LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
InstCombineSimplifyDemanded.cpp
Go to the documentation of this file.
1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains logic for simplifying instructions based on information
11 // about how they are used.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 
16 #include "InstCombine.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/IntrinsicInst.h"
20 
21 using namespace llvm;
22 using namespace llvm::PatternMatch;
23 
24 /// ShrinkDemandedConstant - Check to see if the specified operand of the
25 /// specified instruction is a constant integer. If so, check to see if there
26 /// are any bits set in the constant that are not demanded. If so, shrink the
27 /// constant and return true.
28 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
29  APInt Demanded) {
30  assert(I && "No instruction?");
31  assert(OpNo < I->getNumOperands() && "Operand index too large");
32 
33  // If the operand is not a constant integer, nothing to do.
34  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
35  if (!OpC) return false;
36 
37  // If there are no bits set that aren't demanded, nothing to do.
38  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
39  if ((~Demanded & OpC->getValue()) == 0)
40  return false;
41 
42  // This instruction is producing bits that are not demanded. Shrink the RHS.
43  Demanded &= OpC->getValue();
44  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
45  return true;
46 }
47 
48 
49 
50 /// SimplifyDemandedInstructionBits - Inst is an integer instruction that
51 /// SimplifyDemandedBits knows about. See if the instruction has any
52 /// properties that allow us to simplify its operands.
53 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
54  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
55  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
56  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
57 
58  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
59  KnownZero, KnownOne, 0);
60  if (V == 0) return false;
61  if (V == &Inst) return true;
62  ReplaceInstUsesWith(Inst, V);
63  return true;
64 }
65 
66 /// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
67 /// specified instruction operand if possible, updating it in place. It returns
68 /// true if it made any change and false otherwise.
69 bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
70  APInt &KnownZero, APInt &KnownOne,
71  unsigned Depth) {
72  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
73  KnownZero, KnownOne, Depth);
74  if (NewVal == 0) return false;
75  U = NewVal;
76  return true;
77 }
78 
79 
80 /// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
81 /// value based on the demanded bits. When this function is called, it is known
82 /// that only the bits set in DemandedMask of the result of V are ever used
83 /// downstream. Consequently, depending on the mask and V, it may be possible
84 /// to replace V with a constant or one of its operands. In such cases, this
85 /// function does the replacement and returns true. In all other cases, it
86 /// returns false after analyzing the expression and setting KnownOne and known
87 /// to be one in the expression. KnownZero contains all the bits that are known
88 /// to be zero in the expression. These are provided to potentially allow the
89 /// caller (which might recursively be SimplifyDemandedBits itself) to simplify
90 /// the expression. KnownOne and KnownZero always follow the invariant that
91 /// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
92 /// the bits in KnownOne and KnownZero may only be accurate for those bits set
93 /// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
94 /// and KnownOne must all be the same.
95 ///
96 /// This returns null if it did not change anything and it permits no
97 /// simplification. This returns V itself if it did some simplification of V's
98 /// operands based on the information about what bits are demanded. This returns
99 /// some other non-null value if it found out that V is equal to another value
100 /// in the context where the specified bits are demanded, but not for all users.
101 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
102  APInt &KnownZero, APInt &KnownOne,
103  unsigned Depth) {
104  assert(V != 0 && "Null pointer of Value???");
105  assert(Depth <= 6 && "Limit Search Depth");
106  uint32_t BitWidth = DemandedMask.getBitWidth();
107  Type *VTy = V->getType();
108  assert((TD || !VTy->isPointerTy()) &&
109  "SimplifyDemandedBits needs to know bit widths!");
110  assert((!TD || TD->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
111  (!VTy->isIntOrIntVectorTy() ||
112  VTy->getScalarSizeInBits() == BitWidth) &&
113  KnownZero.getBitWidth() == BitWidth &&
114  KnownOne.getBitWidth() == BitWidth &&
115  "Value *V, DemandedMask, KnownZero and KnownOne "
116  "must have same BitWidth");
117  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
118  // We know all of the bits for a constant!
119  KnownOne = CI->getValue() & DemandedMask;
120  KnownZero = ~KnownOne & DemandedMask;
121  return 0;
122  }
123  if (isa<ConstantPointerNull>(V)) {
124  // We know all of the bits for a constant!
125  KnownOne.clearAllBits();
126  KnownZero = DemandedMask;
127  return 0;
128  }
129 
130  KnownZero.clearAllBits();
131  KnownOne.clearAllBits();
132  if (DemandedMask == 0) { // Not demanding any bits from V.
133  if (isa<UndefValue>(V))
134  return 0;
135  return UndefValue::get(VTy);
136  }
137 
138  if (Depth == 6) // Limit search depth.
139  return 0;
140 
141  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
142  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
143 
145  if (!I) {
146  ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
147  return 0; // Only analyze instructions.
148  }
149 
150  // If there are multiple uses of this value and we aren't at the root, then
151  // we can't do any simplifications of the operands, because DemandedMask
152  // only reflects the bits demanded by *one* of the users.
153  if (Depth != 0 && !I->hasOneUse()) {
154  // Despite the fact that we can't simplify this instruction in all User's
155  // context, we can at least compute the knownzero/knownone bits, and we can
156  // do simplifications that apply to *just* the one user if we know that
157  // this instruction has a simpler value in that context.
158  if (I->getOpcode() == Instruction::And) {
159  // If either the LHS or the RHS are Zero, the result is zero.
160  ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
161  ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
162 
163  // If all of the demanded bits are known 1 on one side, return the other.
164  // These bits cannot contribute to the result of the 'and' in this
165  // context.
166  if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
167  (DemandedMask & ~LHSKnownZero))
168  return I->getOperand(0);
169  if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
170  (DemandedMask & ~RHSKnownZero))
171  return I->getOperand(1);
172 
173  // If all of the demanded bits in the inputs are known zeros, return zero.
174  if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
175  return Constant::getNullValue(VTy);
176 
177  } else if (I->getOpcode() == Instruction::Or) {
178  // We can simplify (X|Y) -> X or Y in the user's context if we know that
179  // only bits from X or Y are demanded.
180 
181  // If either the LHS or the RHS are One, the result is One.
182  ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
183  ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
184 
185  // If all of the demanded bits are known zero on one side, return the
186  // other. These bits cannot contribute to the result of the 'or' in this
187  // context.
188  if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
189  (DemandedMask & ~LHSKnownOne))
190  return I->getOperand(0);
191  if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
192  (DemandedMask & ~RHSKnownOne))
193  return I->getOperand(1);
194 
195  // If all of the potentially set bits on one side are known to be set on
196  // the other side, just use the 'other' side.
197  if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
198  (DemandedMask & (~RHSKnownZero)))
199  return I->getOperand(0);
200  if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
201  (DemandedMask & (~LHSKnownZero)))
202  return I->getOperand(1);
203  } else if (I->getOpcode() == Instruction::Xor) {
204  // We can simplify (X^Y) -> X or Y in the user's context if we know that
205  // only bits from X or Y are demanded.
206 
207  ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
208  ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
209 
210  // If all of the demanded bits are known zero on one side, return the
211  // other.
212  if ((DemandedMask & RHSKnownZero) == DemandedMask)
213  return I->getOperand(0);
214  if ((DemandedMask & LHSKnownZero) == DemandedMask)
215  return I->getOperand(1);
216  }
217 
218  // Compute the KnownZero/KnownOne bits to simplify things downstream.
219  ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
220  return 0;
221  }
222 
223  // If this is the root being simplified, allow it to have multiple uses,
224  // just set the DemandedMask to all bits so that we can try to simplify the
225  // operands. This allows visitTruncInst (for example) to simplify the
226  // operand of a trunc without duplicating all the logic below.
227  if (Depth == 0 && !V->hasOneUse())
228  DemandedMask = APInt::getAllOnesValue(BitWidth);
229 
230  switch (I->getOpcode()) {
231  default:
232  ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
233  break;
234  case Instruction::And:
235  // If either the LHS or the RHS are Zero, the result is zero.
236  if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
237  RHSKnownZero, RHSKnownOne, Depth+1) ||
238  SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
239  LHSKnownZero, LHSKnownOne, Depth+1))
240  return I;
241  assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
242  assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
243 
244  // If all of the demanded bits are known 1 on one side, return the other.
245  // These bits cannot contribute to the result of the 'and'.
246  if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
247  (DemandedMask & ~LHSKnownZero))
248  return I->getOperand(0);
249  if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
250  (DemandedMask & ~RHSKnownZero))
251  return I->getOperand(1);
252 
253  // If all of the demanded bits in the inputs are known zeros, return zero.
254  if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
255  return Constant::getNullValue(VTy);
256 
257  // If the RHS is a constant, see if we can simplify it.
258  if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
259  return I;
260 
261  // Output known-1 bits are only known if set in both the LHS & RHS.
262  KnownOne = RHSKnownOne & LHSKnownOne;
263  // Output known-0 are known to be clear if zero in either the LHS | RHS.
264  KnownZero = RHSKnownZero | LHSKnownZero;
265  break;
266  case Instruction::Or:
267  // If either the LHS or the RHS are One, the result is One.
268  if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
269  RHSKnownZero, RHSKnownOne, Depth+1) ||
270  SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
271  LHSKnownZero, LHSKnownOne, Depth+1))
272  return I;
273  assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
274  assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
275 
276  // If all of the demanded bits are known zero on one side, return the other.
277  // These bits cannot contribute to the result of the 'or'.
278  if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
279  (DemandedMask & ~LHSKnownOne))
280  return I->getOperand(0);
281  if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
282  (DemandedMask & ~RHSKnownOne))
283  return I->getOperand(1);
284 
285  // If all of the potentially set bits on one side are known to be set on
286  // the other side, just use the 'other' side.
287  if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
288  (DemandedMask & (~RHSKnownZero)))
289  return I->getOperand(0);
290  if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
291  (DemandedMask & (~LHSKnownZero)))
292  return I->getOperand(1);
293 
294  // If the RHS is a constant, see if we can simplify it.
295  if (ShrinkDemandedConstant(I, 1, DemandedMask))
296  return I;
297 
298  // Output known-0 bits are only known if clear in both the LHS & RHS.
299  KnownZero = RHSKnownZero & LHSKnownZero;
300  // Output known-1 are known to be set if set in either the LHS | RHS.
301  KnownOne = RHSKnownOne | LHSKnownOne;
302  break;
303  case Instruction::Xor: {
304  if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
305  RHSKnownZero, RHSKnownOne, Depth+1) ||
306  SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
307  LHSKnownZero, LHSKnownOne, Depth+1))
308  return I;
309  assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
310  assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
311 
312  // If all of the demanded bits are known zero on one side, return the other.
313  // These bits cannot contribute to the result of the 'xor'.
314  if ((DemandedMask & RHSKnownZero) == DemandedMask)
315  return I->getOperand(0);
316  if ((DemandedMask & LHSKnownZero) == DemandedMask)
317  return I->getOperand(1);
318 
319  // If all of the demanded bits are known to be zero on one side or the
320  // other, turn this into an *inclusive* or.
321  // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
322  if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
323  Instruction *Or =
324  BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
325  I->getName());
326  return InsertNewInstWith(Or, *I);
327  }
328 
329  // If all of the demanded bits on one side are known, and all of the set
330  // bits on that side are also known to be set on the other side, turn this
331  // into an AND, as we know the bits will be cleared.
332  // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
333  if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
334  // all known
335  if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
337  ~RHSKnownOne & DemandedMask);
338  Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
339  return InsertNewInstWith(And, *I);
340  }
341  }
342 
343  // If the RHS is a constant, see if we can simplify it.
344  // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
345  if (ShrinkDemandedConstant(I, 1, DemandedMask))
346  return I;
347 
348  // If our LHS is an 'and' and if it has one use, and if any of the bits we
349  // are flipping are known to be set, then the xor is just resetting those
350  // bits to zero. We can just knock out bits from the 'and' and the 'xor',
351  // simplifying both of them.
352  if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
353  if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
354  isa<ConstantInt>(I->getOperand(1)) &&
355  isa<ConstantInt>(LHSInst->getOperand(1)) &&
356  (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
357  ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
358  ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
359  APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
360 
361  Constant *AndC =
362  ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
363  Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
364  InsertNewInstWith(NewAnd, *I);
365 
366  Constant *XorC =
367  ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
368  Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
369  return InsertNewInstWith(NewXor, *I);
370  }
371 
372  // Output known-0 bits are known if clear or set in both the LHS & RHS.
373  KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
374  // Output known-1 are known to be set if set in only one of the LHS, RHS.
375  KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
376  break;
377  }
378  case Instruction::Select:
379  if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
380  RHSKnownZero, RHSKnownOne, Depth+1) ||
381  SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
382  LHSKnownZero, LHSKnownOne, Depth+1))
383  return I;
384  assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
385  assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
386 
387  // If the operands are constants, see if we can simplify them.
388  if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
389  ShrinkDemandedConstant(I, 2, DemandedMask))
390  return I;
391 
392  // Only known if known in both the LHS and RHS.
393  KnownOne = RHSKnownOne & LHSKnownOne;
394  KnownZero = RHSKnownZero & LHSKnownZero;
395  break;
396  case Instruction::Trunc: {
397  unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
398  DemandedMask = DemandedMask.zext(truncBf);
399  KnownZero = KnownZero.zext(truncBf);
400  KnownOne = KnownOne.zext(truncBf);
401  if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
402  KnownZero, KnownOne, Depth+1))
403  return I;
404  DemandedMask = DemandedMask.trunc(BitWidth);
405  KnownZero = KnownZero.trunc(BitWidth);
406  KnownOne = KnownOne.trunc(BitWidth);
407  assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
408  break;
409  }
410  case Instruction::BitCast:
411  if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
412  return 0; // vector->int or fp->int?
413 
414  if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
415  if (VectorType *SrcVTy =
416  dyn_cast<VectorType>(I->getOperand(0)->getType())) {
417  if (DstVTy->getNumElements() != SrcVTy->getNumElements())
418  // Don't touch a bitcast between vectors of different element counts.
419  return 0;
420  } else
421  // Don't touch a scalar-to-vector bitcast.
422  return 0;
423  } else if (I->getOperand(0)->getType()->isVectorTy())
424  // Don't touch a vector-to-scalar bitcast.
425  return 0;
426 
427  if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
428  KnownZero, KnownOne, Depth+1))
429  return I;
430  assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
431  break;
432  case Instruction::ZExt: {
433  // Compute the bits in the result that are not present in the input.
434  unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
435 
436  DemandedMask = DemandedMask.trunc(SrcBitWidth);
437  KnownZero = KnownZero.trunc(SrcBitWidth);
438  KnownOne = KnownOne.trunc(SrcBitWidth);
439  if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
440  KnownZero, KnownOne, Depth+1))
441  return I;
442  DemandedMask = DemandedMask.zext(BitWidth);
443  KnownZero = KnownZero.zext(BitWidth);
444  KnownOne = KnownOne.zext(BitWidth);
445  assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
446  // The top bits are known to be zero.
447  KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
448  break;
449  }
450  case Instruction::SExt: {
451  // Compute the bits in the result that are not present in the input.
452  unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
453 
454  APInt InputDemandedBits = DemandedMask &
455  APInt::getLowBitsSet(BitWidth, SrcBitWidth);
456 
457  APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
458  // If any of the sign extended bits are demanded, we know that the sign
459  // bit is demanded.
460  if ((NewBits & DemandedMask) != 0)
461  InputDemandedBits.setBit(SrcBitWidth-1);
462 
463  InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
464  KnownZero = KnownZero.trunc(SrcBitWidth);
465  KnownOne = KnownOne.trunc(SrcBitWidth);
466  if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
467  KnownZero, KnownOne, Depth+1))
468  return I;
469  InputDemandedBits = InputDemandedBits.zext(BitWidth);
470  KnownZero = KnownZero.zext(BitWidth);
471  KnownOne = KnownOne.zext(BitWidth);
472  assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
473 
474  // If the sign bit of the input is known set or clear, then we know the
475  // top bits of the result.
476 
477  // If the input sign bit is known zero, or if the NewBits are not demanded
478  // convert this into a zero extension.
479  if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
480  // Convert to ZExt cast
481  CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
482  return InsertNewInstWith(NewCast, *I);
483  } else if (KnownOne[SrcBitWidth-1]) { // Input sign bit known set
484  KnownOne |= NewBits;
485  }
486  break;
487  }
488  case Instruction::Add: {
489  // Figure out what the input bits are. If the top bits of the and result
490  // are not demanded, then the add doesn't demand them from its input
491  // either.
492  unsigned NLZ = DemandedMask.countLeadingZeros();
493 
494  // If there is a constant on the RHS, there are a variety of xformations
495  // we can do.
496  if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
497  // If null, this should be simplified elsewhere. Some of the xforms here
498  // won't work if the RHS is zero.
499  if (RHS->isZero())
500  break;
501 
502  // If the top bit of the output is demanded, demand everything from the
503  // input. Otherwise, we demand all the input bits except NLZ top bits.
504  APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
505 
506  // Find information about known zero/one bits in the input.
507  if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
508  LHSKnownZero, LHSKnownOne, Depth+1))
509  return I;
510 
511  // If the RHS of the add has bits set that can't affect the input, reduce
512  // the constant.
513  if (ShrinkDemandedConstant(I, 1, InDemandedBits))
514  return I;
515 
516  // Avoid excess work.
517  if (LHSKnownZero == 0 && LHSKnownOne == 0)
518  break;
519 
520  // Turn it into OR if input bits are zero.
521  if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
522  Instruction *Or =
523  BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
524  I->getName());
525  return InsertNewInstWith(Or, *I);
526  }
527 
528  // We can say something about the output known-zero and known-one bits,
529  // depending on potential carries from the input constant and the
530  // unknowns. For example if the LHS is known to have at most the 0x0F0F0
531  // bits set and the RHS constant is 0x01001, then we know we have a known
532  // one mask of 0x00001 and a known zero mask of 0xE0F0E.
533 
534  // To compute this, we first compute the potential carry bits. These are
535  // the bits which may be modified. I'm not aware of a better way to do
536  // this scan.
537  const APInt &RHSVal = RHS->getValue();
538  APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
539 
540  // Now that we know which bits have carries, compute the known-1/0 sets.
541 
542  // Bits are known one if they are known zero in one operand and one in the
543  // other, and there is no input carry.
544  KnownOne = ((LHSKnownZero & RHSVal) |
545  (LHSKnownOne & ~RHSVal)) & ~CarryBits;
546 
547  // Bits are known zero if they are known zero in both operands and there
548  // is no input carry.
549  KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
550  } else {
551  // If the high-bits of this ADD are not demanded, then it does not demand
552  // the high bits of its LHS or RHS.
553  if (DemandedMask[BitWidth-1] == 0) {
554  // Right fill the mask of bits for this ADD to demand the most
555  // significant bit and all those below it.
556  APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
557  if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
558  LHSKnownZero, LHSKnownOne, Depth+1) ||
559  SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
560  LHSKnownZero, LHSKnownOne, Depth+1))
561  return I;
562  }
563  }
564  break;
565  }
566  case Instruction::Sub:
567  // If the high-bits of this SUB are not demanded, then it does not demand
568  // the high bits of its LHS or RHS.
569  if (DemandedMask[BitWidth-1] == 0) {
570  // Right fill the mask of bits for this SUB to demand the most
571  // significant bit and all those below it.
572  uint32_t NLZ = DemandedMask.countLeadingZeros();
573  APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
574  if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
575  LHSKnownZero, LHSKnownOne, Depth+1) ||
576  SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
577  LHSKnownZero, LHSKnownOne, Depth+1))
578  return I;
579  }
580 
581  // Otherwise just hand the sub off to ComputeMaskedBits to fill in
582  // the known zeros and ones.
583  ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
584 
585  // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
586  // zero.
587  if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
588  APInt I0 = C0->getValue();
589  if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
590  Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
591  return InsertNewInstWith(Xor, *I);
592  }
593  }
594  break;
595  case Instruction::Shl:
596  if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
597  {
598  Value *VarX; ConstantInt *C1;
599  if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
600  Instruction *Shr = cast<Instruction>(I->getOperand(0));
601  Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
602  KnownZero, KnownOne);
603  if (R)
604  return R;
605  }
606  }
607 
608  uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
609  APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
610 
611  // If the shift is NUW/NSW, then it does demand the high bits.
612  ShlOperator *IOp = cast<ShlOperator>(I);
613  if (IOp->hasNoSignedWrap())
614  DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
615  else if (IOp->hasNoUnsignedWrap())
616  DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
617 
618  if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
619  KnownZero, KnownOne, Depth+1))
620  return I;
621  assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
622  KnownZero <<= ShiftAmt;
623  KnownOne <<= ShiftAmt;
624  // low bits known zero.
625  if (ShiftAmt)
626  KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
627  }
628  break;
629  case Instruction::LShr:
630  // For a logical shift right
631  if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
632  uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
633 
634  // Unsigned shift right.
635  APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
636 
637  // If the shift is exact, then it does demand the low bits (and knows that
638  // they are zero).
639  if (cast<LShrOperator>(I)->isExact())
640  DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
641 
642  if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
643  KnownZero, KnownOne, Depth+1))
644  return I;
645  assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
646  KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
647  KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
648  if (ShiftAmt) {
649  // Compute the new bits that are at the top now.
650  APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
651  KnownZero |= HighBits; // high bits known zero.
652  }
653  }
654  break;
655  case Instruction::AShr:
656  // If this is an arithmetic shift right and only the low-bit is set, we can
657  // always convert this into a logical shr, even if the shift amount is
658  // variable. The low bit of the shift cannot be an input sign bit unless
659  // the shift amount is >= the size of the datatype, which is undefined.
660  if (DemandedMask == 1) {
661  // Perform the logical shift right.
662  Instruction *NewVal = BinaryOperator::CreateLShr(
663  I->getOperand(0), I->getOperand(1), I->getName());
664  return InsertNewInstWith(NewVal, *I);
665  }
666 
667  // If the sign bit is the only bit demanded by this ashr, then there is no
668  // need to do it, the shift doesn't change the high bit.
669  if (DemandedMask.isSignBit())
670  return I->getOperand(0);
671 
672  if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
673  uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
674 
675  // Signed shift right.
676  APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
677  // If any of the "high bits" are demanded, we should set the sign bit as
678  // demanded.
679  if (DemandedMask.countLeadingZeros() <= ShiftAmt)
680  DemandedMaskIn.setBit(BitWidth-1);
681 
682  // If the shift is exact, then it does demand the low bits (and knows that
683  // they are zero).
684  if (cast<AShrOperator>(I)->isExact())
685  DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
686 
687  if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
688  KnownZero, KnownOne, Depth+1))
689  return I;
690  assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
691  // Compute the new bits that are at the top now.
692  APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
693  KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
694  KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
695 
696  // Handle the sign bits.
697  APInt SignBit(APInt::getSignBit(BitWidth));
698  // Adjust to where it is now in the mask.
699  SignBit = APIntOps::lshr(SignBit, ShiftAmt);
700 
701  // If the input sign bit is known to be zero, or if none of the top bits
702  // are demanded, turn this into an unsigned shift right.
703  if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
704  (HighBits & ~DemandedMask) == HighBits) {
705  // Perform the logical shift right.
706  BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
707  SA, I->getName());
708  NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
709  return InsertNewInstWith(NewVal, *I);
710  } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
711  KnownOne |= HighBits;
712  }
713  }
714  break;
715  case Instruction::SRem:
716  if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
717  // X % -1 demands all the bits because we don't want to introduce
718  // INT_MIN % -1 (== undef) by accident.
719  if (Rem->isAllOnesValue())
720  break;
721  APInt RA = Rem->getValue().abs();
722  if (RA.isPowerOf2()) {
723  if (DemandedMask.ult(RA)) // srem won't affect demanded bits
724  return I->getOperand(0);
725 
726  APInt LowBits = RA - 1;
727  APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
728  if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
729  LHSKnownZero, LHSKnownOne, Depth+1))
730  return I;
731 
732  // The low bits of LHS are unchanged by the srem.
733  KnownZero = LHSKnownZero & LowBits;
734  KnownOne = LHSKnownOne & LowBits;
735 
736  // If LHS is non-negative or has all low bits zero, then the upper bits
737  // are all zero.
738  if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
739  KnownZero |= ~LowBits;
740 
741  // If LHS is negative and not all low bits are zero, then the upper bits
742  // are all one.
743  if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
744  KnownOne |= ~LowBits;
745 
746  assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
747  }
748  }
749 
750  // The sign bit is the LHS's sign bit, except when the result of the
751  // remainder is zero.
752  if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
753  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
754  ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
755  // If it's known zero, our sign bit is also zero.
756  if (LHSKnownZero.isNegative())
757  KnownZero.setBit(KnownZero.getBitWidth() - 1);
758  }
759  break;
760  case Instruction::URem: {
761  APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
762  APInt AllOnes = APInt::getAllOnesValue(BitWidth);
763  if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
764  KnownZero2, KnownOne2, Depth+1) ||
765  SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
766  KnownZero2, KnownOne2, Depth+1))
767  return I;
768 
769  unsigned Leaders = KnownZero2.countLeadingOnes();
770  Leaders = std::max(Leaders,
771  KnownZero2.countLeadingOnes());
772  KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
773  break;
774  }
775  case Instruction::Call:
776  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
777  switch (II->getIntrinsicID()) {
778  default: break;
779  case Intrinsic::bswap: {
780  // If the only bits demanded come from one byte of the bswap result,
781  // just shift the input byte into position to eliminate the bswap.
782  unsigned NLZ = DemandedMask.countLeadingZeros();
783  unsigned NTZ = DemandedMask.countTrailingZeros();
784 
785  // Round NTZ down to the next byte. If we have 11 trailing zeros, then
786  // we need all the bits down to bit 8. Likewise, round NLZ. If we
787  // have 14 leading zeros, round to 8.
788  NLZ &= ~7;
789  NTZ &= ~7;
790  // If we need exactly one byte, we can do this transformation.
791  if (BitWidth-NLZ-NTZ == 8) {
792  unsigned ResultBit = NTZ;
793  unsigned InputBit = BitWidth-NTZ-8;
794 
795  // Replace this with either a left or right shift to get the byte into
796  // the right place.
797  Instruction *NewVal;
798  if (InputBit > ResultBit)
799  NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
800  ConstantInt::get(I->getType(), InputBit-ResultBit));
801  else
802  NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
803  ConstantInt::get(I->getType(), ResultBit-InputBit));
804  NewVal->takeName(I);
805  return InsertNewInstWith(NewVal, *I);
806  }
807 
808  // TODO: Could compute known zero/one bits based on the input.
809  break;
810  }
812  KnownZero = APInt::getHighBitsSet(64, 32);
813  return 0;
814  }
815  }
816  ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
817  break;
818  }
819 
820  // If the client is only demanding bits that we know, return the known
821  // constant.
822  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
823  return Constant::getIntegerValue(VTy, KnownOne);
824  return 0;
825 }
826 
827 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
828 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
829 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
830 /// of "C2-C1".
831 ///
832 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
833 /// ..., bn}, without considering the specific value X is holding.
834 /// This transformation is legal iff one of following conditions is hold:
835 /// 1) All the bit in S are 0, in this case E1 == E2.
836 /// 2) We don't care those bits in S, per the input DemandedMask.
837 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
838 /// rest bits.
839 ///
840 /// Currently we only test condition 2).
841 ///
842 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
843 /// not successful.
844 Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
845  Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
846 
847  const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
848  const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
849  if (!ShlOp1 || !ShrOp1)
850  return 0; // Noop.
851 
852  Value *VarX = Shr->getOperand(0);
853  Type *Ty = VarX->getType();
854  unsigned BitWidth = Ty->getIntegerBitWidth();
855  if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
856  return 0; // Undef.
857 
858  unsigned ShlAmt = ShlOp1.getZExtValue();
859  unsigned ShrAmt = ShrOp1.getZExtValue();
860 
861  KnownOne.clearAllBits();
862  KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
863  KnownZero &= DemandedMask;
864 
865  APInt BitMask1(APInt::getAllOnesValue(BitWidth));
866  APInt BitMask2(APInt::getAllOnesValue(BitWidth));
867 
868  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
869  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
870  (BitMask1.ashr(ShrAmt) << ShlAmt);
871 
872  if (ShrAmt <= ShlAmt) {
873  BitMask2 <<= (ShlAmt - ShrAmt);
874  } else {
875  BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
876  BitMask2.ashr(ShrAmt - ShlAmt);
877  }
878 
879  // Check if condition-2 (see the comment to this function) is satified.
880  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
881  if (ShrAmt == ShlAmt)
882  return VarX;
883 
884  if (!Shr->hasOneUse())
885  return 0;
886 
887  BinaryOperator *New;
888  if (ShrAmt < ShlAmt) {
889  Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
890  New = BinaryOperator::CreateShl(VarX, Amt);
891  BinaryOperator *Orig = cast<BinaryOperator>(Shl);
892  New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
893  New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
894  } else {
895  Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
896  New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
897  BinaryOperator::CreateAShr(VarX, Amt);
898  if (cast<BinaryOperator>(Shr)->isExact())
899  New->setIsExact(true);
900  }
901 
902  return InsertNewInstWith(New, *Shl);
903  }
904 
905  return 0;
906 }
907 
908 /// SimplifyDemandedVectorElts - The specified value produces a vector with
909 /// any number of elements. DemandedElts contains the set of elements that are
910 /// actually used by the caller. This method analyzes which elements of the
911 /// operand are undef and returns that information in UndefElts.
912 ///
913 /// If the information about demanded elements can be used to simplify the
914 /// operation, the operation is simplified, then the resultant value is
915 /// returned. This returns null if no change was made.
916 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
917  APInt &UndefElts,
918  unsigned Depth) {
919  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
920  APInt EltMask(APInt::getAllOnesValue(VWidth));
921  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
922 
923  if (isa<UndefValue>(V)) {
924  // If the entire vector is undefined, just return this info.
925  UndefElts = EltMask;
926  return 0;
927  }
928 
929  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
930  UndefElts = EltMask;
931  return UndefValue::get(V->getType());
932  }
933 
934  UndefElts = 0;
935 
936  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
937  if (Constant *C = dyn_cast<Constant>(V)) {
938  // Check if this is identity. If so, return 0 since we are not simplifying
939  // anything.
940  if (DemandedElts.isAllOnesValue())
941  return 0;
942 
943  Type *EltTy = cast<VectorType>(V->getType())->getElementType();
944  Constant *Undef = UndefValue::get(EltTy);
945 
947  for (unsigned i = 0; i != VWidth; ++i) {
948  if (!DemandedElts[i]) { // If not demanded, set to undef.
949  Elts.push_back(Undef);
950  UndefElts.setBit(i);
951  continue;
952  }
953 
954  Constant *Elt = C->getAggregateElement(i);
955  if (Elt == 0) return 0;
956 
957  if (isa<UndefValue>(Elt)) { // Already undef.
958  Elts.push_back(Undef);
959  UndefElts.setBit(i);
960  } else { // Otherwise, defined.
961  Elts.push_back(Elt);
962  }
963  }
964 
965  // If we changed the constant, return it.
966  Constant *NewCV = ConstantVector::get(Elts);
967  return NewCV != C ? NewCV : 0;
968  }
969 
970  // Limit search depth.
971  if (Depth == 10)
972  return 0;
973 
974  // If multiple users are using the root value, proceed with
975  // simplification conservatively assuming that all elements
976  // are needed.
977  if (!V->hasOneUse()) {
978  // Quit if we find multiple users of a non-root value though.
979  // They'll be handled when it's their turn to be visited by
980  // the main instcombine process.
981  if (Depth != 0)
982  // TODO: Just compute the UndefElts information recursively.
983  return 0;
984 
985  // Conservatively assume that all elements are needed.
986  DemandedElts = EltMask;
987  }
988 
990  if (!I) return 0; // Only analyze instructions.
991 
992  bool MadeChange = false;
993  APInt UndefElts2(VWidth, 0);
994  Value *TmpV;
995  switch (I->getOpcode()) {
996  default: break;
997 
998  case Instruction::InsertElement: {
999  // If this is a variable index, we don't know which element it overwrites.
1000  // demand exactly the same input as we produce.
1001  ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1002  if (Idx == 0) {
1003  // Note that we can't propagate undef elt info, because we don't know
1004  // which elt is getting updated.
1005  TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1006  UndefElts2, Depth+1);
1007  if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1008  break;
1009  }
1010 
1011  // If this is inserting an element that isn't demanded, remove this
1012  // insertelement.
1013  unsigned IdxNo = Idx->getZExtValue();
1014  if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1015  Worklist.Add(I);
1016  return I->getOperand(0);
1017  }
1018 
1019  // Otherwise, the element inserted overwrites whatever was there, so the
1020  // input demanded set is simpler than the output set.
1021  APInt DemandedElts2 = DemandedElts;
1022  DemandedElts2.clearBit(IdxNo);
1023  TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
1024  UndefElts, Depth+1);
1025  if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1026 
1027  // The inserted element is defined.
1028  UndefElts.clearBit(IdxNo);
1029  break;
1030  }
1031  case Instruction::ShuffleVector: {
1032  ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1033  uint64_t LHSVWidth =
1034  cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
1035  APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
1036  for (unsigned i = 0; i < VWidth; i++) {
1037  if (DemandedElts[i]) {
1038  unsigned MaskVal = Shuffle->getMaskValue(i);
1039  if (MaskVal != -1u) {
1040  assert(MaskVal < LHSVWidth * 2 &&
1041  "shufflevector mask index out of range!");
1042  if (MaskVal < LHSVWidth)
1043  LeftDemanded.setBit(MaskVal);
1044  else
1045  RightDemanded.setBit(MaskVal - LHSVWidth);
1046  }
1047  }
1048  }
1049 
1050  APInt UndefElts4(LHSVWidth, 0);
1051  TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
1052  UndefElts4, Depth+1);
1053  if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1054 
1055  APInt UndefElts3(LHSVWidth, 0);
1056  TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
1057  UndefElts3, Depth+1);
1058  if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1059 
1060  bool NewUndefElts = false;
1061  for (unsigned i = 0; i < VWidth; i++) {
1062  unsigned MaskVal = Shuffle->getMaskValue(i);
1063  if (MaskVal == -1u) {
1064  UndefElts.setBit(i);
1065  } else if (!DemandedElts[i]) {
1066  NewUndefElts = true;
1067  UndefElts.setBit(i);
1068  } else if (MaskVal < LHSVWidth) {
1069  if (UndefElts4[MaskVal]) {
1070  NewUndefElts = true;
1071  UndefElts.setBit(i);
1072  }
1073  } else {
1074  if (UndefElts3[MaskVal - LHSVWidth]) {
1075  NewUndefElts = true;
1076  UndefElts.setBit(i);
1077  }
1078  }
1079  }
1080 
1081  if (NewUndefElts) {
1082  // Add additional discovered undefs.
1084  for (unsigned i = 0; i < VWidth; ++i) {
1085  if (UndefElts[i])
1087  else
1089  Shuffle->getMaskValue(i)));
1090  }
1091  I->setOperand(2, ConstantVector::get(Elts));
1092  MadeChange = true;
1093  }
1094  break;
1095  }
1096  case Instruction::Select: {
1097  APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
1098  if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
1099  for (unsigned i = 0; i < VWidth; i++) {
1100  if (CV->getAggregateElement(i)->isNullValue())
1101  LeftDemanded.clearBit(i);
1102  else
1103  RightDemanded.clearBit(i);
1104  }
1105  }
1106 
1107  TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
1108  UndefElts, Depth+1);
1109  if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1110 
1111  TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
1112  UndefElts2, Depth+1);
1113  if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
1114 
1115  // Output elements are undefined if both are undefined.
1116  UndefElts &= UndefElts2;
1117  break;
1118  }
1119  case Instruction::BitCast: {
1120  // Vector->vector casts only.
1121  VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1122  if (!VTy) break;
1123  unsigned InVWidth = VTy->getNumElements();
1124  APInt InputDemandedElts(InVWidth, 0);
1125  unsigned Ratio;
1126 
1127  if (VWidth == InVWidth) {
1128  // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1129  // elements as are demanded of us.
1130  Ratio = 1;
1131  InputDemandedElts = DemandedElts;
1132  } else if (VWidth > InVWidth) {
1133  // Untested so far.
1134  break;
1135 
1136  // If there are more elements in the result than there are in the source,
1137  // then an input element is live if any of the corresponding output
1138  // elements are live.
1139  Ratio = VWidth/InVWidth;
1140  for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1141  if (DemandedElts[OutIdx])
1142  InputDemandedElts.setBit(OutIdx/Ratio);
1143  }
1144  } else {
1145  // Untested so far.
1146  break;
1147 
1148  // If there are more elements in the source than there are in the result,
1149  // then an input element is live if the corresponding output element is
1150  // live.
1151  Ratio = InVWidth/VWidth;
1152  for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1153  if (DemandedElts[InIdx/Ratio])
1154  InputDemandedElts.setBit(InIdx);
1155  }
1156 
1157  // div/rem demand all inputs, because they don't want divide by zero.
1158  TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1159  UndefElts2, Depth+1);
1160  if (TmpV) {
1161  I->setOperand(0, TmpV);
1162  MadeChange = true;
1163  }
1164 
1165  UndefElts = UndefElts2;
1166  if (VWidth > InVWidth) {
1167  llvm_unreachable("Unimp");
1168  // If there are more elements in the result than there are in the source,
1169  // then an output element is undef if the corresponding input element is
1170  // undef.
1171  for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1172  if (UndefElts2[OutIdx/Ratio])
1173  UndefElts.setBit(OutIdx);
1174  } else if (VWidth < InVWidth) {
1175  llvm_unreachable("Unimp");
1176  // If there are more elements in the source than there are in the result,
1177  // then a result element is undef if all of the corresponding input
1178  // elements are undef.
1179  UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1180  for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1181  if (!UndefElts2[InIdx]) // Not undef?
1182  UndefElts.clearBit(InIdx/Ratio); // Clear undef bit.
1183  }
1184  break;
1185  }
1186  case Instruction::And:
1187  case Instruction::Or:
1188  case Instruction::Xor:
1189  case Instruction::Add:
1190  case Instruction::Sub:
1191  case Instruction::Mul:
1192  // div/rem demand all inputs, because they don't want divide by zero.
1193  TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1194  UndefElts, Depth+1);
1195  if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1196  TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1197  UndefElts2, Depth+1);
1198  if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1199 
1200  // Output elements are undefined if both are undefined. Consider things
1201  // like undef&0. The result is known zero, not undef.
1202  UndefElts &= UndefElts2;
1203  break;
1204  case Instruction::FPTrunc:
1205  case Instruction::FPExt:
1206  TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1207  UndefElts, Depth+1);
1208  if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1209  break;
1210 
1211  case Instruction::Call: {
1213  if (!II) break;
1214  switch (II->getIntrinsicID()) {
1215  default: break;
1216 
1217  // Binary vector operations that work column-wise. A dest element is a
1218  // function of the corresponding input elements from the two inputs.
1227  TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
1228  UndefElts, Depth+1);
1229  if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
1230  TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
1231  UndefElts2, Depth+1);
1232  if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
1233 
1234  // If only the low elt is demanded and this is a scalarizable intrinsic,
1235  // scalarize it now.
1236  if (DemandedElts == 1) {
1237  switch (II->getIntrinsicID()) {
1238  default: break;
1243  // TODO: Lower MIN/MAX/ABS/etc
1244  Value *LHS = II->getArgOperand(0);
1245  Value *RHS = II->getArgOperand(1);
1246  // Extract the element as scalars.
1247  LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
1248  ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1249  RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
1250  ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
1251 
1252  switch (II->getIntrinsicID()) {
1253  default: llvm_unreachable("Case stmts out of sync!");
1256  TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
1257  II->getName()), *II);
1258  break;
1261  TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
1262  II->getName()), *II);
1263  break;
1264  }
1265 
1266  Instruction *New =
1268  UndefValue::get(II->getType()), TmpV,
1269  ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
1270  II->getName());
1271  InsertNewInstWith(New, *II);
1272  return New;
1273  }
1274  }
1275 
1276  // Output elements are undefined if both are undefined. Consider things
1277  // like undef&0. The result is known zero, not undef.
1278  UndefElts &= UndefElts2;
1279  break;
1280  }
1281  break;
1282  }
1283  }
1284  return MadeChange ? I : 0;
1285 }
void clearAllBits()
Set every bit to 0.
Definition: APInt.h:1218
static int getMaskValue(Constant *Mask, unsigned i)
const Use & getOperandUse(unsigned i) const
Definition: User.h:99
IntegerType * getType() const
Definition: Constants.h:139
class_match< Value > m_Value()
m_Value() - Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
void setHasNoSignedWrap(bool b=true)
static APInt getSignBit(unsigned BitWidth)
Get the SignBit for a specific bit width.
Definition: APInt.h:443
APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const
Get the absolute value;.
Definition: APInt.h:1521
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:450
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
unsigned getScalarSizeInBits()
Definition: Type.cpp:135
Intrinsic::ID getIntrinsicID() const
Definition: IntrinsicInst.h:43
void setBit(unsigned bitPosition)
Set a given bit to 1.
Definition: APInt.cpp:583
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
This class represents zero extension of integer types.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Get a value with low bits set.
Definition: APInt.h:528
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, APInt Demanded)
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const
Zero extend or truncate to width.
Definition: APInt.cpp:1002
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:42
Base class of casting instructions.
Definition: InstrTypes.h:387
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
BinOp2_match< LHS, RHS, Instruction::LShr, Instruction::AShr > m_Shr(const LHS &L, const RHS &R)
m_Shr - Matches LShr or AShr.
Definition: PatternMatch.h:528
#define llvm_unreachable(msg)
Definition: Use.h:60
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:923
APInt lshr(const APInt &LHS, unsigned shiftAmt)
Logical right-shift function.
Definition: APInt.h:1790
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
class_match< ConstantInt > m_ConstantInt()
m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:72
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:408
void takeName(Value *V)
Definition: Value.cpp:239
void ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, const DataLayout *TD=0, unsigned Depth=0)
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Get a value with high bits set.
Definition: APInt.h:510
bool isIntOrIntVectorTy() const
Definition: Type.h:204
APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const
Truncate to new width.
Definition: APInt.cpp:919
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", Instruction *InsertBefore=0)
bool isVectorTy() const
Definition: Type.h:229
LLVM Constant Representation.
Definition: Constant.h:41
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
static ExtractElementInst * Create(Value *Vec, Value *Idx, const Twine &NameStr="", Instruction *InsertBefore=0)
Value * get() const
Definition: Use.h:94
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1116
Value * getOperand(unsigned i) const
Definition: User.h:88
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
bool hasNoSignedWrap() const
hasNoSignedWrap - Determine whether the no signed wrap flag is set.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:390
static Constant * getIntegerValue(Type *Ty, const APInt &V)
Definition: Constants.cpp:146
void setIsExact(bool b=true)
unsigned getIntegerBitWidth() const
Definition: Type.cpp:178
Class for constant integers.
Definition: Constants.h:51
Type * getType() const
Definition: Value.h:111
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
Value * getArgOperand(unsigned i) const
Class for arbitrary precision integers.
Definition: APInt.h:75
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition: APInt.h:495
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:340
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
void clearBit(unsigned bitPosition)
Set a given bit to 0.
Definition: APInt.cpp:592
#define I(x, y, z)
Definition: MD5.cpp:54
bool hasOneUse() const
Definition: Value.h:161
void setArgOperand(unsigned i, Value *v)
const Type * getScalarType() const
Definition: Type.cpp:51
LLVM Value Representation.
Definition: Value.h:66
bool hasNoUnsignedWrap() const
hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set.
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:983
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD