LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
PHITransAddr.cpp
Go to the documentation of this file.
1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PHITransAddr class.
11 //
12 //===----------------------------------------------------------------------===//
13 
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Support/Debug.h"
23 using namespace llvm;
24 
25 static bool CanPHITrans(Instruction *Inst) {
26  if (isa<PHINode>(Inst) ||
27  isa<GetElementPtrInst>(Inst))
28  return true;
29 
30  if (isa<CastInst>(Inst) &&
32  return true;
33 
34  if (Inst->getOpcode() == Instruction::Add &&
35  isa<ConstantInt>(Inst->getOperand(1)))
36  return true;
37 
38  // cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
39  // if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
40  // cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
41  return false;
42 }
43 
44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
45 void PHITransAddr::dump() const {
46  if (Addr == 0) {
47  dbgs() << "PHITransAddr: null\n";
48  return;
49  }
50  dbgs() << "PHITransAddr: " << *Addr << "\n";
51  for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
52  dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n";
53 }
54 #endif
55 
56 
57 static bool VerifySubExpr(Value *Expr,
58  SmallVectorImpl<Instruction*> &InstInputs) {
59  // If this is a non-instruction value, there is nothing to do.
61  if (I == 0) return true;
62 
63  // If it's an instruction, it is either in Tmp or its operands recursively
64  // are.
66  std::find(InstInputs.begin(), InstInputs.end(), I);
67  if (Entry != InstInputs.end()) {
68  InstInputs.erase(Entry);
69  return true;
70  }
71 
72  // If it isn't in the InstInputs list it is a subexpr incorporated into the
73  // address. Sanity check that it is phi translatable.
74  if (!CanPHITrans(I)) {
75  errs() << "Non phi translatable instruction found in PHITransAddr:\n";
76  errs() << *I << '\n';
77  llvm_unreachable("Either something is missing from InstInputs or "
78  "CanPHITrans is wrong.");
79  }
80 
81  // Validate the operands of the instruction.
82  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
83  if (!VerifySubExpr(I->getOperand(i), InstInputs))
84  return false;
85 
86  return true;
87 }
88 
89 /// Verify - Check internal consistency of this data structure. If the
90 /// structure is valid, it returns true. If invalid, it prints errors and
91 /// returns false.
92 bool PHITransAddr::Verify() const {
93  if (Addr == 0) return true;
94 
95  SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
96 
97  if (!VerifySubExpr(Addr, Tmp))
98  return false;
99 
100  if (!Tmp.empty()) {
101  errs() << "PHITransAddr contains extra instructions:\n";
102  for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
103  errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n";
104  llvm_unreachable("This is unexpected.");
105  }
106 
107  // a-ok.
108  return true;
109 }
110 
111 
112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
113 /// if we have some hope of doing it. This should be used as a filter to
114 /// avoid calling PHITranslateValue in hopeless situations.
116  // If the input value is not an instruction, or if it is not defined in CurBB,
117  // then we don't need to phi translate it.
118  Instruction *Inst = dyn_cast<Instruction>(Addr);
119  return Inst == 0 || CanPHITrans(Inst);
120 }
121 
122 
123 static void RemoveInstInputs(Value *V,
124  SmallVectorImpl<Instruction*> &InstInputs) {
126  if (I == 0) return;
127 
128  // If the instruction is in the InstInputs list, remove it.
130  std::find(InstInputs.begin(), InstInputs.end(), I);
131  if (Entry != InstInputs.end()) {
132  InstInputs.erase(Entry);
133  return;
134  }
135 
136  assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
137 
138  // Otherwise, it must have instruction inputs itself. Zap them recursively.
139  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
140  if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
141  RemoveInstInputs(Op, InstInputs);
142  }
143 }
144 
145 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
146  BasicBlock *PredBB,
147  const DominatorTree *DT) {
148  // If this is a non-instruction value, it can't require PHI translation.
149  Instruction *Inst = dyn_cast<Instruction>(V);
150  if (Inst == 0) return V;
151 
152  // Determine whether 'Inst' is an input to our PHI translatable expression.
153  bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst);
154 
155  // Handle inputs instructions if needed.
156  if (isInput) {
157  if (Inst->getParent() != CurBB) {
158  // If it is an input defined in a different block, then it remains an
159  // input.
160  return Inst;
161  }
162 
163  // If 'Inst' is defined in this block and is an input that needs to be phi
164  // translated, we need to incorporate the value into the expression or fail.
165 
166  // In either case, the instruction itself isn't an input any longer.
167  InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst));
168 
169  // If this is a PHI, go ahead and translate it.
170  if (PHINode *PN = dyn_cast<PHINode>(Inst))
171  return AddAsInput(PN->getIncomingValueForBlock(PredBB));
172 
173  // If this is a non-phi value, and it is analyzable, we can incorporate it
174  // into the expression by making all instruction operands be inputs.
175  if (!CanPHITrans(Inst))
176  return 0;
177 
178  // All instruction operands are now inputs (and of course, they may also be
179  // defined in this block, so they may need to be phi translated themselves.
180  for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
181  if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
182  InstInputs.push_back(Op);
183  }
184 
185  // Ok, it must be an intermediate result (either because it started that way
186  // or because we just incorporated it into the expression). See if its
187  // operands need to be phi translated, and if so, reconstruct it.
188 
189  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
190  if (!isSafeToSpeculativelyExecute(Cast)) return 0;
191  Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
192  if (PHIIn == 0) return 0;
193  if (PHIIn == Cast->getOperand(0))
194  return Cast;
195 
196  // Find an available version of this cast.
197 
198  // Constants are trivial to find.
199  if (Constant *C = dyn_cast<Constant>(PHIIn))
200  return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
201  C, Cast->getType()));
202 
203  // Otherwise we have to see if a casted version of the incoming pointer
204  // is available. If so, we can use it, otherwise we have to fail.
205  for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end();
206  UI != E; ++UI) {
207  if (CastInst *CastI = dyn_cast<CastInst>(*UI))
208  if (CastI->getOpcode() == Cast->getOpcode() &&
209  CastI->getType() == Cast->getType() &&
210  (!DT || DT->dominates(CastI->getParent(), PredBB)))
211  return CastI;
212  }
213  return 0;
214  }
215 
216  // Handle getelementptr with at least one PHI translatable operand.
217  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
218  SmallVector<Value*, 8> GEPOps;
219  bool AnyChanged = false;
220  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
221  Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
222  if (GEPOp == 0) return 0;
223 
224  AnyChanged |= GEPOp != GEP->getOperand(i);
225  GEPOps.push_back(GEPOp);
226  }
227 
228  if (!AnyChanged)
229  return GEP;
230 
231  // Simplify the GEP to handle 'gep x, 0' -> x etc.
232  if (Value *V = SimplifyGEPInst(GEPOps, TD, TLI, DT)) {
233  for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
234  RemoveInstInputs(GEPOps[i], InstInputs);
235 
236  return AddAsInput(V);
237  }
238 
239  // Scan to see if we have this GEP available.
240  Value *APHIOp = GEPOps[0];
241  for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end();
242  UI != E; ++UI) {
243  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI))
244  if (GEPI->getType() == GEP->getType() &&
245  GEPI->getNumOperands() == GEPOps.size() &&
246  GEPI->getParent()->getParent() == CurBB->getParent() &&
247  (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
248  bool Mismatch = false;
249  for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
250  if (GEPI->getOperand(i) != GEPOps[i]) {
251  Mismatch = true;
252  break;
253  }
254  if (!Mismatch)
255  return GEPI;
256  }
257  }
258  return 0;
259  }
260 
261  // Handle add with a constant RHS.
262  if (Inst->getOpcode() == Instruction::Add &&
263  isa<ConstantInt>(Inst->getOperand(1))) {
264  // PHI translate the LHS.
265  Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
266  bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
267  bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
268 
269  Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
270  if (LHS == 0) return 0;
271 
272  // If the PHI translated LHS is an add of a constant, fold the immediates.
273  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
274  if (BOp->getOpcode() == Instruction::Add)
275  if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
276  LHS = BOp->getOperand(0);
277  RHS = ConstantExpr::getAdd(RHS, CI);
278  isNSW = isNUW = false;
279 
280  // If the old 'LHS' was an input, add the new 'LHS' as an input.
281  if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) {
282  RemoveInstInputs(BOp, InstInputs);
283  AddAsInput(LHS);
284  }
285  }
286 
287  // See if the add simplifies away.
288  if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD, TLI, DT)) {
289  // If we simplified the operands, the LHS is no longer an input, but Res
290  // is.
291  RemoveInstInputs(LHS, InstInputs);
292  return AddAsInput(Res);
293  }
294 
295  // If we didn't modify the add, just return it.
296  if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
297  return Inst;
298 
299  // Otherwise, see if we have this add available somewhere.
300  for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end();
301  UI != E; ++UI) {
302  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI))
303  if (BO->getOpcode() == Instruction::Add &&
304  BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
305  BO->getParent()->getParent() == CurBB->getParent() &&
306  (!DT || DT->dominates(BO->getParent(), PredBB)))
307  return BO;
308  }
309 
310  return 0;
311  }
312 
313  // Otherwise, we failed.
314  return 0;
315 }
316 
317 
318 /// PHITranslateValue - PHI translate the current address up the CFG from
319 /// CurBB to Pred, updating our state to reflect any needed changes. If the
320 /// dominator tree DT is non-null, the translated value must dominate
321 /// PredBB. This returns true on failure and sets Addr to null.
323  const DominatorTree *DT) {
324  assert(Verify() && "Invalid PHITransAddr!");
325  Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT);
326  assert(Verify() && "Invalid PHITransAddr!");
327 
328  if (DT) {
329  // Make sure the value is live in the predecessor.
330  if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
331  if (!DT->dominates(Inst->getParent(), PredBB))
332  Addr = 0;
333  }
334 
335  return Addr == 0;
336 }
337 
338 /// PHITranslateWithInsertion - PHI translate this value into the specified
339 /// predecessor block, inserting a computation of the value if it is
340 /// unavailable.
341 ///
342 /// All newly created instructions are added to the NewInsts list. This
343 /// returns null on failure.
344 ///
347  const DominatorTree &DT,
348  SmallVectorImpl<Instruction*> &NewInsts) {
349  unsigned NISize = NewInsts.size();
350 
351  // Attempt to PHI translate with insertion.
352  Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
353 
354  // If successful, return the new value.
355  if (Addr) return Addr;
356 
357  // If not, destroy any intermediate instructions inserted.
358  while (NewInsts.size() != NISize)
359  NewInsts.pop_back_val()->eraseFromParent();
360  return 0;
361 }
362 
363 
364 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
365 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
366 /// block. All newly created instructions are added to the NewInsts list.
367 /// This returns null on failure.
368 ///
369 Value *PHITransAddr::
370 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
371  BasicBlock *PredBB, const DominatorTree &DT,
372  SmallVectorImpl<Instruction*> &NewInsts) {
373  // See if we have a version of this value already available and dominating
374  // PredBB. If so, there is no need to insert a new instance of it.
375  PHITransAddr Tmp(InVal, TD);
376  if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT))
377  return Tmp.getAddr();
378 
379  // If we don't have an available version of this value, it must be an
380  // instruction.
381  Instruction *Inst = cast<Instruction>(InVal);
382 
383  // Handle cast of PHI translatable value.
384  if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
385  if (!isSafeToSpeculativelyExecute(Cast)) return 0;
386  Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
387  CurBB, PredBB, DT, NewInsts);
388  if (OpVal == 0) return 0;
389 
390  // Otherwise insert a cast at the end of PredBB.
391  CastInst *New = CastInst::Create(Cast->getOpcode(),
392  OpVal, InVal->getType(),
393  InVal->getName()+".phi.trans.insert",
394  PredBB->getTerminator());
395  NewInsts.push_back(New);
396  return New;
397  }
398 
399  // Handle getelementptr with at least one PHI operand.
400  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
401  SmallVector<Value*, 8> GEPOps;
402  BasicBlock *CurBB = GEP->getParent();
403  for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
404  Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
405  CurBB, PredBB, DT, NewInsts);
406  if (OpVal == 0) return 0;
407  GEPOps.push_back(OpVal);
408  }
409 
410  GetElementPtrInst *Result =
411  GetElementPtrInst::Create(GEPOps[0], makeArrayRef(GEPOps).slice(1),
412  InVal->getName()+".phi.trans.insert",
413  PredBB->getTerminator());
414  Result->setIsInBounds(GEP->isInBounds());
415  NewInsts.push_back(Result);
416  return Result;
417  }
418 
419 #if 0
420  // FIXME: This code works, but it is unclear that we actually want to insert
421  // a big chain of computation in order to make a value available in a block.
422  // This needs to be evaluated carefully to consider its cost trade offs.
423 
424  // Handle add with a constant RHS.
425  if (Inst->getOpcode() == Instruction::Add &&
426  isa<ConstantInt>(Inst->getOperand(1))) {
427  // PHI translate the LHS.
428  Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
429  CurBB, PredBB, DT, NewInsts);
430  if (OpVal == 0) return 0;
431 
432  BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
433  InVal->getName()+".phi.trans.insert",
434  PredBB->getTerminator());
435  Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
436  Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
437  NewInsts.push_back(Res);
438  return Res;
439  }
440 #endif
441 
442  return 0;
443 }
use_iterator use_end()
Definition: Value.h:152
void setHasNoSignedWrap(bool b=true)
raw_ostream & errs()
Value * PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, const DominatorTree &DT, SmallVectorImpl< Instruction * > &NewInsts)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
Value * SimplifyAddInst(Value *LHS, Value *RHS, bool isNSW, bool isNUW, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
StringRef getName() const
Definition: Value.cpp:167
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2029
static bool isInput(const llvm::StringSet<> &Prefixes, StringRef Arg)
Definition: OptTable.cpp:168
Base class of casting instructions.
Definition: InstrTypes.h:387
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:261
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define llvm_unreachable(msg)
void setHasNoUnsignedWrap(bool b=true)
void setIsInBounds(bool b=true)
void dump() const
Value * SimplifyGEPInst(ArrayRef< Value * > Ops, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=0)
Construct any of the CastInst subclasses.
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, const DominatorTree *DT)
LLVM Constant Representation.
Definition: Constant.h:41
Value * getOperand(unsigned i) const
Definition: User.h:88
bool dominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:801
iterator erase(iterator I)
Definition: SmallVector.h:478
bool IsPotentiallyPHITranslatable() const
static void RemoveInstInputs(Value *V, SmallVectorImpl< Instruction * > &InstInputs)
bool isSafeToSpeculativelyExecute(const Value *V, const DataLayout *TD=0)
Class for constant integers.
Definition: Constants.h:51
Type * getType() const
Definition: Value.h:111
static bool VerifySubExpr(Value *Expr, SmallVectorImpl< Instruction * > &InstInputs)
static GetElementPtrInst * Create(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", Instruction *InsertBefore=0)
Definition: Instructions.h:726
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
static bool CanPHITrans(Instruction *Inst)
use_iterator use_begin()
Definition: Value.h:150
#define I(x, y, z)
Definition: MD5.cpp:54
LLVM Value Representation.
Definition: Value.h:66
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
bool Verify() const
static Constant * getCast(unsigned ops, Constant *C, Type *Ty)
Definition: Constants.cpp:1444
const BasicBlock * getParent() const
Definition: Instruction.h:52