LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LazyValueInfo.cpp
Go to the documentation of this file.
1 //===- LazyValueInfo.cpp - Value constraint analysis ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for lazy computation of value constraint
11 // information.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "lazy-value-info"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CFG.h"
27 #include "llvm/Support/Debug.h"
32 #include <map>
33 #include <stack>
34 using namespace llvm;
35 using namespace PatternMatch;
36 
37 char LazyValueInfo::ID = 0;
38 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
39  "Lazy Value Information Analysis", false, true)
42  "Lazy Value Information Analysis", false, true)
43 
44 namespace llvm {
45  FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
46 }
47 
48 
49 //===----------------------------------------------------------------------===//
50 // LVILatticeVal
51 //===----------------------------------------------------------------------===//
52 
53 /// LVILatticeVal - This is the information tracked by LazyValueInfo for each
54 /// value.
55 ///
56 /// FIXME: This is basically just for bringup, this can be made a lot more rich
57 /// in the future.
58 ///
59 namespace {
60 class LVILatticeVal {
61  enum LatticeValueTy {
62  /// undefined - This Value has no known value yet.
63  undefined,
64 
65  /// constant - This Value has a specific constant value.
66  constant,
67  /// notconstant - This Value is known to not have the specified value.
68  notconstant,
69 
70  /// constantrange - The Value falls within this range.
71  constantrange,
72 
73  /// overdefined - This value is not known to be constant, and we know that
74  /// it has a value.
75  overdefined
76  };
77 
78  /// Val: This stores the current lattice value along with the Constant* for
79  /// the constant if this is a 'constant' or 'notconstant' value.
80  LatticeValueTy Tag;
81  Constant *Val;
82  ConstantRange Range;
83 
84 public:
85  LVILatticeVal() : Tag(undefined), Val(0), Range(1, true) {}
86 
87  static LVILatticeVal get(Constant *C) {
88  LVILatticeVal Res;
89  if (!isa<UndefValue>(C))
90  Res.markConstant(C);
91  return Res;
92  }
93  static LVILatticeVal getNot(Constant *C) {
94  LVILatticeVal Res;
95  if (!isa<UndefValue>(C))
96  Res.markNotConstant(C);
97  return Res;
98  }
99  static LVILatticeVal getRange(ConstantRange CR) {
100  LVILatticeVal Res;
101  Res.markConstantRange(CR);
102  return Res;
103  }
104 
105  bool isUndefined() const { return Tag == undefined; }
106  bool isConstant() const { return Tag == constant; }
107  bool isNotConstant() const { return Tag == notconstant; }
108  bool isConstantRange() const { return Tag == constantrange; }
109  bool isOverdefined() const { return Tag == overdefined; }
110 
111  Constant *getConstant() const {
112  assert(isConstant() && "Cannot get the constant of a non-constant!");
113  return Val;
114  }
115 
116  Constant *getNotConstant() const {
117  assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
118  return Val;
119  }
120 
121  ConstantRange getConstantRange() const {
122  assert(isConstantRange() &&
123  "Cannot get the constant-range of a non-constant-range!");
124  return Range;
125  }
126 
127  /// markOverdefined - Return true if this is a change in status.
128  bool markOverdefined() {
129  if (isOverdefined())
130  return false;
131  Tag = overdefined;
132  return true;
133  }
134 
135  /// markConstant - Return true if this is a change in status.
136  bool markConstant(Constant *V) {
137  assert(V && "Marking constant with NULL");
138  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
139  return markConstantRange(ConstantRange(CI->getValue()));
140  if (isa<UndefValue>(V))
141  return false;
142 
143  assert((!isConstant() || getConstant() == V) &&
144  "Marking constant with different value");
145  assert(isUndefined());
146  Tag = constant;
147  Val = V;
148  return true;
149  }
150 
151  /// markNotConstant - Return true if this is a change in status.
152  bool markNotConstant(Constant *V) {
153  assert(V && "Marking constant with NULL");
154  if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
155  return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
156  if (isa<UndefValue>(V))
157  return false;
158 
159  assert((!isConstant() || getConstant() != V) &&
160  "Marking constant !constant with same value");
161  assert((!isNotConstant() || getNotConstant() == V) &&
162  "Marking !constant with different value");
163  assert(isUndefined() || isConstant());
164  Tag = notconstant;
165  Val = V;
166  return true;
167  }
168 
169  /// markConstantRange - Return true if this is a change in status.
170  bool markConstantRange(const ConstantRange NewR) {
171  if (isConstantRange()) {
172  if (NewR.isEmptySet())
173  return markOverdefined();
174 
175  bool changed = Range != NewR;
176  Range = NewR;
177  return changed;
178  }
179 
180  assert(isUndefined());
181  if (NewR.isEmptySet())
182  return markOverdefined();
183 
184  Tag = constantrange;
185  Range = NewR;
186  return true;
187  }
188 
189  /// mergeIn - Merge the specified lattice value into this one, updating this
190  /// one and returning true if anything changed.
191  bool mergeIn(const LVILatticeVal &RHS) {
192  if (RHS.isUndefined() || isOverdefined()) return false;
193  if (RHS.isOverdefined()) return markOverdefined();
194 
195  if (isUndefined()) {
196  Tag = RHS.Tag;
197  Val = RHS.Val;
198  Range = RHS.Range;
199  return true;
200  }
201 
202  if (isConstant()) {
203  if (RHS.isConstant()) {
204  if (Val == RHS.Val)
205  return false;
206  return markOverdefined();
207  }
208 
209  if (RHS.isNotConstant()) {
210  if (Val == RHS.Val)
211  return markOverdefined();
212 
213  // Unless we can prove that the two Constants are different, we must
214  // move to overdefined.
215  // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
216  if (ConstantInt *Res = dyn_cast<ConstantInt>(
218  getConstant(),
219  RHS.getNotConstant())))
220  if (Res->isOne())
221  return markNotConstant(RHS.getNotConstant());
222 
223  return markOverdefined();
224  }
225 
226  // RHS is a ConstantRange, LHS is a non-integer Constant.
227 
228  // FIXME: consider the case where RHS is a range [1, 0) and LHS is
229  // a function. The correct result is to pick up RHS.
230 
231  return markOverdefined();
232  }
233 
234  if (isNotConstant()) {
235  if (RHS.isConstant()) {
236  if (Val == RHS.Val)
237  return markOverdefined();
238 
239  // Unless we can prove that the two Constants are different, we must
240  // move to overdefined.
241  // FIXME: use DataLayout/TargetLibraryInfo for smarter constant folding.
242  if (ConstantInt *Res = dyn_cast<ConstantInt>(
244  getNotConstant(),
245  RHS.getConstant())))
246  if (Res->isOne())
247  return false;
248 
249  return markOverdefined();
250  }
251 
252  if (RHS.isNotConstant()) {
253  if (Val == RHS.Val)
254  return false;
255  return markOverdefined();
256  }
257 
258  return markOverdefined();
259  }
260 
261  assert(isConstantRange() && "New LVILattice type?");
262  if (!RHS.isConstantRange())
263  return markOverdefined();
264 
265  ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
266  if (NewR.isFullSet())
267  return markOverdefined();
268  return markConstantRange(NewR);
269  }
270 };
271 
272 } // end anonymous namespace.
273 
274 namespace llvm {
275 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
277 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
278  if (Val.isUndefined())
279  return OS << "undefined";
280  if (Val.isOverdefined())
281  return OS << "overdefined";
282 
283  if (Val.isNotConstant())
284  return OS << "notconstant<" << *Val.getNotConstant() << '>';
285  else if (Val.isConstantRange())
286  return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
287  << Val.getConstantRange().getUpper() << '>';
288  return OS << "constant<" << *Val.getConstant() << '>';
289 }
290 }
291 
292 //===----------------------------------------------------------------------===//
293 // LazyValueInfoCache Decl
294 //===----------------------------------------------------------------------===//
295 
296 namespace {
297  /// LVIValueHandle - A callback value handle updates the cache when
298  /// values are erased.
299  class LazyValueInfoCache;
300  struct LVIValueHandle : public CallbackVH {
301  LazyValueInfoCache *Parent;
302 
303  LVIValueHandle(Value *V, LazyValueInfoCache *P)
304  : CallbackVH(V), Parent(P) { }
305 
306  void deleted();
307  void allUsesReplacedWith(Value *V) {
308  deleted();
309  }
310  };
311 }
312 
313 namespace {
314  /// LazyValueInfoCache - This is the cache kept by LazyValueInfo which
315  /// maintains information about queries across the clients' queries.
316  class LazyValueInfoCache {
317  /// ValueCacheEntryTy - This is all of the cached block information for
318  /// exactly one Value*. The entries are sorted by the BasicBlock* of the
319  /// entries, allowing us to do a lookup with a binary search.
320  typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
321 
322  /// ValueCache - This is all of the cached information for all values,
323  /// mapped from Value* to key information.
324  std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
325 
326  /// OverDefinedCache - This tracks, on a per-block basis, the set of
327  /// values that are over-defined at the end of that block. This is required
328  /// for cache updating.
329  typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
330  DenseSet<OverDefinedPairTy> OverDefinedCache;
331 
332  /// SeenBlocks - Keep track of all blocks that we have ever seen, so we
333  /// don't spend time removing unused blocks from our caches.
335 
336  /// BlockValueStack - This stack holds the state of the value solver
337  /// during a query. It basically emulates the callstack of the naive
338  /// recursive value lookup process.
339  std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
340 
341  friend struct LVIValueHandle;
342 
343  /// OverDefinedCacheUpdater - A helper object that ensures that the
344  /// OverDefinedCache is updated whenever solveBlockValue returns.
345  struct OverDefinedCacheUpdater {
346  LazyValueInfoCache *Parent;
347  Value *Val;
348  BasicBlock *BB;
349  LVILatticeVal &BBLV;
350 
351  OverDefinedCacheUpdater(Value *V, BasicBlock *B, LVILatticeVal &LV,
352  LazyValueInfoCache *P)
353  : Parent(P), Val(V), BB(B), BBLV(LV) { }
354 
355  bool markResult(bool changed) {
356  if (changed && BBLV.isOverdefined())
357  Parent->OverDefinedCache.insert(std::make_pair(BB, Val));
358  return changed;
359  }
360  };
361 
362 
363 
364  LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
365  bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
366  LVILatticeVal &Result);
367  bool hasBlockValue(Value *Val, BasicBlock *BB);
368 
369  // These methods process one work item and may add more. A false value
370  // returned means that the work item was not completely processed and must
371  // be revisited after going through the new items.
372  bool solveBlockValue(Value *Val, BasicBlock *BB);
373  bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
374  Value *Val, BasicBlock *BB);
375  bool solveBlockValuePHINode(LVILatticeVal &BBLV,
376  PHINode *PN, BasicBlock *BB);
377  bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
378  Instruction *BBI, BasicBlock *BB);
379 
380  void solve();
381 
382  ValueCacheEntryTy &lookup(Value *V) {
383  return ValueCache[LVIValueHandle(V, this)];
384  }
385 
386  public:
387  /// getValueInBlock - This is the query interface to determine the lattice
388  /// value for the specified Value* at the end of the specified block.
389  LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB);
390 
391  /// getValueOnEdge - This is the query interface to determine the lattice
392  /// value for the specified Value* that is true on the specified edge.
393  LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB);
394 
395  /// threadEdge - This is the update interface to inform the cache that an
396  /// edge from PredBB to OldSucc has been threaded to be from PredBB to
397  /// NewSucc.
398  void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
399 
400  /// eraseBlock - This is part of the update interface to inform the cache
401  /// that a block has been deleted.
402  void eraseBlock(BasicBlock *BB);
403 
404  /// clear - Empty the cache.
405  void clear() {
406  SeenBlocks.clear();
407  ValueCache.clear();
408  OverDefinedCache.clear();
409  }
410  };
411 } // end anonymous namespace
412 
413 void LVIValueHandle::deleted() {
414  typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
415 
418  I = Parent->OverDefinedCache.begin(),
419  E = Parent->OverDefinedCache.end();
420  I != E; ++I) {
421  if (I->second == getValPtr())
422  ToErase.push_back(*I);
423  }
424 
426  E = ToErase.end(); I != E; ++I)
427  Parent->OverDefinedCache.erase(*I);
428 
429  // This erasure deallocates *this, so it MUST happen after we're done
430  // using any and all members of *this.
431  Parent->ValueCache.erase(*this);
432 }
433 
434 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
435  // Shortcut if we have never seen this block.
436  DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
437  if (I == SeenBlocks.end())
438  return;
439  SeenBlocks.erase(I);
440 
442  for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
443  E = OverDefinedCache.end(); I != E; ++I) {
444  if (I->first == BB)
445  ToErase.push_back(*I);
446  }
447 
449  E = ToErase.end(); I != E; ++I)
450  OverDefinedCache.erase(*I);
451 
452  for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
453  I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
454  I->second.erase(BB);
455 }
456 
457 void LazyValueInfoCache::solve() {
458  while (!BlockValueStack.empty()) {
459  std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
460  if (solveBlockValue(e.second, e.first)) {
461  assert(BlockValueStack.top() == e);
462  BlockValueStack.pop();
463  }
464  }
465 }
466 
467 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
468  // If already a constant, there is nothing to compute.
469  if (isa<Constant>(Val))
470  return true;
471 
472  LVIValueHandle ValHandle(Val, this);
473  std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
474  ValueCache.find(ValHandle);
475  if (I == ValueCache.end()) return false;
476  return I->second.count(BB);
477 }
478 
479 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
480  // If already a constant, there is nothing to compute.
481  if (Constant *VC = dyn_cast<Constant>(Val))
482  return LVILatticeVal::get(VC);
483 
484  SeenBlocks.insert(BB);
485  return lookup(Val)[BB];
486 }
487 
488 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
489  if (isa<Constant>(Val))
490  return true;
491 
492  ValueCacheEntryTy &Cache = lookup(Val);
493  SeenBlocks.insert(BB);
494  LVILatticeVal &BBLV = Cache[BB];
495 
496  // OverDefinedCacheUpdater is a helper object that will update
497  // the OverDefinedCache for us when this method exits. Make sure to
498  // call markResult on it as we exist, passing a bool to indicate if the
499  // cache needs updating, i.e. if we have solve a new value or not.
500  OverDefinedCacheUpdater ODCacheUpdater(Val, BB, BBLV, this);
501 
502  // If we've already computed this block's value, return it.
503  if (!BBLV.isUndefined()) {
504  DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val=" << BBLV <<'\n');
505 
506  // Since we're reusing a cached value here, we don't need to update the
507  // OverDefinedCahce. The cache will have been properly updated
508  // whenever the cached value was inserted.
509  ODCacheUpdater.markResult(false);
510  return true;
511  }
512 
513  // Otherwise, this is the first time we're seeing this block. Reset the
514  // lattice value to overdefined, so that cycles will terminate and be
515  // conservatively correct.
516  BBLV.markOverdefined();
517 
518  Instruction *BBI = dyn_cast<Instruction>(Val);
519  if (BBI == 0 || BBI->getParent() != BB) {
520  return ODCacheUpdater.markResult(solveBlockValueNonLocal(BBLV, Val, BB));
521  }
522 
523  if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
524  return ODCacheUpdater.markResult(solveBlockValuePHINode(BBLV, PN, BB));
525  }
526 
527  if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
528  BBLV = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
529  return ODCacheUpdater.markResult(true);
530  }
531 
532  // We can only analyze the definitions of certain classes of instructions
533  // (integral binops and casts at the moment), so bail if this isn't one.
534  LVILatticeVal Result;
535  if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
536  !BBI->getType()->isIntegerTy()) {
537  DEBUG(dbgs() << " compute BB '" << BB->getName()
538  << "' - overdefined because inst def found.\n");
539  BBLV.markOverdefined();
540  return ODCacheUpdater.markResult(true);
541  }
542 
543  // FIXME: We're currently limited to binops with a constant RHS. This should
544  // be improved.
546  if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
547  DEBUG(dbgs() << " compute BB '" << BB->getName()
548  << "' - overdefined because inst def found.\n");
549 
550  BBLV.markOverdefined();
551  return ODCacheUpdater.markResult(true);
552  }
553 
554  return ODCacheUpdater.markResult(solveBlockValueConstantRange(BBLV, BBI, BB));
555 }
556 
558  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
559  return L->getPointerAddressSpace() == 0 &&
560  GetUnderlyingObject(L->getPointerOperand()) == Ptr;
561  }
562  if (StoreInst *S = dyn_cast<StoreInst>(I)) {
563  return S->getPointerAddressSpace() == 0 &&
564  GetUnderlyingObject(S->getPointerOperand()) == Ptr;
565  }
566  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
567  if (MI->isVolatile()) return false;
568 
569  // FIXME: check whether it has a valuerange that excludes zero?
570  ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
571  if (!Len || Len->isZero()) return false;
572 
573  if (MI->getDestAddressSpace() == 0)
574  if (GetUnderlyingObject(MI->getRawDest()) == Ptr)
575  return true;
576  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
577  if (MTI->getSourceAddressSpace() == 0)
578  if (GetUnderlyingObject(MTI->getRawSource()) == Ptr)
579  return true;
580  }
581  return false;
582 }
583 
584 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
585  Value *Val, BasicBlock *BB) {
586  LVILatticeVal Result; // Start Undefined.
587 
588  // If this is a pointer, and there's a load from that pointer in this BB,
589  // then we know that the pointer can't be NULL.
590  bool NotNull = false;
591  if (Val->getType()->isPointerTy()) {
592  if (isKnownNonNull(Val)) {
593  NotNull = true;
594  } else {
595  Value *UnderlyingVal = GetUnderlyingObject(Val);
596  // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
597  // inside InstructionDereferencesPointer either.
598  if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, NULL, 1)) {
599  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
600  BI != BE; ++BI) {
601  if (InstructionDereferencesPointer(BI, UnderlyingVal)) {
602  NotNull = true;
603  break;
604  }
605  }
606  }
607  }
608  }
609 
610  // If this is the entry block, we must be asking about an argument. The
611  // value is overdefined.
612  if (BB == &BB->getParent()->getEntryBlock()) {
613  assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
614  if (NotNull) {
615  PointerType *PTy = cast<PointerType>(Val->getType());
616  Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
617  } else {
618  Result.markOverdefined();
619  }
620  BBLV = Result;
621  return true;
622  }
623 
624  // Loop over all of our predecessors, merging what we know from them into
625  // result.
626  bool EdgesMissing = false;
627  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
628  LVILatticeVal EdgeResult;
629  EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
630  if (EdgesMissing)
631  continue;
632 
633  Result.mergeIn(EdgeResult);
634 
635  // If we hit overdefined, exit early. The BlockVals entry is already set
636  // to overdefined.
637  if (Result.isOverdefined()) {
638  DEBUG(dbgs() << " compute BB '" << BB->getName()
639  << "' - overdefined because of pred.\n");
640  // If we previously determined that this is a pointer that can't be null
641  // then return that rather than giving up entirely.
642  if (NotNull) {
643  PointerType *PTy = cast<PointerType>(Val->getType());
644  Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
645  }
646 
647  BBLV = Result;
648  return true;
649  }
650  }
651  if (EdgesMissing)
652  return false;
653 
654  // Return the merged value, which is more precise than 'overdefined'.
655  assert(!Result.isOverdefined());
656  BBLV = Result;
657  return true;
658 }
659 
660 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
661  PHINode *PN, BasicBlock *BB) {
662  LVILatticeVal Result; // Start Undefined.
663 
664  // Loop over all of our predecessors, merging what we know from them into
665  // result.
666  bool EdgesMissing = false;
667  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
668  BasicBlock *PhiBB = PN->getIncomingBlock(i);
669  Value *PhiVal = PN->getIncomingValue(i);
670  LVILatticeVal EdgeResult;
671  EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult);
672  if (EdgesMissing)
673  continue;
674 
675  Result.mergeIn(EdgeResult);
676 
677  // If we hit overdefined, exit early. The BlockVals entry is already set
678  // to overdefined.
679  if (Result.isOverdefined()) {
680  DEBUG(dbgs() << " compute BB '" << BB->getName()
681  << "' - overdefined because of pred.\n");
682 
683  BBLV = Result;
684  return true;
685  }
686  }
687  if (EdgesMissing)
688  return false;
689 
690  // Return the merged value, which is more precise than 'overdefined'.
691  assert(!Result.isOverdefined() && "Possible PHI in entry block?");
692  BBLV = Result;
693  return true;
694 }
695 
696 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
697  Instruction *BBI,
698  BasicBlock *BB) {
699  // Figure out the range of the LHS. If that fails, bail.
700  if (!hasBlockValue(BBI->getOperand(0), BB)) {
701  BlockValueStack.push(std::make_pair(BB, BBI->getOperand(0)));
702  return false;
703  }
704 
705  LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
706  if (!LHSVal.isConstantRange()) {
707  BBLV.markOverdefined();
708  return true;
709  }
710 
711  ConstantRange LHSRange = LHSVal.getConstantRange();
712  ConstantRange RHSRange(1);
713  IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
714  if (isa<BinaryOperator>(BBI)) {
715  if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
716  RHSRange = ConstantRange(RHS->getValue());
717  } else {
718  BBLV.markOverdefined();
719  return true;
720  }
721  }
722 
723  // NOTE: We're currently limited by the set of operations that ConstantRange
724  // can evaluate symbolically. Enhancing that set will allows us to analyze
725  // more definitions.
726  LVILatticeVal Result;
727  switch (BBI->getOpcode()) {
728  case Instruction::Add:
729  Result.markConstantRange(LHSRange.add(RHSRange));
730  break;
731  case Instruction::Sub:
732  Result.markConstantRange(LHSRange.sub(RHSRange));
733  break;
734  case Instruction::Mul:
735  Result.markConstantRange(LHSRange.multiply(RHSRange));
736  break;
737  case Instruction::UDiv:
738  Result.markConstantRange(LHSRange.udiv(RHSRange));
739  break;
740  case Instruction::Shl:
741  Result.markConstantRange(LHSRange.shl(RHSRange));
742  break;
743  case Instruction::LShr:
744  Result.markConstantRange(LHSRange.lshr(RHSRange));
745  break;
746  case Instruction::Trunc:
747  Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
748  break;
749  case Instruction::SExt:
750  Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
751  break;
752  case Instruction::ZExt:
753  Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
754  break;
755  case Instruction::BitCast:
756  Result.markConstantRange(LHSRange);
757  break;
758  case Instruction::And:
759  Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
760  break;
761  case Instruction::Or:
762  Result.markConstantRange(LHSRange.binaryOr(RHSRange));
763  break;
764 
765  // Unhandled instructions are overdefined.
766  default:
767  DEBUG(dbgs() << " compute BB '" << BB->getName()
768  << "' - overdefined because inst def found.\n");
769  Result.markOverdefined();
770  break;
771  }
772 
773  BBLV = Result;
774  return true;
775 }
776 
777 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
778 /// Val is not constrained on the edge.
779 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
780  BasicBlock *BBTo, LVILatticeVal &Result) {
781  // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
782  // know that v != 0.
783  if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
784  // If this is a conditional branch and only one successor goes to BBTo, then
785  // we maybe able to infer something from the condition.
786  if (BI->isConditional() &&
787  BI->getSuccessor(0) != BI->getSuccessor(1)) {
788  bool isTrueDest = BI->getSuccessor(0) == BBTo;
789  assert(BI->getSuccessor(!isTrueDest) == BBTo &&
790  "BBTo isn't a successor of BBFrom");
791 
792  // If V is the condition of the branch itself, then we know exactly what
793  // it is.
794  if (BI->getCondition() == Val) {
795  Result = LVILatticeVal::get(ConstantInt::get(
796  Type::getInt1Ty(Val->getContext()), isTrueDest));
797  return true;
798  }
799 
800  // If the condition of the branch is an equality comparison, we may be
801  // able to infer the value.
802  ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition());
803  if (ICI && isa<Constant>(ICI->getOperand(1))) {
804  if (ICI->isEquality() && ICI->getOperand(0) == Val) {
805  // We know that V has the RHS constant if this is a true SETEQ or
806  // false SETNE.
807  if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
808  Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
809  else
810  Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
811  return true;
812  }
813 
814  // Recognize the range checking idiom that InstCombine produces.
815  // (X-C1) u< C2 --> [C1, C1+C2)
816  ConstantInt *NegOffset = 0;
817  if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
818  match(ICI->getOperand(0), m_Add(m_Specific(Val),
819  m_ConstantInt(NegOffset)));
820 
821  ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
822  if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
823  // Calculate the range of values that would satisfy the comparison.
824  ConstantRange CmpRange(CI->getValue());
825  ConstantRange TrueValues =
827 
828  if (NegOffset) // Apply the offset from above.
829  TrueValues = TrueValues.subtract(NegOffset->getValue());
830 
831  // If we're interested in the false dest, invert the condition.
832  if (!isTrueDest) TrueValues = TrueValues.inverse();
833 
834  Result = LVILatticeVal::getRange(TrueValues);
835  return true;
836  }
837  }
838  }
839  }
840 
841  // If the edge was formed by a switch on the value, then we may know exactly
842  // what it is.
843  if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
844  if (SI->getCondition() != Val)
845  return false;
846 
847  bool DefaultCase = SI->getDefaultDest() == BBTo;
848  unsigned BitWidth = Val->getType()->getIntegerBitWidth();
849  ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
850 
851  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
852  i != e; ++i) {
853  ConstantRange EdgeVal(i.getCaseValue()->getValue());
854  if (DefaultCase) {
855  // It is possible that the default destination is the destination of
856  // some cases. There is no need to perform difference for those cases.
857  if (i.getCaseSuccessor() != BBTo)
858  EdgesVals = EdgesVals.difference(EdgeVal);
859  } else if (i.getCaseSuccessor() == BBTo)
860  EdgesVals = EdgesVals.unionWith(EdgeVal);
861  }
862  Result = LVILatticeVal::getRange(EdgesVals);
863  return true;
864  }
865  return false;
866 }
867 
868 /// \brief Compute the value of Val on the edge BBFrom -> BBTo, or the value at
869 /// the basic block if the edge does not constraint Val.
870 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
871  BasicBlock *BBTo, LVILatticeVal &Result) {
872  // If already a constant, there is nothing to compute.
873  if (Constant *VC = dyn_cast<Constant>(Val)) {
874  Result = LVILatticeVal::get(VC);
875  return true;
876  }
877 
878  if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
879  if (!Result.isConstantRange() ||
880  Result.getConstantRange().getSingleElement())
881  return true;
882 
883  // FIXME: this check should be moved to the beginning of the function when
884  // LVI better supports recursive values. Even for the single value case, we
885  // can intersect to detect dead code (an empty range).
886  if (!hasBlockValue(Val, BBFrom)) {
887  BlockValueStack.push(std::make_pair(BBFrom, Val));
888  return false;
889  }
890 
891  // Try to intersect ranges of the BB and the constraint on the edge.
892  LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
893  if (!InBlock.isConstantRange())
894  return true;
895 
896  ConstantRange Range =
897  Result.getConstantRange().intersectWith(InBlock.getConstantRange());
898  Result = LVILatticeVal::getRange(Range);
899  return true;
900  }
901 
902  if (!hasBlockValue(Val, BBFrom)) {
903  BlockValueStack.push(std::make_pair(BBFrom, Val));
904  return false;
905  }
906 
907  // if we couldn't compute the value on the edge, use the value from the BB
908  Result = getBlockValue(Val, BBFrom);
909  return true;
910 }
911 
912 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB) {
913  DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
914  << BB->getName() << "'\n");
915 
916  BlockValueStack.push(std::make_pair(BB, V));
917  solve();
918  LVILatticeVal Result = getBlockValue(V, BB);
919 
920  DEBUG(dbgs() << " Result = " << Result << "\n");
921  return Result;
922 }
923 
924 LVILatticeVal LazyValueInfoCache::
925 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB) {
926  DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
927  << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
928 
929  LVILatticeVal Result;
930  if (!getEdgeValue(V, FromBB, ToBB, Result)) {
931  solve();
932  bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result);
933  (void)WasFastQuery;
934  assert(WasFastQuery && "More work to do after problem solved?");
935  }
936 
937  DEBUG(dbgs() << " Result = " << Result << "\n");
938  return Result;
939 }
940 
941 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
942  BasicBlock *NewSucc) {
943  // When an edge in the graph has been threaded, values that we could not
944  // determine a value for before (i.e. were marked overdefined) may be possible
945  // to solve now. We do NOT try to proactively update these values. Instead,
946  // we clear their entries from the cache, and allow lazy updating to recompute
947  // them when needed.
948 
949  // The updating process is fairly simple: we need to dropped cached info
950  // for all values that were marked overdefined in OldSucc, and for those same
951  // values in any successor of OldSucc (except NewSucc) in which they were
952  // also marked overdefined.
953  std::vector<BasicBlock*> worklist;
954  worklist.push_back(OldSucc);
955 
956  DenseSet<Value*> ClearSet;
957  for (DenseSet<OverDefinedPairTy>::iterator I = OverDefinedCache.begin(),
958  E = OverDefinedCache.end(); I != E; ++I) {
959  if (I->first == OldSucc)
960  ClearSet.insert(I->second);
961  }
962 
963  // Use a worklist to perform a depth-first search of OldSucc's successors.
964  // NOTE: We do not need a visited list since any blocks we have already
965  // visited will have had their overdefined markers cleared already, and we
966  // thus won't loop to their successors.
967  while (!worklist.empty()) {
968  BasicBlock *ToUpdate = worklist.back();
969  worklist.pop_back();
970 
971  // Skip blocks only accessible through NewSucc.
972  if (ToUpdate == NewSucc) continue;
973 
974  bool changed = false;
975  for (DenseSet<Value*>::iterator I = ClearSet.begin(), E = ClearSet.end();
976  I != E; ++I) {
977  // If a value was marked overdefined in OldSucc, and is here too...
979  OverDefinedCache.find(std::make_pair(ToUpdate, *I));
980  if (OI == OverDefinedCache.end()) continue;
981 
982  // Remove it from the caches.
983  ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(*I, this)];
984  ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
985 
986  assert(CI != Entry.end() && "Couldn't find entry to update?");
987  Entry.erase(CI);
988  OverDefinedCache.erase(OI);
989 
990  // If we removed anything, then we potentially need to update
991  // blocks successors too.
992  changed = true;
993  }
994 
995  if (!changed) continue;
996 
997  worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
998  }
999 }
1000 
1001 //===----------------------------------------------------------------------===//
1002 // LazyValueInfo Impl
1003 //===----------------------------------------------------------------------===//
1004 
1005 /// getCache - This lazily constructs the LazyValueInfoCache.
1006 static LazyValueInfoCache &getCache(void *&PImpl) {
1007  if (!PImpl)
1008  PImpl = new LazyValueInfoCache();
1009  return *static_cast<LazyValueInfoCache*>(PImpl);
1010 }
1011 
1013  if (PImpl)
1014  getCache(PImpl).clear();
1015 
1016  TD = getAnalysisIfAvailable<DataLayout>();
1017  TLI = &getAnalysis<TargetLibraryInfo>();
1018 
1019  // Fully lazy.
1020  return false;
1021 }
1022 
1024  AU.setPreservesAll();
1026 }
1027 
1029  // If the cache was allocated, free it.
1030  if (PImpl) {
1031  delete &getCache(PImpl);
1032  PImpl = 0;
1033  }
1034 }
1035 
1037  LVILatticeVal Result = getCache(PImpl).getValueInBlock(V, BB);
1038 
1039  if (Result.isConstant())
1040  return Result.getConstant();
1041  if (Result.isConstantRange()) {
1042  ConstantRange CR = Result.getConstantRange();
1043  if (const APInt *SingleVal = CR.getSingleElement())
1044  return ConstantInt::get(V->getContext(), *SingleVal);
1045  }
1046  return 0;
1047 }
1048 
1049 /// getConstantOnEdge - Determine whether the specified value is known to be a
1050 /// constant on the specified edge. Return null if not.
1052  BasicBlock *ToBB) {
1053  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
1054 
1055  if (Result.isConstant())
1056  return Result.getConstant();
1057  if (Result.isConstantRange()) {
1058  ConstantRange CR = Result.getConstantRange();
1059  if (const APInt *SingleVal = CR.getSingleElement())
1060  return ConstantInt::get(V->getContext(), *SingleVal);
1061  }
1062  return 0;
1063 }
1064 
1065 /// getPredicateOnEdge - Determine whether the specified value comparison
1066 /// with a constant is known to be true or false on the specified CFG edge.
1067 /// Pred is a CmpInst predicate.
1070  BasicBlock *FromBB, BasicBlock *ToBB) {
1071  LVILatticeVal Result = getCache(PImpl).getValueOnEdge(V, FromBB, ToBB);
1072 
1073  // If we know the value is a constant, evaluate the conditional.
1074  Constant *Res = 0;
1075  if (Result.isConstant()) {
1076  Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, TD,
1077  TLI);
1078  if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1079  return ResCI->isZero() ? False : True;
1080  return Unknown;
1081  }
1082 
1083  if (Result.isConstantRange()) {
1085  if (!CI) return Unknown;
1086 
1087  ConstantRange CR = Result.getConstantRange();
1088  if (Pred == ICmpInst::ICMP_EQ) {
1089  if (!CR.contains(CI->getValue()))
1090  return False;
1091 
1092  if (CR.isSingleElement() && CR.contains(CI->getValue()))
1093  return True;
1094  } else if (Pred == ICmpInst::ICMP_NE) {
1095  if (!CR.contains(CI->getValue()))
1096  return True;
1097 
1098  if (CR.isSingleElement() && CR.contains(CI->getValue()))
1099  return False;
1100  }
1101 
1102  // Handle more complex predicates.
1103  ConstantRange TrueValues =
1105  if (TrueValues.contains(CR))
1106  return True;
1107  if (TrueValues.inverse().contains(CR))
1108  return False;
1109  return Unknown;
1110  }
1111 
1112  if (Result.isNotConstant()) {
1113  // If this is an equality comparison, we can try to fold it knowing that
1114  // "V != C1".
1115  if (Pred == ICmpInst::ICMP_EQ) {
1116  // !C1 == C -> false iff C1 == C.
1118  Result.getNotConstant(), C, TD,
1119  TLI);
1120  if (Res->isNullValue())
1121  return False;
1122  } else if (Pred == ICmpInst::ICMP_NE) {
1123  // !C1 != C -> true iff C1 == C.
1125  Result.getNotConstant(), C, TD,
1126  TLI);
1127  if (Res->isNullValue())
1128  return True;
1129  }
1130  return Unknown;
1131  }
1132 
1133  return Unknown;
1134 }
1135 
1137  BasicBlock *NewSucc) {
1138  if (PImpl) getCache(PImpl).threadEdge(PredBB, OldSucc, NewSucc);
1139 }
1140 
1142  if (PImpl) getCache(PImpl).eraseBlock(BB);
1143 }
static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr)
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:238
const Instruction & back() const
Definition: BasicBlock.h:207
const APInt * getSingleElement() const
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned less than
Definition: InstrTypes.h:676
bool isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI=0)
Constant * getConstant(Value *V, BasicBlock *BB)
static bool isEquality(Predicate P)
Definition: Instructions.h:997
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
bool isSingleElement() const
static LazyValueInfoCache & getCache(void *&PImpl)
getCache - This lazily constructs the LazyValueInfoCache.
F(f)
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:61
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
lazy value info
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:42
Value * GetUnderlyingObject(Value *V, const DataLayout *TD=0, unsigned MaxLookup=6)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
ConstantRange truncate(uint32_t BitWidth) const
bool erase(const ValueT &V)
Definition: DenseSet.h:49
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
lazy value Lazy Value Information Analysis
Tristate getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB)
ConstantRange signExtend(uint32_t BitWidth) const
ConstantRange multiply(const ConstantRange &Other) const
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:395
Interval::succ_iterator succ_begin(Interval *I)
Definition: Interval.h:107
virtual void getAnalysisUsage(AnalysisUsage &AU) const
bool contains(const APInt &Val) const
static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, LVILatticeVal &Result)
Compute the value of Val on the edge BBFrom -> BBTo. Returns false if Val is not constrained on the e...
virtual void releaseMemory()
ConstantRange unionWith(const ConstantRange &CR) const
class_match< ConstantInt > m_ConstantInt()
m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:72
ConstantRange subtract(const APInt &CI) const
FunctionPass * createLazyValueInfoPass()
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:110
unsigned getNumIncomingValues() const
Constant * getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB)
#define P(N)
#define true
Definition: ConvertUTF.c:65
static ConstantPointerNull * get(PointerType *T)
get() - Static factory methods - Return objects of the specified value
Definition: Constants.cpp:1314
iterator find(const ValueT &V)
Definition: DenseSet.h:113
bool isFullSet() const
ConstantRange lshr(const ConstantRange &Other) const
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
LLVM Constant Representation.
Definition: Constant.h:41
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
specificval_ty m_Specific(const Value *V)
m_Specific - Match if we have a specific specified value.
Definition: PatternMatch.h:323
ConstantRange udiv(const ConstantRange &Other) const
BasicBlock * getIncomingBlock(unsigned i) const
Represent an integer comparison operator.
Definition: Instructions.h:911
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
ConstantRange sub(const ConstantRange &Other) const
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
Integer representation type.
Definition: DerivedTypes.h:37
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
ConstantRange zeroExtend(uint32_t BitWidth) const
bool isEmptySet() const
ConstantRange difference(const ConstantRange &CR) const
Subtract the specified range from this range (aka relative complement of the sets).
bool isPointerTy() const
Definition: Type.h:220
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
ConstantRange add(const ConstantRange &Other) const
Tristate
Tristate - This is used to return true/false/dunno results.
Definition: LazyValueInfo.h:42
virtual bool runOnFunction(Function &F)
iterator begin()
Definition: DenseSet.h:107
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:117
unsigned getIntegerBitWidth() const
Definition: Type.cpp:178
Class for constant integers.
Definition: Constants.h:51
Value * getIncomingValue(unsigned i) const
iterator end()
Definition: BasicBlock.h:195
ConstantRange inverse() const
Type * getType() const
Definition: Value.h:111
INITIALIZE_PASS_BEGIN(LazyValueInfo,"lazy-value-info","Lazy Value Information Analysis", false, true) INITIALIZE_PASS_END(LazyValueInfo
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
bool isZero() const
Definition: Constants.h:160
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
bool isNullValue() const
Definition: Constants.cpp:75
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
ConstantRange binaryOr(const ConstantRange &Other) const
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isIntegerTy() const
Definition: Type.h:196
ConstantRange shl(const ConstantRange &Other) const
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
static const uint16_t * lookup(unsigned opcode, unsigned domain)
void threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc)
static ConstantRange makeICmpRegion(unsigned Pred, const ConstantRange &Other)
#define I(x, y, z)
Definition: MD5.cpp:54
ConstantRange binaryAnd(const ConstantRange &Other) const
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
static ConstantRange makeConstantRange(Predicate pred, const APInt &C)
Make a ConstantRange for a relation with a constant value.
raw_ostream & operator<<(raw_ostream &OS, const APInt &I)
Definition: APInt.h:1688
lazy value Lazy Value Information false
void eraseBlock(BasicBlock *BB)
eraseBlock - Inform the analysis cache that we have erased a block.
LLVM Value Representation.
Definition: Value.h:66
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
#define DEBUG(X)
Definition: Debug.h:97
iterator end()
Definition: DenseSet.h:108
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
static bool InBlock(const Value *V, const BasicBlock *BB)
#define LLVM_ATTRIBUTE_USED
Definition: Compiler.h:179