LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MemoryDependenceAnalysis.cpp
Go to the documentation of this file.
1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements an analysis that determines, for a given memory
11 // operation, what preceding memory operations it depends on. It builds on
12 // alias analysis information, and tries to provide a lazy, caching interface to
13 // a common kind of alias information query.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #define DEBUG_TYPE "memdep"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Statistic.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/Support/Debug.h"
34 using namespace llvm;
35 
36 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
37 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
38 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
39 
40 STATISTIC(NumCacheNonLocalPtr,
41  "Number of fully cached non-local ptr responses");
42 STATISTIC(NumCacheDirtyNonLocalPtr,
43  "Number of cached, but dirty, non-local ptr responses");
44 STATISTIC(NumUncacheNonLocalPtr,
45  "Number of uncached non-local ptr responses");
46 STATISTIC(NumCacheCompleteNonLocalPtr,
47  "Number of block queries that were completely cached");
48 
49 // Limit for the number of instructions to scan in a block.
50 static const int BlockScanLimit = 100;
51 
53 
54 // Register this pass...
56  "Memory Dependence Analysis", false, true)
60 
61 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
62 : FunctionPass(ID), PredCache(0) {
64 }
66 }
67 
68 /// Clean up memory in between runs
70  LocalDeps.clear();
71  NonLocalDeps.clear();
72  NonLocalPointerDeps.clear();
73  ReverseLocalDeps.clear();
74  ReverseNonLocalDeps.clear();
75  ReverseNonLocalPtrDeps.clear();
76  PredCache->clear();
77 }
78 
79 
80 
81 /// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
82 ///
84  AU.setPreservesAll();
86 }
87 
89  AA = &getAnalysis<AliasAnalysis>();
90  TD = getAnalysisIfAvailable<DataLayout>();
91  DT = getAnalysisIfAvailable<DominatorTree>();
92  if (!PredCache)
93  PredCache.reset(new PredIteratorCache());
94  return false;
95 }
96 
97 /// RemoveFromReverseMap - This is a helper function that removes Val from
98 /// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
99 template <typename KeyTy>
101  SmallPtrSet<KeyTy, 4> > &ReverseMap,
102  Instruction *Inst, KeyTy Val) {
104  InstIt = ReverseMap.find(Inst);
105  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
106  bool Found = InstIt->second.erase(Val);
107  assert(Found && "Invalid reverse map!"); (void)Found;
108  if (InstIt->second.empty())
109  ReverseMap.erase(InstIt);
110 }
111 
112 /// GetLocation - If the given instruction references a specific memory
113 /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
114 /// Return a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static
119  AliasAnalysis *AA) {
120  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
121  if (LI->isUnordered()) {
122  Loc = AA->getLocation(LI);
123  return AliasAnalysis::Ref;
124  }
125  if (LI->getOrdering() == Monotonic) {
126  Loc = AA->getLocation(LI);
127  return AliasAnalysis::ModRef;
128  }
129  Loc = AliasAnalysis::Location();
130  return AliasAnalysis::ModRef;
131  }
132 
133  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
134  if (SI->isUnordered()) {
135  Loc = AA->getLocation(SI);
136  return AliasAnalysis::Mod;
137  }
138  if (SI->getOrdering() == Monotonic) {
139  Loc = AA->getLocation(SI);
140  return AliasAnalysis::ModRef;
141  }
142  Loc = AliasAnalysis::Location();
143  return AliasAnalysis::ModRef;
144  }
145 
146  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
147  Loc = AA->getLocation(V);
148  return AliasAnalysis::ModRef;
149  }
150 
151  if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
152  // calls to free() deallocate the entire structure
153  Loc = AliasAnalysis::Location(CI->getArgOperand(0));
154  return AliasAnalysis::Mod;
155  }
156 
157  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
158  switch (II->getIntrinsicID()) {
162  Loc = AliasAnalysis::Location(II->getArgOperand(1),
163  cast<ConstantInt>(II->getArgOperand(0))
164  ->getZExtValue(),
165  II->getMetadata(LLVMContext::MD_tbaa));
166  // These intrinsics don't really modify the memory, but returning Mod
167  // will allow them to be handled conservatively.
168  return AliasAnalysis::Mod;
170  Loc = AliasAnalysis::Location(II->getArgOperand(2),
171  cast<ConstantInt>(II->getArgOperand(1))
172  ->getZExtValue(),
173  II->getMetadata(LLVMContext::MD_tbaa));
174  // These intrinsics don't really modify the memory, but returning Mod
175  // will allow them to be handled conservatively.
176  return AliasAnalysis::Mod;
177  default:
178  break;
179  }
180 
181  // Otherwise, just do the coarse-grained thing that always works.
182  if (Inst->mayWriteToMemory())
183  return AliasAnalysis::ModRef;
184  if (Inst->mayReadFromMemory())
185  return AliasAnalysis::Ref;
187 }
188 
189 /// getCallSiteDependencyFrom - Private helper for finding the local
190 /// dependencies of a call site.
191 MemDepResult MemoryDependenceAnalysis::
192 getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
193  BasicBlock::iterator ScanIt, BasicBlock *BB) {
194  unsigned Limit = BlockScanLimit;
195 
196  // Walk backwards through the block, looking for dependencies
197  while (ScanIt != BB->begin()) {
198  // Limit the amount of scanning we do so we don't end up with quadratic
199  // running time on extreme testcases.
200  --Limit;
201  if (!Limit)
202  return MemDepResult::getUnknown();
203 
204  Instruction *Inst = --ScanIt;
205 
206  // If this inst is a memory op, get the pointer it accessed
208  AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
209  if (Loc.Ptr) {
210  // A simple instruction.
211  if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
212  return MemDepResult::getClobber(Inst);
213  continue;
214  }
215 
216  if (CallSite InstCS = cast<Value>(Inst)) {
217  // Debug intrinsics don't cause dependences.
218  if (isa<DbgInfoIntrinsic>(Inst)) continue;
219  // If these two calls do not interfere, look past it.
220  switch (AA->getModRefInfo(CS, InstCS)) {
222  // If the two calls are the same, return InstCS as a Def, so that
223  // CS can be found redundant and eliminated.
224  if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
226  return MemDepResult::getDef(Inst);
227 
228  // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
229  // keep scanning.
230  continue;
231  default:
232  return MemDepResult::getClobber(Inst);
233  }
234  }
235 
236  // If we could not obtain a pointer for the instruction and the instruction
237  // touches memory then assume that this is a dependency.
238  if (MR != AliasAnalysis::NoModRef)
239  return MemDepResult::getClobber(Inst);
240  }
241 
242  // No dependence found. If this is the entry block of the function, it is
243  // unknown, otherwise it is non-local.
244  if (BB != &BB->getParent()->getEntryBlock())
245  return MemDepResult::getNonLocal();
247 }
248 
249 /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
250 /// would fully overlap MemLoc if done as a wider legal integer load.
251 ///
252 /// MemLocBase, MemLocOffset are lazily computed here the first time the
253 /// base/offs of memloc is needed.
254 static bool
256  const Value *&MemLocBase,
257  int64_t &MemLocOffs,
258  const LoadInst *LI,
259  const DataLayout *TD) {
260  // If we have no target data, we can't do this.
261  if (TD == 0) return false;
262 
263  // If we haven't already computed the base/offset of MemLoc, do so now.
264  if (MemLocBase == 0)
265  MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, TD);
266 
267  unsigned Size = MemoryDependenceAnalysis::
268  getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
269  LI, *TD);
270  return Size != 0;
271 }
272 
273 /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
274 /// looks at a memory location for a load (specified by MemLocBase, Offs,
275 /// and Size) and compares it against a load. If the specified load could
276 /// be safely widened to a larger integer load that is 1) still efficient,
277 /// 2) safe for the target, and 3) would provide the specified memory
278 /// location value, then this function returns the size in bytes of the
279 /// load width to use. If not, this returns zero.
281 getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
282  unsigned MemLocSize, const LoadInst *LI,
283  const DataLayout &TD) {
284  // We can only extend simple integer loads.
285  if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
286 
287  // Load widening is hostile to ThreadSanitizer: it may cause false positives
288  // or make the reports more cryptic (access sizes are wrong).
289  if (LI->getParent()->getParent()->getAttributes().
290  hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread))
291  return 0;
292 
293  // Get the base of this load.
294  int64_t LIOffs = 0;
295  const Value *LIBase =
297 
298  // If the two pointers are not based on the same pointer, we can't tell that
299  // they are related.
300  if (LIBase != MemLocBase) return 0;
301 
302  // Okay, the two values are based on the same pointer, but returned as
303  // no-alias. This happens when we have things like two byte loads at "P+1"
304  // and "P+3". Check to see if increasing the size of the "LI" load up to its
305  // alignment (or the largest native integer type) will allow us to load all
306  // the bits required by MemLoc.
307 
308  // If MemLoc is before LI, then no widening of LI will help us out.
309  if (MemLocOffs < LIOffs) return 0;
310 
311  // Get the alignment of the load in bytes. We assume that it is safe to load
312  // any legal integer up to this size without a problem. For example, if we're
313  // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
314  // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
315  // to i16.
316  unsigned LoadAlign = LI->getAlignment();
317 
318  int64_t MemLocEnd = MemLocOffs+MemLocSize;
319 
320  // If no amount of rounding up will let MemLoc fit into LI, then bail out.
321  if (LIOffs+LoadAlign < MemLocEnd) return 0;
322 
323  // This is the size of the load to try. Start with the next larger power of
324  // two.
325  unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
326  NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
327 
328  while (1) {
329  // If this load size is bigger than our known alignment or would not fit
330  // into a native integer register, then we fail.
331  if (NewLoadByteSize > LoadAlign ||
332  !TD.fitsInLegalInteger(NewLoadByteSize*8))
333  return 0;
334 
335  if (LIOffs+NewLoadByteSize > MemLocEnd &&
336  LI->getParent()->getParent()->getAttributes().
337  hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress))
338  // We will be reading past the location accessed by the original program.
339  // While this is safe in a regular build, Address Safety analysis tools
340  // may start reporting false warnings. So, don't do widening.
341  return 0;
342 
343  // If a load of this width would include all of MemLoc, then we succeed.
344  if (LIOffs+NewLoadByteSize >= MemLocEnd)
345  return NewLoadByteSize;
346 
347  NewLoadByteSize <<= 1;
348  }
349 }
350 
351 /// getPointerDependencyFrom - Return the instruction on which a memory
352 /// location depends. If isLoad is true, this routine ignores may-aliases with
353 /// read-only operations. If isLoad is false, this routine ignores may-aliases
354 /// with reads from read-only locations. If possible, pass the query
355 /// instruction as well; this function may take advantage of the metadata
356 /// annotated to the query instruction to refine the result.
359  BasicBlock::iterator ScanIt, BasicBlock *BB,
360  Instruction *QueryInst) {
361 
362  const Value *MemLocBase = 0;
363  int64_t MemLocOffset = 0;
364  unsigned Limit = BlockScanLimit;
365  bool isInvariantLoad = false;
366  if (isLoad && QueryInst) {
367  LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
368  if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != 0)
369  isInvariantLoad = true;
370  }
371 
372  // Walk backwards through the basic block, looking for dependencies.
373  while (ScanIt != BB->begin()) {
374  Instruction *Inst = --ScanIt;
375 
376  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
377  // Debug intrinsics don't (and can't) cause dependencies.
378  if (isa<DbgInfoIntrinsic>(II)) continue;
379 
380  // Limit the amount of scanning we do so we don't end up with quadratic
381  // running time on extreme testcases.
382  --Limit;
383  if (!Limit)
384  return MemDepResult::getUnknown();
385 
386  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
387  // If we reach a lifetime begin or end marker, then the query ends here
388  // because the value is undefined.
389  if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
390  // FIXME: This only considers queries directly on the invariant-tagged
391  // pointer, not on query pointers that are indexed off of them. It'd
392  // be nice to handle that at some point (the right approach is to use
393  // GetPointerBaseWithConstantOffset).
394  if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
395  MemLoc))
396  return MemDepResult::getDef(II);
397  continue;
398  }
399  }
400 
401  // Values depend on loads if the pointers are must aliased. This means that
402  // a load depends on another must aliased load from the same value.
403  if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
404  // Atomic loads have complications involved.
405  // FIXME: This is overly conservative.
406  if (!LI->isUnordered())
408 
409  AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
410 
411  // If we found a pointer, check if it could be the same as our pointer.
412  AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
413 
414  if (isLoad) {
415  if (R == AliasAnalysis::NoAlias) {
416  // If this is an over-aligned integer load (for example,
417  // "load i8* %P, align 4") see if it would obviously overlap with the
418  // queried location if widened to a larger load (e.g. if the queried
419  // location is 1 byte at P+1). If so, return it as a load/load
420  // clobber result, allowing the client to decide to widen the load if
421  // it wants to.
422  if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
423  if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
424  isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
425  MemLocOffset, LI, TD))
426  return MemDepResult::getClobber(Inst);
427 
428  continue;
429  }
430 
431  // Must aliased loads are defs of each other.
432  if (R == AliasAnalysis::MustAlias)
433  return MemDepResult::getDef(Inst);
434 
435 #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
436  // in terms of clobbering loads, but since it does this by looking
437  // at the clobbering load directly, it doesn't know about any
438  // phi translation that may have happened along the way.
439 
440  // If we have a partial alias, then return this as a clobber for the
441  // client to handle.
443  return MemDepResult::getClobber(Inst);
444 #endif
445 
446  // Random may-alias loads don't depend on each other without a
447  // dependence.
448  continue;
449  }
450 
451  // Stores don't depend on other no-aliased accesses.
452  if (R == AliasAnalysis::NoAlias)
453  continue;
454 
455  // Stores don't alias loads from read-only memory.
456  if (AA->pointsToConstantMemory(LoadLoc))
457  continue;
458 
459  // Stores depend on may/must aliased loads.
460  return MemDepResult::getDef(Inst);
461  }
462 
463  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
464  // Atomic stores have complications involved.
465  // FIXME: This is overly conservative.
466  if (!SI->isUnordered())
467  return MemDepResult::getClobber(SI);
468 
469  // If alias analysis can tell that this store is guaranteed to not modify
470  // the query pointer, ignore it. Use getModRefInfo to handle cases where
471  // the query pointer points to constant memory etc.
472  if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
473  continue;
474 
475  // Ok, this store might clobber the query pointer. Check to see if it is
476  // a must alias: in this case, we want to return this as a def.
477  AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
478 
479  // If we found a pointer, check if it could be the same as our pointer.
480  AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
481 
482  if (R == AliasAnalysis::NoAlias)
483  continue;
484  if (R == AliasAnalysis::MustAlias)
485  return MemDepResult::getDef(Inst);
486  if (isInvariantLoad)
487  continue;
488  return MemDepResult::getClobber(Inst);
489  }
490 
491  // If this is an allocation, and if we know that the accessed pointer is to
492  // the allocation, return Def. This means that there is no dependence and
493  // the access can be optimized based on that. For example, a load could
494  // turn into undef.
495  // Note: Only determine this to be a malloc if Inst is the malloc call, not
496  // a subsequent bitcast of the malloc call result. There can be stores to
497  // the malloced memory between the malloc call and its bitcast uses, and we
498  // need to continue scanning until the malloc call.
499  const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
500  if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
501  const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
502 
503  if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
504  return MemDepResult::getDef(Inst);
505  // Be conservative if the accessed pointer may alias the allocation.
506  if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
507  return MemDepResult::getClobber(Inst);
508  // If the allocation is not aliased and does not read memory (like
509  // strdup), it is safe to ignore.
510  if (isa<AllocaInst>(Inst) ||
511  isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
512  continue;
513  }
514 
515  // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
516  AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
517  // If necessary, perform additional analysis.
518  if (MR == AliasAnalysis::ModRef)
519  MR = AA->callCapturesBefore(Inst, MemLoc, DT);
520  switch (MR) {
522  // If the call has no effect on the queried pointer, just ignore it.
523  continue;
524  case AliasAnalysis::Mod:
525  return MemDepResult::getClobber(Inst);
526  case AliasAnalysis::Ref:
527  // If the call is known to never store to the pointer, and if this is a
528  // load query, we can safely ignore it (scan past it).
529  if (isLoad)
530  continue;
531  default:
532  // Otherwise, there is a potential dependence. Return a clobber.
533  return MemDepResult::getClobber(Inst);
534  }
535  }
536 
537  // No dependence found. If this is the entry block of the function, it is
538  // unknown, otherwise it is non-local.
539  if (BB != &BB->getParent()->getEntryBlock())
540  return MemDepResult::getNonLocal();
542 }
543 
544 /// getDependency - Return the instruction on which a memory operation
545 /// depends.
547  Instruction *ScanPos = QueryInst;
548 
549  // Check for a cached result
550  MemDepResult &LocalCache = LocalDeps[QueryInst];
551 
552  // If the cached entry is non-dirty, just return it. Note that this depends
553  // on MemDepResult's default constructing to 'dirty'.
554  if (!LocalCache.isDirty())
555  return LocalCache;
556 
557  // Otherwise, if we have a dirty entry, we know we can start the scan at that
558  // instruction, which may save us some work.
559  if (Instruction *Inst = LocalCache.getInst()) {
560  ScanPos = Inst;
561 
562  RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
563  }
564 
565  BasicBlock *QueryParent = QueryInst->getParent();
566 
567  // Do the scan.
568  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
569  // No dependence found. If this is the entry block of the function, it is
570  // unknown, otherwise it is non-local.
571  if (QueryParent != &QueryParent->getParent()->getEntryBlock())
572  LocalCache = MemDepResult::getNonLocal();
573  else
574  LocalCache = MemDepResult::getNonFuncLocal();
575  } else {
577  AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
578  if (MemLoc.Ptr) {
579  // If we can do a pointer scan, make it happen.
580  bool isLoad = !(MR & AliasAnalysis::Mod);
581  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
582  isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
583 
584  LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
585  QueryParent, QueryInst);
586  } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
587  CallSite QueryCS(QueryInst);
588  bool isReadOnly = AA->onlyReadsMemory(QueryCS);
589  LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
590  QueryParent);
591  } else
592  // Non-memory instruction.
593  LocalCache = MemDepResult::getUnknown();
594  }
595 
596  // Remember the result!
597  if (Instruction *I = LocalCache.getInst())
598  ReverseLocalDeps[I].insert(QueryInst);
599 
600  return LocalCache;
601 }
602 
603 #ifndef NDEBUG
604 /// AssertSorted - This method is used when -debug is specified to verify that
605 /// cache arrays are properly kept sorted.
607  int Count = -1) {
608  if (Count == -1) Count = Cache.size();
609  if (Count == 0) return;
610 
611  for (unsigned i = 1; i != unsigned(Count); ++i)
612  assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
613 }
614 #endif
615 
616 /// getNonLocalCallDependency - Perform a full dependency query for the
617 /// specified call, returning the set of blocks that the value is
618 /// potentially live across. The returned set of results will include a
619 /// "NonLocal" result for all blocks where the value is live across.
620 ///
621 /// This method assumes the instruction returns a "NonLocal" dependency
622 /// within its own block.
623 ///
624 /// This returns a reference to an internal data structure that may be
625 /// invalidated on the next non-local query or when an instruction is
626 /// removed. Clients must copy this data if they want it around longer than
627 /// that.
630  assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
631  "getNonLocalCallDependency should only be used on calls with non-local deps!");
632  PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
633  NonLocalDepInfo &Cache = CacheP.first;
634 
635  /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
636  /// the cached case, this can happen due to instructions being deleted etc. In
637  /// the uncached case, this starts out as the set of predecessors we care
638  /// about.
639  SmallVector<BasicBlock*, 32> DirtyBlocks;
640 
641  if (!Cache.empty()) {
642  // Okay, we have a cache entry. If we know it is not dirty, just return it
643  // with no computation.
644  if (!CacheP.second) {
645  ++NumCacheNonLocal;
646  return Cache;
647  }
648 
649  // If we already have a partially computed set of results, scan them to
650  // determine what is dirty, seeding our initial DirtyBlocks worklist.
651  for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
652  I != E; ++I)
653  if (I->getResult().isDirty())
654  DirtyBlocks.push_back(I->getBB());
655 
656  // Sort the cache so that we can do fast binary search lookups below.
657  std::sort(Cache.begin(), Cache.end());
658 
659  ++NumCacheDirtyNonLocal;
660  //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
661  // << Cache.size() << " cached: " << *QueryInst;
662  } else {
663  // Seed DirtyBlocks with each of the preds of QueryInst's block.
664  BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
665  for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
666  DirtyBlocks.push_back(*PI);
667  ++NumUncacheNonLocal;
668  }
669 
670  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
671  bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
672 
674 
675  unsigned NumSortedEntries = Cache.size();
676  DEBUG(AssertSorted(Cache));
677 
678  // Iterate while we still have blocks to update.
679  while (!DirtyBlocks.empty()) {
680  BasicBlock *DirtyBB = DirtyBlocks.back();
681  DirtyBlocks.pop_back();
682 
683  // Already processed this block?
684  if (!Visited.insert(DirtyBB))
685  continue;
686 
687  // Do a binary search to see if we already have an entry for this block in
688  // the cache set. If so, find it.
689  DEBUG(AssertSorted(Cache, NumSortedEntries));
690  NonLocalDepInfo::iterator Entry =
691  std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
692  NonLocalDepEntry(DirtyBB));
693  if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
694  --Entry;
695 
696  NonLocalDepEntry *ExistingResult = 0;
697  if (Entry != Cache.begin()+NumSortedEntries &&
698  Entry->getBB() == DirtyBB) {
699  // If we already have an entry, and if it isn't already dirty, the block
700  // is done.
701  if (!Entry->getResult().isDirty())
702  continue;
703 
704  // Otherwise, remember this slot so we can update the value.
705  ExistingResult = &*Entry;
706  }
707 
708  // If the dirty entry has a pointer, start scanning from it so we don't have
709  // to rescan the entire block.
710  BasicBlock::iterator ScanPos = DirtyBB->end();
711  if (ExistingResult) {
712  if (Instruction *Inst = ExistingResult->getResult().getInst()) {
713  ScanPos = Inst;
714  // We're removing QueryInst's use of Inst.
715  RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
716  QueryCS.getInstruction());
717  }
718  }
719 
720  // Find out if this block has a local dependency for QueryInst.
721  MemDepResult Dep;
722 
723  if (ScanPos != DirtyBB->begin()) {
724  Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
725  } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
726  // No dependence found. If this is the entry block of the function, it is
727  // a clobber, otherwise it is unknown.
729  } else {
731  }
732 
733  // If we had a dirty entry for the block, update it. Otherwise, just add
734  // a new entry.
735  if (ExistingResult)
736  ExistingResult->setResult(Dep);
737  else
738  Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
739 
740  // If the block has a dependency (i.e. it isn't completely transparent to
741  // the value), remember the association!
742  if (!Dep.isNonLocal()) {
743  // Keep the ReverseNonLocalDeps map up to date so we can efficiently
744  // update this when we remove instructions.
745  if (Instruction *Inst = Dep.getInst())
746  ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
747  } else {
748 
749  // If the block *is* completely transparent to the load, we need to check
750  // the predecessors of this block. Add them to our worklist.
751  for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
752  DirtyBlocks.push_back(*PI);
753  }
754  }
755 
756  return Cache;
757 }
758 
759 /// getNonLocalPointerDependency - Perform a full dependency query for an
760 /// access to the specified (non-volatile) memory location, returning the
761 /// set of instructions that either define or clobber the value.
762 ///
763 /// This method assumes the pointer has a "NonLocal" dependency within its
764 /// own block.
765 ///
768  BasicBlock *FromBB,
770  assert(Loc.Ptr->getType()->isPointerTy() &&
771  "Can't get pointer deps of a non-pointer!");
772  Result.clear();
773 
774  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
775 
776  // This is the set of blocks we've inspected, and the pointer we consider in
777  // each block. Because of critical edges, we currently bail out if querying
778  // a block with multiple different pointers. This can happen during PHI
779  // translation.
781  if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
782  Result, Visited, true))
783  return;
784  Result.clear();
785  Result.push_back(NonLocalDepResult(FromBB,
787  const_cast<Value *>(Loc.Ptr)));
788 }
789 
790 /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
791 /// Pointer/PointeeSize using either cached information in Cache or by doing a
792 /// lookup (which may use dirty cache info if available). If we do a lookup,
793 /// add the result to the cache.
794 MemDepResult MemoryDependenceAnalysis::
795 GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
796  bool isLoad, BasicBlock *BB,
797  NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
798 
799  // Do a binary search to see if we already have an entry for this block in
800  // the cache set. If so, find it.
801  NonLocalDepInfo::iterator Entry =
802  std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
803  NonLocalDepEntry(BB));
804  if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
805  --Entry;
806 
807  NonLocalDepEntry *ExistingResult = 0;
808  if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
809  ExistingResult = &*Entry;
810 
811  // If we have a cached entry, and it is non-dirty, use it as the value for
812  // this dependency.
813  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
814  ++NumCacheNonLocalPtr;
815  return ExistingResult->getResult();
816  }
817 
818  // Otherwise, we have to scan for the value. If we have a dirty cache
819  // entry, start scanning from its position, otherwise we scan from the end
820  // of the block.
821  BasicBlock::iterator ScanPos = BB->end();
822  if (ExistingResult && ExistingResult->getResult().getInst()) {
823  assert(ExistingResult->getResult().getInst()->getParent() == BB &&
824  "Instruction invalidated?");
825  ++NumCacheDirtyNonLocalPtr;
826  ScanPos = ExistingResult->getResult().getInst();
827 
828  // Eliminating the dirty entry from 'Cache', so update the reverse info.
829  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
830  RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
831  } else {
832  ++NumUncacheNonLocalPtr;
833  }
834 
835  // Scan the block for the dependency.
836  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
837 
838  // If we had a dirty entry for the block, update it. Otherwise, just add
839  // a new entry.
840  if (ExistingResult)
841  ExistingResult->setResult(Dep);
842  else
843  Cache->push_back(NonLocalDepEntry(BB, Dep));
844 
845  // If the block has a dependency (i.e. it isn't completely transparent to
846  // the value), remember the reverse association because we just added it
847  // to Cache!
848  if (!Dep.isDef() && !Dep.isClobber())
849  return Dep;
850 
851  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
852  // update MemDep when we remove instructions.
853  Instruction *Inst = Dep.getInst();
854  assert(Inst && "Didn't depend on anything?");
855  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
856  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
857  return Dep;
858 }
859 
860 /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
861 /// number of elements in the array that are already properly ordered. This is
862 /// optimized for the case when only a few entries are added.
863 static void
865  unsigned NumSortedEntries) {
866  switch (Cache.size() - NumSortedEntries) {
867  case 0:
868  // done, no new entries.
869  break;
870  case 2: {
871  // Two new entries, insert the last one into place.
872  NonLocalDepEntry Val = Cache.back();
873  Cache.pop_back();
874  MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
875  std::upper_bound(Cache.begin(), Cache.end()-1, Val);
876  Cache.insert(Entry, Val);
877  // FALL THROUGH.
878  }
879  case 1:
880  // One new entry, Just insert the new value at the appropriate position.
881  if (Cache.size() != 1) {
882  NonLocalDepEntry Val = Cache.back();
883  Cache.pop_back();
884  MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
885  std::upper_bound(Cache.begin(), Cache.end(), Val);
886  Cache.insert(Entry, Val);
887  }
888  break;
889  default:
890  // Added many values, do a full scale sort.
891  std::sort(Cache.begin(), Cache.end());
892  break;
893  }
894 }
895 
896 /// getNonLocalPointerDepFromBB - Perform a dependency query based on
897 /// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
898 /// results to the results vector and keep track of which blocks are visited in
899 /// 'Visited'.
900 ///
901 /// This has special behavior for the first block queries (when SkipFirstBlock
902 /// is true). In this special case, it ignores the contents of the specified
903 /// block and starts returning dependence info for its predecessors.
904 ///
905 /// This function returns false on success, or true to indicate that it could
906 /// not compute dependence information for some reason. This should be treated
907 /// as a clobber dependence on the first instruction in the predecessor block.
908 bool MemoryDependenceAnalysis::
909 getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
910  const AliasAnalysis::Location &Loc,
911  bool isLoad, BasicBlock *StartBB,
914  bool SkipFirstBlock) {
915  // Look up the cached info for Pointer.
916  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
917 
918  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
919  // CacheKey, this value will be inserted as the associated value. Otherwise,
920  // it'll be ignored, and we'll have to check to see if the cached size and
921  // tbaa tag are consistent with the current query.
922  NonLocalPointerInfo InitialNLPI;
923  InitialNLPI.Size = Loc.Size;
924  InitialNLPI.TBAATag = Loc.TBAATag;
925 
926  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
927  // already have one.
928  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
929  NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
930  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
931 
932  // If we already have a cache entry for this CacheKey, we may need to do some
933  // work to reconcile the cache entry and the current query.
934  if (!Pair.second) {
935  if (CacheInfo->Size < Loc.Size) {
936  // The query's Size is greater than the cached one. Throw out the
937  // cached data and proceed with the query at the greater size.
938  CacheInfo->Pair = BBSkipFirstBlockPair();
939  CacheInfo->Size = Loc.Size;
940  for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
941  DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
942  if (Instruction *Inst = DI->getResult().getInst())
943  RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
944  CacheInfo->NonLocalDeps.clear();
945  } else if (CacheInfo->Size > Loc.Size) {
946  // This query's Size is less than the cached one. Conservatively restart
947  // the query using the greater size.
948  return getNonLocalPointerDepFromBB(Pointer,
949  Loc.getWithNewSize(CacheInfo->Size),
950  isLoad, StartBB, Result, Visited,
951  SkipFirstBlock);
952  }
953 
954  // If the query's TBAATag is inconsistent with the cached one,
955  // conservatively throw out the cached data and restart the query with
956  // no tag if needed.
957  if (CacheInfo->TBAATag != Loc.TBAATag) {
958  if (CacheInfo->TBAATag) {
959  CacheInfo->Pair = BBSkipFirstBlockPair();
960  CacheInfo->TBAATag = 0;
961  for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
962  DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
963  if (Instruction *Inst = DI->getResult().getInst())
964  RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
965  CacheInfo->NonLocalDeps.clear();
966  }
967  if (Loc.TBAATag)
968  return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
969  isLoad, StartBB, Result, Visited,
970  SkipFirstBlock);
971  }
972  }
973 
974  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
975 
976  // If we have valid cached information for exactly the block we are
977  // investigating, just return it with no recomputation.
978  if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
979  // We have a fully cached result for this query then we can just return the
980  // cached results and populate the visited set. However, we have to verify
981  // that we don't already have conflicting results for these blocks. Check
982  // to ensure that if a block in the results set is in the visited set that
983  // it was for the same pointer query.
984  if (!Visited.empty()) {
985  for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
986  I != E; ++I) {
987  DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
988  if (VI == Visited.end() || VI->second == Pointer.getAddr())
989  continue;
990 
991  // We have a pointer mismatch in a block. Just return clobber, saying
992  // that something was clobbered in this result. We could also do a
993  // non-fully cached query, but there is little point in doing this.
994  return true;
995  }
996  }
997 
998  Value *Addr = Pointer.getAddr();
999  for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1000  I != E; ++I) {
1001  Visited.insert(std::make_pair(I->getBB(), Addr));
1002  if (I->getResult().isNonLocal()) {
1003  continue;
1004  }
1005 
1006  if (!DT) {
1007  Result.push_back(NonLocalDepResult(I->getBB(),
1009  Addr));
1010  } else if (DT->isReachableFromEntry(I->getBB())) {
1011  Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1012  }
1013  }
1014  ++NumCacheCompleteNonLocalPtr;
1015  return false;
1016  }
1017 
1018  // Otherwise, either this is a new block, a block with an invalid cache
1019  // pointer or one that we're about to invalidate by putting more info into it
1020  // than its valid cache info. If empty, the result will be valid cache info,
1021  // otherwise it isn't.
1022  if (Cache->empty())
1023  CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1024  else
1025  CacheInfo->Pair = BBSkipFirstBlockPair();
1026 
1028  Worklist.push_back(StartBB);
1029 
1030  // PredList used inside loop.
1032 
1033  // Keep track of the entries that we know are sorted. Previously cached
1034  // entries will all be sorted. The entries we add we only sort on demand (we
1035  // don't insert every element into its sorted position). We know that we
1036  // won't get any reuse from currently inserted values, because we don't
1037  // revisit blocks after we insert info for them.
1038  unsigned NumSortedEntries = Cache->size();
1039  DEBUG(AssertSorted(*Cache));
1040 
1041  while (!Worklist.empty()) {
1042  BasicBlock *BB = Worklist.pop_back_val();
1043 
1044  // Skip the first block if we have it.
1045  if (!SkipFirstBlock) {
1046  // Analyze the dependency of *Pointer in FromBB. See if we already have
1047  // been here.
1048  assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1049 
1050  // Get the dependency info for Pointer in BB. If we have cached
1051  // information, we will use it, otherwise we compute it.
1052  DEBUG(AssertSorted(*Cache, NumSortedEntries));
1053  MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1054  NumSortedEntries);
1055 
1056  // If we got a Def or Clobber, add this to the list of results.
1057  if (!Dep.isNonLocal()) {
1058  if (!DT) {
1059  Result.push_back(NonLocalDepResult(BB,
1061  Pointer.getAddr()));
1062  continue;
1063  } else if (DT->isReachableFromEntry(BB)) {
1064  Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1065  continue;
1066  }
1067  }
1068  }
1069 
1070  // If 'Pointer' is an instruction defined in this block, then we need to do
1071  // phi translation to change it into a value live in the predecessor block.
1072  // If not, we just add the predecessors to the worklist and scan them with
1073  // the same Pointer.
1074  if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1075  SkipFirstBlock = false;
1076  SmallVector<BasicBlock*, 16> NewBlocks;
1077  for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1078  // Verify that we haven't looked at this block yet.
1079  std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1080  InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1081  if (InsertRes.second) {
1082  // First time we've looked at *PI.
1083  NewBlocks.push_back(*PI);
1084  continue;
1085  }
1086 
1087  // If we have seen this block before, but it was with a different
1088  // pointer then we have a phi translation failure and we have to treat
1089  // this as a clobber.
1090  if (InsertRes.first->second != Pointer.getAddr()) {
1091  // Make sure to clean up the Visited map before continuing on to
1092  // PredTranslationFailure.
1093  for (unsigned i = 0; i < NewBlocks.size(); i++)
1094  Visited.erase(NewBlocks[i]);
1095  goto PredTranslationFailure;
1096  }
1097  }
1098  Worklist.append(NewBlocks.begin(), NewBlocks.end());
1099  continue;
1100  }
1101 
1102  // We do need to do phi translation, if we know ahead of time we can't phi
1103  // translate this value, don't even try.
1104  if (!Pointer.IsPotentiallyPHITranslatable())
1105  goto PredTranslationFailure;
1106 
1107  // We may have added values to the cache list before this PHI translation.
1108  // If so, we haven't done anything to ensure that the cache remains sorted.
1109  // Sort it now (if needed) so that recursive invocations of
1110  // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1111  // value will only see properly sorted cache arrays.
1112  if (Cache && NumSortedEntries != Cache->size()) {
1113  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1114  NumSortedEntries = Cache->size();
1115  }
1116  Cache = 0;
1117 
1118  PredList.clear();
1119  for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1120  BasicBlock *Pred = *PI;
1121  PredList.push_back(std::make_pair(Pred, Pointer));
1122 
1123  // Get the PHI translated pointer in this predecessor. This can fail if
1124  // not translatable, in which case the getAddr() returns null.
1125  PHITransAddr &PredPointer = PredList.back().second;
1126  PredPointer.PHITranslateValue(BB, Pred, 0);
1127 
1128  Value *PredPtrVal = PredPointer.getAddr();
1129 
1130  // Check to see if we have already visited this pred block with another
1131  // pointer. If so, we can't do this lookup. This failure can occur
1132  // with PHI translation when a critical edge exists and the PHI node in
1133  // the successor translates to a pointer value different than the
1134  // pointer the block was first analyzed with.
1135  std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1136  InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1137 
1138  if (!InsertRes.second) {
1139  // We found the pred; take it off the list of preds to visit.
1140  PredList.pop_back();
1141 
1142  // If the predecessor was visited with PredPtr, then we already did
1143  // the analysis and can ignore it.
1144  if (InsertRes.first->second == PredPtrVal)
1145  continue;
1146 
1147  // Otherwise, the block was previously analyzed with a different
1148  // pointer. We can't represent the result of this case, so we just
1149  // treat this as a phi translation failure.
1150 
1151  // Make sure to clean up the Visited map before continuing on to
1152  // PredTranslationFailure.
1153  for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1154  Visited.erase(PredList[i].first);
1155 
1156  goto PredTranslationFailure;
1157  }
1158  }
1159 
1160  // Actually process results here; this need to be a separate loop to avoid
1161  // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1162  // any results for. (getNonLocalPointerDepFromBB will modify our
1163  // datastructures in ways the code after the PredTranslationFailure label
1164  // doesn't expect.)
1165  for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1166  BasicBlock *Pred = PredList[i].first;
1167  PHITransAddr &PredPointer = PredList[i].second;
1168  Value *PredPtrVal = PredPointer.getAddr();
1169 
1170  bool CanTranslate = true;
1171  // If PHI translation was unable to find an available pointer in this
1172  // predecessor, then we have to assume that the pointer is clobbered in
1173  // that predecessor. We can still do PRE of the load, which would insert
1174  // a computation of the pointer in this predecessor.
1175  if (PredPtrVal == 0)
1176  CanTranslate = false;
1177 
1178  // FIXME: it is entirely possible that PHI translating will end up with
1179  // the same value. Consider PHI translating something like:
1180  // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1181  // to recurse here, pedantically speaking.
1182 
1183  // If getNonLocalPointerDepFromBB fails here, that means the cached
1184  // result conflicted with the Visited list; we have to conservatively
1185  // assume it is unknown, but this also does not block PRE of the load.
1186  if (!CanTranslate ||
1187  getNonLocalPointerDepFromBB(PredPointer,
1188  Loc.getWithNewPtr(PredPtrVal),
1189  isLoad, Pred,
1190  Result, Visited)) {
1191  // Add the entry to the Result list.
1192  NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1193  Result.push_back(Entry);
1194 
1195  // Since we had a phi translation failure, the cache for CacheKey won't
1196  // include all of the entries that we need to immediately satisfy future
1197  // queries. Mark this in NonLocalPointerDeps by setting the
1198  // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1199  // cached value to do more work but not miss the phi trans failure.
1200  NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1201  NLPI.Pair = BBSkipFirstBlockPair();
1202  continue;
1203  }
1204  }
1205 
1206  // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1207  CacheInfo = &NonLocalPointerDeps[CacheKey];
1208  Cache = &CacheInfo->NonLocalDeps;
1209  NumSortedEntries = Cache->size();
1210 
1211  // Since we did phi translation, the "Cache" set won't contain all of the
1212  // results for the query. This is ok (we can still use it to accelerate
1213  // specific block queries) but we can't do the fastpath "return all
1214  // results from the set" Clear out the indicator for this.
1215  CacheInfo->Pair = BBSkipFirstBlockPair();
1216  SkipFirstBlock = false;
1217  continue;
1218 
1219  PredTranslationFailure:
1220  // The following code is "failure"; we can't produce a sane translation
1221  // for the given block. It assumes that we haven't modified any of
1222  // our datastructures while processing the current block.
1223 
1224  if (Cache == 0) {
1225  // Refresh the CacheInfo/Cache pointer if it got invalidated.
1226  CacheInfo = &NonLocalPointerDeps[CacheKey];
1227  Cache = &CacheInfo->NonLocalDeps;
1228  NumSortedEntries = Cache->size();
1229  }
1230 
1231  // Since we failed phi translation, the "Cache" set won't contain all of the
1232  // results for the query. This is ok (we can still use it to accelerate
1233  // specific block queries) but we can't do the fastpath "return all
1234  // results from the set". Clear out the indicator for this.
1235  CacheInfo->Pair = BBSkipFirstBlockPair();
1236 
1237  // If *nothing* works, mark the pointer as unknown.
1238  //
1239  // If this is the magic first block, return this as a clobber of the whole
1240  // incoming value. Since we can't phi translate to one of the predecessors,
1241  // we have to bail out.
1242  if (SkipFirstBlock)
1243  return true;
1244 
1245  for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1246  assert(I != Cache->rend() && "Didn't find current block??");
1247  if (I->getBB() != BB)
1248  continue;
1249 
1250  assert(I->getResult().isNonLocal() &&
1251  "Should only be here with transparent block");
1252  I->setResult(MemDepResult::getUnknown());
1253  Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1254  Pointer.getAddr()));
1255  break;
1256  }
1257  }
1258 
1259  // Okay, we're done now. If we added new values to the cache, re-sort it.
1260  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1261  DEBUG(AssertSorted(*Cache));
1262  return false;
1263 }
1264 
1265 /// RemoveCachedNonLocalPointerDependencies - If P exists in
1266 /// CachedNonLocalPointerInfo, remove it.
1267 void MemoryDependenceAnalysis::
1268 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1270  NonLocalPointerDeps.find(P);
1271  if (It == NonLocalPointerDeps.end()) return;
1272 
1273  // Remove all of the entries in the BB->val map. This involves removing
1274  // instructions from the reverse map.
1275  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1276 
1277  for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1278  Instruction *Target = PInfo[i].getResult().getInst();
1279  if (Target == 0) continue; // Ignore non-local dep results.
1280  assert(Target->getParent() == PInfo[i].getBB());
1281 
1282  // Eliminating the dirty entry from 'Cache', so update the reverse info.
1283  RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1284  }
1285 
1286  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1287  NonLocalPointerDeps.erase(It);
1288 }
1289 
1290 
1291 /// invalidateCachedPointerInfo - This method is used to invalidate cached
1292 /// information about the specified pointer, because it may be too
1293 /// conservative in memdep. This is an optional call that can be used when
1294 /// the client detects an equivalence between the pointer and some other
1295 /// value and replaces the other value with ptr. This can make Ptr available
1296 /// in more places that cached info does not necessarily keep.
1298  // If Ptr isn't really a pointer, just ignore it.
1299  if (!Ptr->getType()->isPointerTy()) return;
1300  // Flush store info for the pointer.
1301  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1302  // Flush load info for the pointer.
1303  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1304 }
1305 
1306 /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1307 /// This needs to be done when the CFG changes, e.g., due to splitting
1308 /// critical edges.
1310  PredCache->clear();
1311 }
1312 
1313 /// removeInstruction - Remove an instruction from the dependence analysis,
1314 /// updating the dependence of instructions that previously depended on it.
1315 /// This method attempts to keep the cache coherent using the reverse map.
1317  // Walk through the Non-local dependencies, removing this one as the value
1318  // for any cached queries.
1319  NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1320  if (NLDI != NonLocalDeps.end()) {
1321  NonLocalDepInfo &BlockMap = NLDI->second.first;
1322  for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1323  DI != DE; ++DI)
1324  if (Instruction *Inst = DI->getResult().getInst())
1325  RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1326  NonLocalDeps.erase(NLDI);
1327  }
1328 
1329  // If we have a cached local dependence query for this instruction, remove it.
1330  //
1331  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1332  if (LocalDepEntry != LocalDeps.end()) {
1333  // Remove us from DepInst's reverse set now that the local dep info is gone.
1334  if (Instruction *Inst = LocalDepEntry->second.getInst())
1335  RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1336 
1337  // Remove this local dependency info.
1338  LocalDeps.erase(LocalDepEntry);
1339  }
1340 
1341  // If we have any cached pointer dependencies on this instruction, remove
1342  // them. If the instruction has non-pointer type, then it can't be a pointer
1343  // base.
1344 
1345  // Remove it from both the load info and the store info. The instruction
1346  // can't be in either of these maps if it is non-pointer.
1347  if (RemInst->getType()->isPointerTy()) {
1348  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1349  RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1350  }
1351 
1352  // Loop over all of the things that depend on the instruction we're removing.
1353  //
1355 
1356  // If we find RemInst as a clobber or Def in any of the maps for other values,
1357  // we need to replace its entry with a dirty version of the instruction after
1358  // it. If RemInst is a terminator, we use a null dirty value.
1359  //
1360  // Using a dirty version of the instruction after RemInst saves having to scan
1361  // the entire block to get to this point.
1362  MemDepResult NewDirtyVal;
1363  if (!RemInst->isTerminator())
1364  NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1365 
1366  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1367  if (ReverseDepIt != ReverseLocalDeps.end()) {
1368  SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
1369  // RemInst can't be the terminator if it has local stuff depending on it.
1370  assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
1371  "Nothing can locally depend on a terminator");
1372 
1373  for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
1374  E = ReverseDeps.end(); I != E; ++I) {
1375  Instruction *InstDependingOnRemInst = *I;
1376  assert(InstDependingOnRemInst != RemInst &&
1377  "Already removed our local dep info");
1378 
1379  LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1380 
1381  // Make sure to remember that new things depend on NewDepInst.
1382  assert(NewDirtyVal.getInst() && "There is no way something else can have "
1383  "a local dep on this if it is a terminator!");
1384  ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1385  InstDependingOnRemInst));
1386  }
1387 
1388  ReverseLocalDeps.erase(ReverseDepIt);
1389 
1390  // Add new reverse deps after scanning the set, to avoid invalidating the
1391  // 'ReverseDeps' reference.
1392  while (!ReverseDepsToAdd.empty()) {
1393  ReverseLocalDeps[ReverseDepsToAdd.back().first]
1394  .insert(ReverseDepsToAdd.back().second);
1395  ReverseDepsToAdd.pop_back();
1396  }
1397  }
1398 
1399  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1400  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1401  SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
1402  for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
1403  I != E; ++I) {
1404  assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
1405 
1406  PerInstNLInfo &INLD = NonLocalDeps[*I];
1407  // The information is now dirty!
1408  INLD.second = true;
1409 
1410  for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1411  DE = INLD.first.end(); DI != DE; ++DI) {
1412  if (DI->getResult().getInst() != RemInst) continue;
1413 
1414  // Convert to a dirty entry for the subsequent instruction.
1415  DI->setResult(NewDirtyVal);
1416 
1417  if (Instruction *NextI = NewDirtyVal.getInst())
1418  ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
1419  }
1420  }
1421 
1422  ReverseNonLocalDeps.erase(ReverseDepIt);
1423 
1424  // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1425  while (!ReverseDepsToAdd.empty()) {
1426  ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1427  .insert(ReverseDepsToAdd.back().second);
1428  ReverseDepsToAdd.pop_back();
1429  }
1430  }
1431 
1432  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1433  // value in the NonLocalPointerDeps info.
1434  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1435  ReverseNonLocalPtrDeps.find(RemInst);
1436  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1437  SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
1439 
1441  E = Set.end(); I != E; ++I) {
1442  ValueIsLoadPair P = *I;
1443  assert(P.getPointer() != RemInst &&
1444  "Already removed NonLocalPointerDeps info for RemInst");
1445 
1446  NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1447 
1448  // The cache is not valid for any specific block anymore.
1449  NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1450 
1451  // Update any entries for RemInst to use the instruction after it.
1452  for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1453  DI != DE; ++DI) {
1454  if (DI->getResult().getInst() != RemInst) continue;
1455 
1456  // Convert to a dirty entry for the subsequent instruction.
1457  DI->setResult(NewDirtyVal);
1458 
1459  if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1460  ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1461  }
1462 
1463  // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1464  // subsequent value may invalidate the sortedness.
1465  std::sort(NLPDI.begin(), NLPDI.end());
1466  }
1467 
1468  ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1469 
1470  while (!ReversePtrDepsToAdd.empty()) {
1471  ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1472  .insert(ReversePtrDepsToAdd.back().second);
1473  ReversePtrDepsToAdd.pop_back();
1474  }
1475  }
1476 
1477 
1478  assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
1479  AA->deleteValue(RemInst);
1480  DEBUG(verifyRemoved(RemInst));
1481 }
1482 /// verifyRemoved - Verify that the specified instruction does not occur
1483 /// in our internal data structures.
1484 void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1485  for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1486  E = LocalDeps.end(); I != E; ++I) {
1487  assert(I->first != D && "Inst occurs in data structures");
1488  assert(I->second.getInst() != D &&
1489  "Inst occurs in data structures");
1490  }
1491 
1492  for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1493  E = NonLocalPointerDeps.end(); I != E; ++I) {
1494  assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
1495  const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1496  for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1497  II != E; ++II)
1498  assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
1499  }
1500 
1501  for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1502  E = NonLocalDeps.end(); I != E; ++I) {
1503  assert(I->first != D && "Inst occurs in data structures");
1504  const PerInstNLInfo &INLD = I->second;
1505  for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1506  EE = INLD.first.end(); II != EE; ++II)
1507  assert(II->getResult().getInst() != D && "Inst occurs in data structures");
1508  }
1509 
1510  for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1511  E = ReverseLocalDeps.end(); I != E; ++I) {
1512  assert(I->first != D && "Inst occurs in data structures");
1513  for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1514  EE = I->second.end(); II != EE; ++II)
1515  assert(*II != D && "Inst occurs in data structures");
1516  }
1517 
1518  for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1519  E = ReverseNonLocalDeps.end();
1520  I != E; ++I) {
1521  assert(I->first != D && "Inst occurs in data structures");
1522  for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
1523  EE = I->second.end(); II != EE; ++II)
1524  assert(*II != D && "Inst occurs in data structures");
1525  }
1526 
1528  I = ReverseNonLocalPtrDeps.begin(),
1529  E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1530  assert(I->first != D && "Inst occurs in rev NLPD map");
1531 
1532  for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
1533  E = I->second.end(); II != E; ++II)
1534  assert(*II != ValueIsLoadPair(D, false) &&
1535  *II != ValueIsLoadPair(D, true) &&
1536  "Inst occurs in ReverseNonLocalPtrDeps map");
1537  }
1538 
1539 }
Pointers differ, but pointees overlap.
virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal=false)
static PassRegistry * getPassRegistry()
static const int BlockScanLimit
ModRefResult getModRefInfo(const Instruction *I, const Location &Loc)
bool isReachableFromEntry(const BasicBlock *A) const
Definition: Dominators.h:879
static void RemoveFromReverseMap(DenseMap< Instruction *, SmallPtrSet< KeyTy, 4 > > &ReverseMap, Instruction *Inst, KeyTy Val)
An abstraction for memory operations.
Definition: Memory.h:45
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout *TD)
static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, int Count=-1)
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
bool isSimple() const
Definition: Instructions.h:218
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
const CallInst * isFreeCall(const Value *I, const TargetLibraryInfo *TLI)
isFreeCall - Returns non-null if the value is a call to the builtin free()
iterator begin()
Definition: BasicBlock.h:193
Value * GetUnderlyingObject(Value *V, const DataLayout *TD=0, unsigned MaxLookup=6)
bool NeedsPHITranslationFromBlock(BasicBlock *BB) const
Definition: PHITransAddr.h:58
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
static MemDepResult getDef(Instruction *Inst)
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs, unsigned MemLocSize, const LoadInst *LI, const DataLayout &TD)
void getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad, BasicBlock *BB, SmallVectorImpl< NonLocalDepResult > &Result)
bool isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a function that returns a NoAlias pointer (including malloc/c...
bool mayReadFromMemory() const
bool runOnFunction(Function &)
Pass Implementation stuff. This doesn't do any analysis eagerly.
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
STATISTIC(NumCacheNonLocal,"Number of fully cached non-local responses")
bool onlyReadsMemory(ImmutableCallSite CS)
static MemDepResult getUnknown()
Location getWithNewSize(uint64_t NewSize) const
virtual void getAnalysisUsage(AnalysisUsage &AU) const
#define P(N)
#define true
Definition: ConvertUTF.c:65
bool isIdenticalToWhenDefined(const Instruction *I) const
static AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst, AliasAnalysis::Location &Loc, AliasAnalysis *AA)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, const DominatorTree *DT)
InstrTy * getInstruction() const
Definition: CallSite.h:79
virtual AliasResult alias(const Location &LocA, const Location &LocB)
static MemDepResult getNonFuncLocal()
Value * getPointerOperand()
Definition: Instructions.h:223
const MemDepResult & getResult() const
Integer representation type.
Definition: DerivedTypes.h:37
bool count(const KeyT &Val) const
count - Return true if the specified key is in the map.
Definition: DenseMap.h:103
void setResult(const MemDepResult &R)
Location - A description of a memory location.
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallPtrSet.h:74
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
MemDepResult getPointerDependencyFrom(const AliasAnalysis::Location &Loc, bool isLoad, BasicBlock::iterator ScanIt, BasicBlock *BB, Instruction *QueryInst=0)
bool isPointerTy() const
Definition: Type.h:220
uint64_t NextPowerOf2(uint64_t A)
Definition: MathExtras.h:546
virtual void deleteValue(Value *V)
bool IsPotentiallyPHITranslatable() const
bool mayWriteToMemory() const
bool isTerminator() const
Definition: Instruction.h:86
bool isMustAlias(const Location &LocA, const Location &LocB)
isMustAlias - A convenience wrapper.
SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
Definition: SmallPtrSet.h:174
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
DenseMapIterator< KeyT, ValueT, KeyInfoT, true > const_iterator
Definition: DenseMap.h:52
PointerTy getPointer() const
bool fitsInLegalInteger(unsigned Width) const
Definition: DataLayout.h:230
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
static MemDepResult getClobber(Instruction *Inst)
MDNode * getMetadata(unsigned KindID) const
Definition: Instruction.h:140
unsigned size() const
Definition: SmallPtrSet.h:75
std::vector< NonLocalDepEntry > NonLocalDepInfo
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:170
iterator begin()
Definition: DenseMap.h:53
bool isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates uninitialized memory (such ...
Location getLocation(const LoadInst *LI)
INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis,"memdep","Memory Dependence Analysis", false, true) INITIALIZE_PASS_END(MemoryDependenceAnalysis
DenseMapIterator< KeyT, ValueT, KeyInfoT > iterator
Definition: DenseMap.h:50
ThreadSanitizer is on.
Definition: Attributes.h:107
void initializeMemoryDependenceAnalysisPass(PassRegistry &)
Instruction * getInst() const
static void SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache, unsigned NumSortedEntries)
MemDepResult getDependency(Instruction *QueryInst)
unsigned getAlignment() const
Definition: Instructions.h:181
std::reverse_iterator< const_iterator > reverse_iterator
Definition: Path.h:79
Memory Dependence false
bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI, bool LookThroughBitCast=false)
Tests if a value is a call or invoke to a library function that allocates zero-filled memory (such as...
AddressSanitizer is on.
Definition: Attributes.h:106
#define I(x, y, z)
Definition: MD5.cpp:54
const Value * Ptr
Ptr - The address of the start of the location.
iterator end() const
Definition: SmallPtrSet.h:279
const NonLocalDepInfo & getNonLocalCallDependency(CallSite QueryCS)
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
AnalysisUsage & addRequiredTransitive()
Memory Dependence Analysis
Location getWithNewPtr(const Value *NewPtr) const
LLVM Value Representation.
Definition: Value.h:66
iterator begin() const
Definition: SmallPtrSet.h:276
Location getWithoutTBAATag() const
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
#define DEBUG(X)
Definition: Debug.h:97
const TargetLibraryInfo * getTargetLibraryInfo() const
Definition: AliasAnalysis.h:94
static bool isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc, const Value *&MemLocBase, int64_t &MemLocOffs, const LoadInst *LI, const DataLayout *TD)
ModRefResult callCapturesBefore(const Instruction *I, const AliasAnalysis::Location &MemLoc, DominatorTree *DT)
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
Value * getAddr() const
Definition: PHITransAddr.h:54
static MemDepResult getNonLocal()
void releaseMemory()
Clean up memory in between runs.
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
void removeInstruction(Instruction *InstToRemove)