to [RE]BP.
400  UNWIND_MODE_BP_FRAME = 0x01000000,
401 
402  /// A frameless function with a small constant stack size.
403  UNWIND_MODE_STACK_IMMD = 0x02000000,
404 
405  /// A frameless function with a large constant stack size.
406  UNWIND_MODE_STACK_IND = 0x03000000,
407 
408  /// No compact unwind encoding is available.
409  UNWIND_MODE_DWARF = 0x04000000,
410 
411  /// Mask for encoding the frame registers.
412  UNWIND_BP_FRAME_REGISTERS = 0x00007FFF,
413 
414  /// Mask for encoding the frameless registers.
415  UNWIND_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF
416  };
417 
418 } // end CU namespace
419 
420 class DarwinX86AsmBackend : public X86AsmBackend {
421  const MCRegisterInfo &MRI;
422 
423  /// \brief Number of registers that can be saved in a compact unwind encoding.
424  enum { CU_NUM_SAVED_REGS = 6 };
425 
426  mutable unsigned SavedRegs[CU_NUM_SAVED_REGS];
427  bool Is64Bit;
428 
429  unsigned OffsetSize; ///< Offset of a "push" instruction.
430  unsigned PushInstrSize; ///< Size of a "push" instruction.
431  unsigned MoveInstrSize; ///< Size of a "move" instruction.
432  unsigned StackDivide; ///< Amount to adjust stack stize by.
433 protected:
434  /// \brief Implementation of algorithm to generate the compact unwind encoding
435  /// for the CFI instructions.
436  uint32_t
437  generateCompactUnwindEncodingImpl(ArrayRef<MCCFIInstruction> Instrs) const {
438  if (Instrs.empty()) return 0;
439 
440  // Reset the saved registers.
441  unsigned SavedRegIdx = 0;
442  memset(SavedRegs, 0, sizeof(SavedRegs));
443 
444  bool HasFP = false;
445 
446  // Encode that we are using EBP/RBP as the frame pointer.
447  uint32_t CompactUnwindEncoding = 0;
448 
449  unsigned SubtractInstrIdx = Is64Bit ? 3 : 2;
450  unsigned InstrOffset = 0;
451  unsigned StackAdjust = 0;
452  unsigned StackSize = 0;
453  unsigned PrevStackSize = 0;
454  unsigned NumDefCFAOffsets = 0;
455 
456  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
457  const MCCFIInstruction &Inst = Instrs[i];
458 
459  switch (Inst.getOperation()) {
460  default:
461  // Any other CFI directives indicate a frame that we aren't prepared
462  // to represent via compact unwind, so just bail out.
463  return 0;
465  // Defines a frame pointer. E.g.
466  //
467  // movq %rsp, %rbp
468  // L0:
469  // .cfi_def_cfa_register %rbp
470  //
471  HasFP = true;
472  assert(MRI.getLLVMRegNum(Inst.getRegister(), true) ==
473  (Is64Bit ? X86::RBP : X86::EBP) && "Invalid frame pointer!");
474 
475  // Reset the counts.
476  memset(SavedRegs, 0, sizeof(SavedRegs));
477  StackAdjust = 0;
478  SavedRegIdx = 0;
479  InstrOffset += MoveInstrSize;
480  break;
481  }
483  // Defines a new offset for the CFA. E.g.
484  //
485  // With frame:
486  //
487  // pushq %rbp
488  // L0:
489  // .cfi_def_cfa_offset 16
490  //
491  // Without frame:
492  //
493  // subq $72, %rsp
494  // L0:
495  // .cfi_def_cfa_offset 80
496  //
497  PrevStackSize = StackSize;
498  StackSize = std::abs(Inst.getOffset()) / StackDivide;
499  ++NumDefCFAOffsets;
500  break;
501  }
503  // Defines a "push" of a callee-saved register. E.g.
504  //
505  // pushq %r15
506  // pushq %r14
507  // pushq %rbx
508  // L0:
509  // subq $120, %rsp
510  // L1:
511  // .cfi_offset %rbx, -40
512  // .cfi_offset %r14, -32
513  // .cfi_offset %r15, -24
514  //
515  if (SavedRegIdx == CU_NUM_SAVED_REGS)
516  // If there are too many saved registers, we cannot use a compact
517  // unwind encoding.
518  return CU::UNWIND_MODE_DWARF;
519 
520  unsigned Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
521  SavedRegs[SavedRegIdx++] = Reg;
522  StackAdjust += OffsetSize;
523  InstrOffset += PushInstrSize;
524  break;
525  }
526  }
527  }
528 
529  StackAdjust /= StackDivide;
530 
531  if (HasFP) {
532  if ((StackAdjust & 0xFF) != StackAdjust)
533  // Offset was too big for a compact unwind encoding.
534  return CU::UNWIND_MODE_DWARF;
535 
536  // Get the encoding of the saved registers when we have a frame pointer.
537  uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame();
538  if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
539 
540  CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
541  CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
542  CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
543  } else {
544  // If the amount of the stack allocation is the size of a register, then
545  // we "push" the RAX/EAX register onto the stack instead of adjusting the
546  // stack pointer with a SUB instruction. We don't support the push of the
547  // RAX/EAX register with compact unwind. So we check for that situation
548  // here.
549  if ((NumDefCFAOffsets == SavedRegIdx + 1 &&
550  StackSize - PrevStackSize == 1) ||
551  (Instrs.size() == 1 && NumDefCFAOffsets == 1 && StackSize == 2))
552  return CU::UNWIND_MODE_DWARF;
553 
554  SubtractInstrIdx += InstrOffset;
555  ++StackAdjust;
556 
557  if ((StackSize & 0xFF) == StackSize) {
558  // Frameless stack with a small stack size.
559  CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
560 
561  // Encode the stack size.
562  CompactUnwindEncoding |= (StackSize & 0xFF) << 16;
563  } else {
564  if ((StackAdjust & 0x7) != StackAdjust)
565  // The extra stack adjustments are too big for us to handle.
566  return CU::UNWIND_MODE_DWARF;
567 
568  // Frameless stack with an offset too large for us to encode compactly.
569  CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
570 
571  // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
572  // instruction.
573  CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
574 
575  // Encode any extra stack stack adjustments (done via push
576  // instructions).
577  CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
578  }
579 
580  // Encode the number of registers saved. (Reverse the list first.)
581  std::reverse(&SavedRegs[0], &SavedRegs[SavedRegIdx]);
582  CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
583 
584  // Get the encoding of the saved registers when we don't have a frame
585  // pointer.
586  uint32_t RegEnc = encodeCompactUnwindRegistersWithoutFrame(SavedRegIdx);
587  if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
588 
589  // Encode the register encoding.
590  CompactUnwindEncoding |=
591  RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
592  }
593 
594  return CompactUnwindEncoding;
595  }
596 
597 private:
598  /// \brief Get the compact unwind number for a given register. The number
599  /// corresponds to the enum lists in compact_unwind_encoding.h.
600  int getCompactUnwindRegNum(unsigned Reg) const {
601  static const uint16_t CU32BitRegs[7] = {
603  };
604  static const uint16_t CU64BitRegs[] = {
605  X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
606  };
607  const uint16_t *CURegs = Is64Bit ? CU64BitRegs : CU32BitRegs;
608  for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
609  if (*CURegs == Reg)
610  return Idx;
611 
612  return -1;
613  }
614 
615  /// \brief Return the registers encoded for a compact encoding with a frame
616  /// pointer.
617  uint32_t encodeCompactUnwindRegistersWithFrame() const {
618  // Encode the registers in the order they were saved --- 3-bits per
619  // register. The list of saved registers is assumed to be in reverse
620  // order. The registers are numbered from 1 to CU_NUM_SAVED_REGS.
621  uint32_t RegEnc = 0;
622  for (int i = 0, Idx = 0; i != CU_NUM_SAVED_REGS; ++i) {
623  unsigned Reg = SavedRegs[i];
624  if (Reg == 0) break;
625 
626  int CURegNum = getCompactUnwindRegNum(Reg);
627  if (CURegNum == -1) return ~0U;
628 
629  // Encode the 3-bit register number in order, skipping over 3-bits for
630  // each register.
631  RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
632  }
633 
634  assert((RegEnc & 0x3FFFF) == RegEnc &&
635  "Invalid compact register encoding!");
636  return RegEnc;
637  }
638 
639  /// \brief Create the permutation encoding used with frameless stacks. It is
640  /// passed the number of registers to be saved and an array of the registers
641  /// saved.
642  uint32_t encodeCompactUnwindRegistersWithoutFrame(unsigned RegCount) const {
643  // The saved registers are numbered from 1 to 6. In order to encode the
644  // order in which they were saved, we re-number them according to their
645  // place in the register order. The re-numbering is relative to the last
646  // re-numbered register. E.g., if we have registers {6, 2, 4, 5} saved in
647  // that order:
648  //
649  // Orig Re-Num
650  // ---- ------
651  // 6 6
652  // 2 2
653  // 4 3
654  // 5 3
655  //
656  for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
657  int CUReg = getCompactUnwindRegNum(SavedRegs[i]);
658  if (CUReg == -1) return ~0U;
659  SavedRegs[i] = CUReg;
660  }
661 
662  // Reverse the list.
663  std::reverse(&SavedRegs[0], &SavedRegs[CU_NUM_SAVED_REGS]);
664 
665  uint32_t RenumRegs[CU_NUM_SAVED_REGS];
666  for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i){
667  unsigned Countless = 0;
668  for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
669  if (SavedRegs[j] < SavedRegs[i])
670  ++Countless;
671 
672  RenumRegs[i] = SavedRegs[i] - Countless - 1;
673  }
674 
675  // Take the renumbered values and encode them into a 10-bit number.
676  uint32_t permutationEncoding = 0;
677  switch (RegCount) {
678  case 6:
679  permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
680  + 6 * RenumRegs[2] + 2 * RenumRegs[3]
681  + RenumRegs[4];
682  break;
683  case 5:
684  permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
685  + 6 * RenumRegs[3] + 2 * RenumRegs[4]
686  + RenumRegs[5];
687  break;
688  case 4:
689  permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
690  + 3 * RenumRegs[4] + RenumRegs[5];
691  break;
692  case 3:
693  permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
694  + RenumRegs[5];
695  break;
696  case 2:
697  permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
698  break;
699  case 1:
700  permutationEncoding |= RenumRegs[5];
701  break;
702  }
703 
704  assert((permutationEncoding & 0x3FF) == permutationEncoding &&
705  "Invalid compact register encoding!");
706  return permutationEncoding;
707  }
708 
709 public:
710  DarwinX86AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef CPU,
711  bool Is64Bit)
712  : X86AsmBackend(T, CPU), MRI(MRI), Is64Bit(Is64Bit) {
713  memset(SavedRegs, 0, sizeof(SavedRegs));
714  OffsetSize = Is64Bit ? 8 : 4;
715  MoveInstrSize = Is64Bit ? 3 : 2;
716  StackDivide = Is64Bit ? 8 : 4;
717  PushInstrSize = 1;
718  }
719 };
720 
721 class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
722  bool SupportsCU;
723 public:
724  DarwinX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
725  StringRef CPU, bool SupportsCU)
726  : DarwinX86AsmBackend(T, MRI, CPU, false), SupportsCU(SupportsCU) {}
727 
728  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
729  return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
732  }
733 
734  /// \brief Generate the compact unwind encoding for the CFI instructions.
735  virtual uint32_t
736  generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const {
737  return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
738  }
739 };
740 
741 class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
742  bool SupportsCU;
743  const MachO::CPUSubTypeX86 Subtype;
744 public:
745  DarwinX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
746  StringRef CPU, bool SupportsCU,
748  : DarwinX86AsmBackend(T, MRI, CPU, true), SupportsCU(SupportsCU),
749  Subtype(st) {
750  HasReliableSymbolDifference = true;
751  }
752 
753  MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
754  return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
755  MachO::CPU_TYPE_X86_64, Subtype);
756  }
757 
758  virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
759  // Temporary labels in the string literals sections require symbols. The
760  // issue is that the x86_64 relocation format does not allow symbol +
761  // offset, and so the linker does not have enough information to resolve the
762  // access to the appropriate atom unless an external relocation is used. For
763  // non-cstring sections, we expect the compiler to use a non-temporary label
764  // for anything that could have an addend pointing outside the symbol.
765  //
766  // See <rdar://problem/4765733>.
767  const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
769  }
770 
771  virtual bool isSectionAtomizable(const MCSection &Section) const {
772  const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
773  // Fixed sized data sections are uniqued, they cannot be diced into atoms.
774  switch (SMO.getType()) {
775  default:
776  return true;
777 
787  return false;
788  }
789  }
790 
791  /// \brief Generate the compact unwind encoding for the CFI instructions.
792  virtual uint32_t
793  generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const {
794  return SupportsCU ? generateCompactUnwindEncodingImpl(Instrs) : 0;
795  }
796 };
797 
798 } // end anonymous namespace
799 
801  const MCRegisterInfo &MRI,
802  StringRef TT,
803  StringRef CPU) {
804  Triple TheTriple(TT);
805 
806  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
807  return new DarwinX86_32AsmBackend(T, MRI, CPU,
808  TheTriple.isMacOSX() &&
809  !TheTriple.isMacOSXVersionLT(10, 7));
810 
811  if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
812  return new WindowsX86AsmBackend(T, false, CPU);
813 
814  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
815  return new ELFX86_32AsmBackend(T, OSABI, CPU);
816 }
817 
819  const MCRegisterInfo &MRI,
820  StringRef TT,
821  StringRef CPU) {
822  Triple TheTriple(TT);
823 
824  if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) {
827  .Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
829  return new DarwinX86_64AsmBackend(T, MRI, CPU,
830  TheTriple.isMacOSX() &&
831  !TheTriple.isMacOSXVersionLT(10, 7), CS);
832  }
833 
834  if (TheTriple.isOSWindows() && TheTriple.getEnvironment() != Triple::ELF)
835  return new WindowsX86AsmBackend(T, true, CPU);
836 
837  uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
838  return new ELFX86_64AsmBackend(T, OSABI, CPU);
839 }
OSType getOS() const
getOS - Get the parsed operating system type of this triple.
Definition: Triple.h:178
A eight-byte pc relative fixup.
Definition: MCFixup.h:30
bool isReg() const
Definition: MCInst.h:56
int abs(int j);
unsigned getFlags() const
Definition: MCSectionELF.h:68
unsigned getRegister() const
Definition: MCDwarf.h:411
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
bool isOSWindows() const
Tests whether the OS is Windows.
Definition: Triple.h:328
MCObjectWriter * createX86WinCOFFObjectWriter(raw_ostream &OS, bool Is64Bit)
createX86WinCOFFObjectWriter - Construct an X86 Win COFF object writer.
A one-byte pc relative fixup.
Definition: MCFixup.h:27
bool isMacOSX() const
Definition: Triple.h:303
int getOffset() const
Definition: MCDwarf.h:424
MCObjectWriter * createX86MachObjectWriter(raw_ostream &OS, bool Is64Bit, uint32_t CPUType, uint32_t CPUSubtype)
createX86MachObjectWriter - Construct an X86 Mach-O object writer.
#define llvm_unreachable(msg)
A four-byte section relative fixup.
Definition: MCFixup.h:37
#define false
Definition: ConvertUTF.c:64
A four-byte fixup.
Definition: MCFixup.h:25
unsigned isMacOSXVersionLT(unsigned Major, unsigned Minor=0, unsigned Micro=0) const
Definition: Triple.h:288
A two-byte section relative fixup.
Definition: MCFixup.h:36
unsigned getReg() const
getReg - Returns the register number.
Definition: MCInst.h:63
uint32_t getOffset() const
Definition: MCFixup.h:90
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
static cl::opt< bool > MCDisableArithRelaxation("mc-x86-disable-arith-relaxation", cl::desc("Disable relaxation of arithmetic instruction for X86"))
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:42
#define true
Definition: ConvertUTF.c:65
static unsigned getRelaxedOpcode(unsigned Op)
void Write8(uint8_t Value)
MCFixupKind
MCFixupKind - Extensible enumeration to represent the type of a fixup.
Definition: MCFixup.h:22
bool isExpr() const
Definition: MCInst.h:59
MCAsmBackend * createX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU)
static unsigned getRelaxedOpcodeArith(unsigned Op)
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:104
static unsigned getFixupKindLog2Size(unsigned Kind)
int getLLVMRegNum(unsigned RegNum, bool isEH) const
Map a dwarf register back to a target register.
bool isIntN(unsigned N, int64_t x)
Definition: MathExtras.h:321
MCAsmBackend * createX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI, StringRef TT, StringRef CPU)
MCFixupKind getKind() const
Definition: MCFixup.h:88
CompactUnwindEncodings
Compact unwind encoding values.
A one-byte fixup.
Definition: MCFixup.h:23
bool isOSDarwin() const
isOSDarwin - Is this a "Darwin" OS (OS X or iOS).
Definition: Triple.h:313
OpType getOperation() const
Definition: MCDwarf.h:408
void setOpcode(unsigned Op)
Definition: MCInst.h:157
A two-byte pc relative fixup.
Definition: MCFixup.h:28
A four-byte pc relative fixup.
Definition: MCFixup.h:29
static unsigned getRelaxedOpcodeBranch(unsigned Op)
R Default(const T &Value) const
Definition: StringSwitch.h:111
unsigned getOpcode() const
Definition: MCInst.h:158
A one-byte section relative fixup.
Definition: MCFixup.h:35
void dump_pretty(raw_ostream &OS, const MCAsmInfo *MAI=0, const MCInstPrinter *Printer=0, StringRef Separator=" ") const
Dump the MCInst as prettily as possible using the additional MC structures, if given. Operators are separated by the Separator string.
Definition: MCInst.cpp:51
A eight-byte section relative fixup.
Definition: MCFixup.h:38
MCObjectWriter * createX86ELFObjectWriter(raw_ostream &OS, bool IsELF64, uint8_t OSABI, uint16_t EMachine)
createX86ELFObjectWriter - Construct an X86 ELF object writer.
unsigned getNumOperands() const
Definition: MCInst.h:165
StringRef getArchName() const
Definition: Triple.cpp:486
A eight-byte fixup.
Definition: MCFixup.h:26
MCFixupKindInfo - Target independent information on a fixup kind.
EnvironmentType getEnvironment() const
getEnvironment - Get the parsed environment type of this triple.
Definition: Triple.h:187
LLVM Value Representation.
Definition: Value.h:66
MCAsmBackend - Generic interface to target specific assembler backends.
Definition: MCAsmBackend.h:34
unsigned getType() const
const MCRegisterInfo & MRI
virtual const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const
getFixupKindInfo - Get information on a fixup kind.
A two-byte fixup.
Definition: MCFixup.h:24
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:163