LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
CodeGen/Analysis.cpp
Go to the documentation of this file.
1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines several CodeGen-specific LLVM IR analysis utilties.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
27 using namespace llvm;
28 
29 /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
30 /// of insertvalue or extractvalue indices that identify a member, return
31 /// the linearized index of the start of the member.
32 ///
34  const unsigned *Indices,
35  const unsigned *IndicesEnd,
36  unsigned CurIndex) {
37  // Base case: We're done.
38  if (Indices && Indices == IndicesEnd)
39  return CurIndex;
40 
41  // Given a struct type, recursively traverse the elements.
42  if (StructType *STy = dyn_cast<StructType>(Ty)) {
43  for (StructType::element_iterator EB = STy->element_begin(),
44  EI = EB,
45  EE = STy->element_end();
46  EI != EE; ++EI) {
47  if (Indices && *Indices == unsigned(EI - EB))
48  return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
49  CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
50  }
51  return CurIndex;
52  }
53  // Given an array type, recursively traverse the elements.
54  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
55  Type *EltTy = ATy->getElementType();
56  for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
57  if (Indices && *Indices == i)
58  return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
59  CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
60  }
61  return CurIndex;
62  }
63  // We haven't found the type we're looking for, so keep searching.
64  return CurIndex + 1;
65 }
66 
67 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
68 /// EVTs that represent all the individual underlying
69 /// non-aggregate types that comprise it.
70 ///
71 /// If Offsets is non-null, it points to a vector to be filled in
72 /// with the in-memory offsets of each of the individual values.
73 ///
75  SmallVectorImpl<EVT> &ValueVTs,
77  uint64_t StartingOffset) {
78  // Given a struct type, recursively traverse the elements.
79  if (StructType *STy = dyn_cast<StructType>(Ty)) {
80  const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
81  for (StructType::element_iterator EB = STy->element_begin(),
82  EI = EB,
83  EE = STy->element_end();
84  EI != EE; ++EI)
85  ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
86  StartingOffset + SL->getElementOffset(EI - EB));
87  return;
88  }
89  // Given an array type, recursively traverse the elements.
90  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
91  Type *EltTy = ATy->getElementType();
92  uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
93  for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
94  ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
95  StartingOffset + i * EltSize);
96  return;
97  }
98  // Interpret void as zero return values.
99  if (Ty->isVoidTy())
100  return;
101  // Base case: we can get an EVT for this LLVM IR type.
102  ValueVTs.push_back(TLI.getValueType(Ty));
103  if (Offsets)
104  Offsets->push_back(StartingOffset);
105 }
106 
107 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
109  V = V->stripPointerCasts();
111 
112  if (GV && GV->getName() == "llvm.eh.catch.all.value") {
113  assert(GV->hasInitializer() &&
114  "The EH catch-all value must have an initializer");
115  Value *Init = GV->getInitializer();
116  GV = dyn_cast<GlobalVariable>(Init);
117  if (!GV) V = cast<ConstantPointerNull>(Init);
118  }
119 
120  assert((GV || isa<ConstantPointerNull>(V)) &&
121  "TypeInfo must be a global variable or NULL");
122  return GV;
123 }
124 
125 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
126 /// processed uses a memory 'm' constraint.
127 bool
129  const TargetLowering &TLI) {
130  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
131  InlineAsm::ConstraintInfo &CI = CInfos[i];
132  for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
134  if (CType == TargetLowering::C_Memory)
135  return true;
136  }
137 
138  // Indirect operand accesses access memory.
139  if (CI.isIndirect)
140  return true;
141  }
142 
143  return false;
144 }
145 
146 /// getFCmpCondCode - Return the ISD condition code corresponding to
147 /// the given LLVM IR floating-point condition code. This includes
148 /// consideration of global floating-point math flags.
149 ///
151  switch (Pred) {
152  case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
153  case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
154  case FCmpInst::FCMP_OGT: return ISD::SETOGT;
155  case FCmpInst::FCMP_OGE: return ISD::SETOGE;
156  case FCmpInst::FCMP_OLT: return ISD::SETOLT;
157  case FCmpInst::FCMP_OLE: return ISD::SETOLE;
158  case FCmpInst::FCMP_ONE: return ISD::SETONE;
159  case FCmpInst::FCMP_ORD: return ISD::SETO;
160  case FCmpInst::FCMP_UNO: return ISD::SETUO;
161  case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
162  case FCmpInst::FCMP_UGT: return ISD::SETUGT;
163  case FCmpInst::FCMP_UGE: return ISD::SETUGE;
164  case FCmpInst::FCMP_ULT: return ISD::SETULT;
165  case FCmpInst::FCMP_ULE: return ISD::SETULE;
166  case FCmpInst::FCMP_UNE: return ISD::SETUNE;
167  case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
168  default: llvm_unreachable("Invalid FCmp predicate opcode!");
169  }
170 }
171 
173  switch (CC) {
174  case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
175  case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
176  case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
177  case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
178  case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
179  case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
180  default: return CC;
181  }
182 }
183 
184 /// getICmpCondCode - Return the ISD condition code corresponding to
185 /// the given LLVM IR integer condition code.
186 ///
188  switch (Pred) {
189  case ICmpInst::ICMP_EQ: return ISD::SETEQ;
190  case ICmpInst::ICMP_NE: return ISD::SETNE;
191  case ICmpInst::ICMP_SLE: return ISD::SETLE;
192  case ICmpInst::ICMP_ULE: return ISD::SETULE;
193  case ICmpInst::ICMP_SGE: return ISD::SETGE;
194  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
195  case ICmpInst::ICMP_SLT: return ISD::SETLT;
196  case ICmpInst::ICMP_ULT: return ISD::SETULT;
197  case ICmpInst::ICMP_SGT: return ISD::SETGT;
198  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
199  default:
200  llvm_unreachable("Invalid ICmp predicate opcode!");
201  }
202 }
203 
204 static bool isNoopBitcast(Type *T1, Type *T2,
205  const TargetLoweringBase& TLI) {
206  return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
207  (isa<VectorType>(T1) && isa<VectorType>(T2) &&
208  TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
209 }
210 
211 /// Look through operations that will be free to find the earliest source of
212 /// this value.
213 ///
214 /// @param ValLoc If V has aggegate type, we will be interested in a particular
215 /// scalar component. This records its address; the reverse of this list gives a
216 /// sequence of indices appropriate for an extractvalue to locate the important
217 /// value. This value is updated during the function and on exit will indicate
218 /// similar information for the Value returned.
219 ///
220 /// @param DataBits If this function looks through truncate instructions, this
221 /// will record the smallest size attained.
222 static const Value *getNoopInput(const Value *V,
224  unsigned &DataBits,
225  const TargetLoweringBase &TLI) {
226  while (true) {
227  // Try to look through V1; if V1 is not an instruction, it can't be looked
228  // through.
229  const Instruction *I = dyn_cast<Instruction>(V);
230  if (!I || I->getNumOperands() == 0) return V;
231  const Value *NoopInput = 0;
232 
233  Value *Op = I->getOperand(0);
234  if (isa<BitCastInst>(I)) {
235  // Look through truly no-op bitcasts.
236  if (isNoopBitcast(Op->getType(), I->getType(), TLI))
237  NoopInput = Op;
238  } else if (isa<GetElementPtrInst>(I)) {
239  // Look through getelementptr
240  if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
241  NoopInput = Op;
242  } else if (isa<IntToPtrInst>(I)) {
243  // Look through inttoptr.
244  // Make sure this isn't a truncating or extending cast. We could
245  // support this eventually, but don't bother for now.
246  if (!isa<VectorType>(I->getType()) &&
247  TLI.getPointerTy().getSizeInBits() ==
248  cast<IntegerType>(Op->getType())->getBitWidth())
249  NoopInput = Op;
250  } else if (isa<PtrToIntInst>(I)) {
251  // Look through ptrtoint.
252  // Make sure this isn't a truncating or extending cast. We could
253  // support this eventually, but don't bother for now.
254  if (!isa<VectorType>(I->getType()) &&
255  TLI.getPointerTy().getSizeInBits() ==
256  cast<IntegerType>(I->getType())->getBitWidth())
257  NoopInput = Op;
258  } else if (isa<TruncInst>(I) &&
259  TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
260  DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
261  NoopInput = Op;
262  } else if (isa<CallInst>(I)) {
263  // Look through call (skipping callee)
264  for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
265  i != e; ++i) {
266  unsigned attrInd = i - I->op_begin() + 1;
267  if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
268  isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
269  NoopInput = *i;
270  break;
271  }
272  }
273  } else if (isa<InvokeInst>(I)) {
274  // Look through invoke (skipping BB, BB, Callee)
275  for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
276  i != e; ++i) {
277  unsigned attrInd = i - I->op_begin() + 1;
278  if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
279  isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
280  NoopInput = *i;
281  break;
282  }
283  }
284  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
285  // Value may come from either the aggregate or the scalar
286  ArrayRef<unsigned> InsertLoc = IVI->getIndices();
287  if (std::equal(InsertLoc.rbegin(), InsertLoc.rend(),
288  ValLoc.rbegin())) {
289  // The type being inserted is a nested sub-type of the aggregate; we
290  // have to remove those initial indices to get the location we're
291  // interested in for the operand.
292  ValLoc.resize(ValLoc.size() - InsertLoc.size());
293  NoopInput = IVI->getInsertedValueOperand();
294  } else {
295  // The struct we're inserting into has the value we're interested in, no
296  // change of address.
297  NoopInput = Op;
298  }
299  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
300  // The part we're interested in will inevitably be some sub-section of the
301  // previous aggregate. Combine the two paths to obtain the true address of
302  // our element.
303  ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
304  std::copy(ExtractLoc.rbegin(), ExtractLoc.rend(),
305  std::back_inserter(ValLoc));
306  NoopInput = Op;
307  }
308  // Terminate if we couldn't find anything to look through.
309  if (!NoopInput)
310  return V;
311 
312  V = NoopInput;
313  }
314 }
315 
316 /// Return true if this scalar return value only has bits discarded on its path
317 /// from the "tail call" to the "ret". This includes the obvious noop
318 /// instructions handled by getNoopInput above as well as free truncations (or
319 /// extensions prior to the call).
320 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
321  SmallVectorImpl<unsigned> &RetIndices,
322  SmallVectorImpl<unsigned> &CallIndices,
323  bool AllowDifferingSizes,
324  const TargetLoweringBase &TLI) {
325 
326  // Trace the sub-value needed by the return value as far back up the graph as
327  // possible, in the hope that it will intersect with the value produced by the
328  // call. In the simple case with no "returned" attribute, the hope is actually
329  // that we end up back at the tail call instruction itself.
330  unsigned BitsRequired = UINT_MAX;
331  RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI);
332 
333  // If this slot in the value returned is undef, it doesn't matter what the
334  // call puts there, it'll be fine.
335  if (isa<UndefValue>(RetVal))
336  return true;
337 
338  // Now do a similar search up through the graph to find where the value
339  // actually returned by the "tail call" comes from. In the simple case without
340  // a "returned" attribute, the search will be blocked immediately and the loop
341  // a Noop.
342  unsigned BitsProvided = UINT_MAX;
343  CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI);
344 
345  // There's no hope if we can't actually trace them to (the same part of!) the
346  // same value.
347  if (CallVal != RetVal || CallIndices != RetIndices)
348  return false;
349 
350  // However, intervening truncates may have made the call non-tail. Make sure
351  // all the bits that are needed by the "ret" have been provided by the "tail
352  // call". FIXME: with sufficiently cunning bit-tracking, we could look through
353  // extensions too.
354  if (BitsProvided < BitsRequired ||
355  (!AllowDifferingSizes && BitsProvided != BitsRequired))
356  return false;
357 
358  return true;
359 }
360 
361 /// For an aggregate type, determine whether a given index is within bounds or
362 /// not.
363 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
364  if (ArrayType *AT = dyn_cast<ArrayType>(T))
365  return Idx < AT->getNumElements();
366 
367  return Idx < cast<StructType>(T)->getNumElements();
368 }
369 
370 /// Move the given iterators to the next leaf type in depth first traversal.
371 ///
372 /// Performs a depth-first traversal of the type as specified by its arguments,
373 /// stopping at the next leaf node (which may be a legitimate scalar type or an
374 /// empty struct or array).
375 ///
376 /// @param SubTypes List of the partial components making up the type from
377 /// outermost to innermost non-empty aggregate. The element currently
378 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
379 ///
380 /// @param Path Set of extractvalue indices leading from the outermost type
381 /// (SubTypes[0]) to the leaf node currently represented.
382 ///
383 /// @returns true if a new type was found, false otherwise. Calling this
384 /// function again on a finished iterator will repeatedly return
385 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
386 /// aggregate or a non-aggregate
389  // First march back up the tree until we can successfully increment one of the
390  // coordinates in Path.
391  while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
392  Path.pop_back();
393  SubTypes.pop_back();
394  }
395 
396  // If we reached the top, then the iterator is done.
397  if (Path.empty())
398  return false;
399 
400  // We know there's *some* valid leaf now, so march back down the tree picking
401  // out the left-most element at each node.
402  ++Path.back();
403  Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
404  while (DeeperType->isAggregateType()) {
405  CompositeType *CT = cast<CompositeType>(DeeperType);
406  if (!indexReallyValid(CT, 0))
407  return true;
408 
409  SubTypes.push_back(CT);
410  Path.push_back(0);
411 
412  DeeperType = CT->getTypeAtIndex(0U);
413  }
414 
415  return true;
416 }
417 
418 /// Find the first non-empty, scalar-like type in Next and setup the iterator
419 /// components.
420 ///
421 /// Assuming Next is an aggregate of some kind, this function will traverse the
422 /// tree from left to right (i.e. depth-first) looking for the first
423 /// non-aggregate type which will play a role in function return.
424 ///
425 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
426 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
427 /// i32 in that type.
428 static bool firstRealType(Type *Next,
431  // First initialise the iterator components to the first "leaf" node
432  // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
433  // despite nominally being an aggregate).
434  while (Next->isAggregateType() &&
435  indexReallyValid(cast<CompositeType>(Next), 0)) {
436  SubTypes.push_back(cast<CompositeType>(Next));
437  Path.push_back(0);
438  Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
439  }
440 
441  // If there's no Path now, Next was originally scalar already (or empty
442  // leaf). We're done.
443  if (Path.empty())
444  return true;
445 
446  // Otherwise, use normal iteration to keep looking through the tree until we
447  // find a non-aggregate type.
448  while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
449  if (!advanceToNextLeafType(SubTypes, Path))
450  return false;
451  }
452 
453  return true;
454 }
455 
456 /// Set the iterator data-structures to the next non-empty, non-aggregate
457 /// subtype.
460  do {
461  if (!advanceToNextLeafType(SubTypes, Path))
462  return false;
463 
464  assert(!Path.empty() && "found a leaf but didn't set the path?");
465  } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
466 
467  return true;
468 }
469 
470 
471 /// Test if the given instruction is in a position to be optimized
472 /// with a tail-call. This roughly means that it's in a block with
473 /// a return and there's nothing that needs to be scheduled
474 /// between it and the return.
475 ///
476 /// This function only tests target-independent requirements.
478  const TargetLowering &TLI) {
479  const Instruction *I = CS.getInstruction();
480  const BasicBlock *ExitBB = I->getParent();
481  const TerminatorInst *Term = ExitBB->getTerminator();
482  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
483 
484  // The block must end in a return statement or unreachable.
485  //
486  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
487  // an unreachable, for now. The way tailcall optimization is currently
488  // implemented means it will add an epilogue followed by a jump. That is
489  // not profitable. Also, if the callee is a special function (e.g.
490  // longjmp on x86), it can end up causing miscompilation that has not
491  // been fully understood.
492  if (!Ret &&
494  !isa<UnreachableInst>(Term)))
495  return false;
496 
497  // If I will have a chain, make sure no other instruction that will have a
498  // chain interposes between I and the return.
499  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
501  for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
502  --BBI) {
503  if (&*BBI == I)
504  break;
505  // Debug info intrinsics do not get in the way of tail call optimization.
506  if (isa<DbgInfoIntrinsic>(BBI))
507  continue;
508  if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
510  return false;
511  }
512 
513  return returnTypeIsEligibleForTailCall(ExitBB->getParent(), I, Ret, TLI);
514 }
515 
517  const Instruction *I,
518  const ReturnInst *Ret,
519  const TargetLoweringBase &TLI) {
520  // If the block ends with a void return or unreachable, it doesn't matter
521  // what the call's return type is.
522  if (!Ret || Ret->getNumOperands() == 0) return true;
523 
524  // If the return value is undef, it doesn't matter what the call's
525  // return type is.
526  if (isa<UndefValue>(Ret->getOperand(0))) return true;
527 
528  // Make sure the attributes attached to each return are compatible.
529  AttrBuilder CallerAttrs(F->getAttributes(),
530  AttributeSet::ReturnIndex);
531  AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
532  AttributeSet::ReturnIndex);
533 
534  // Noalias is completely benign as far as calling convention goes, it
535  // shouldn't affect whether the call is a tail call.
536  CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
537  CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
538 
539  bool AllowDifferingSizes = true;
540  if (CallerAttrs.contains(Attribute::ZExt)) {
541  if (!CalleeAttrs.contains(Attribute::ZExt))
542  return false;
543 
544  AllowDifferingSizes = false;
545  CallerAttrs.removeAttribute(Attribute::ZExt);
546  CalleeAttrs.removeAttribute(Attribute::ZExt);
547  } else if (CallerAttrs.contains(Attribute::SExt)) {
548  if (!CalleeAttrs.contains(Attribute::SExt))
549  return false;
550 
551  AllowDifferingSizes = false;
552  CallerAttrs.removeAttribute(Attribute::SExt);
553  CalleeAttrs.removeAttribute(Attribute::SExt);
554  }
555 
556  // If they're still different, there's some facet we don't understand
557  // (currently only "inreg", but in future who knows). It may be OK but the
558  // only safe option is to reject the tail call.
559  if (CallerAttrs != CalleeAttrs)
560  return false;
561 
562  const Value *RetVal = Ret->getOperand(0), *CallVal = I;
563  SmallVector<unsigned, 4> RetPath, CallPath;
564  SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
565 
566  bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
567  bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
568 
569  // Nothing's actually returned, it doesn't matter what the callee put there
570  // it's a valid tail call.
571  if (RetEmpty)
572  return true;
573 
574  // Iterate pairwise through each of the value types making up the tail call
575  // and the corresponding return. For each one we want to know whether it's
576  // essentially going directly from the tail call to the ret, via operations
577  // that end up not generating any code.
578  //
579  // We allow a certain amount of covariance here. For example it's permitted
580  // for the tail call to define more bits than the ret actually cares about
581  // (e.g. via a truncate).
582  do {
583  if (CallEmpty) {
584  // We've exhausted the values produced by the tail call instruction, the
585  // rest are essentially undef. The type doesn't really matter, but we need
586  // *something*.
587  Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
588  CallVal = UndefValue::get(SlotType);
589  }
590 
591  // The manipulations performed when we're looking through an insertvalue or
592  // an extractvalue would happen at the front of the RetPath list, so since
593  // we have to copy it anyway it's more efficient to create a reversed copy.
594  using std::copy;
595  SmallVector<unsigned, 4> TmpRetPath, TmpCallPath;
596  copy(RetPath.rbegin(), RetPath.rend(), std::back_inserter(TmpRetPath));
597  copy(CallPath.rbegin(), CallPath.rend(), std::back_inserter(TmpCallPath));
598 
599  // Finally, we can check whether the value produced by the tail call at this
600  // index is compatible with the value we return.
601  if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
602  AllowDifferingSizes, TLI))
603  return false;
604 
605  CallEmpty = !nextRealType(CallSubTypes, CallPath);
606  } while(nextRealType(RetSubTypes, RetPath));
607 
608  return true;
609 }
ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred)
void ComputeValueVTs(const TargetLowering &TLI, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< uint64_t > *Offsets=0, uint64_t StartingOffset=0)
GlobalVariable * ExtractTypeInfo(Value *V)
ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
Sign extended before/after call.
Definition: Attributes.h:97
const TargetMachine & getTargetMachine() const
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
virtual bool allowTruncateForTailCall(Type *, Type *) const
virtual ConstraintType getConstraintType(const std::string &Constraint) const
Given a constraint, return the type of constraint it is for this target.
unsigned less or equal
Definition: InstrTypes.h:677
unsigned less than
Definition: InstrTypes.h:676
bool mayHaveSideEffects() const
Definition: Instruction.h:324
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:657
unsigned getSizeInBits() const
Definition: ValueTypes.h:359
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:667
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
F(f)
const Constant * getInitializer() const
op_iterator op_begin()
Definition: User.h:116
bool returnTypeIsEligibleForTailCall(const Function *F, const Instruction *I, const ReturnInst *Ret, const TargetLoweringBase &TLI)
ConstraintCodeVector Codes
Definition: InlineAsm.h:152
EVT getValueType(Type *Ty, bool AllowUnknown=false) const
StringRef getName() const
Definition: Value.cpp:167
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:662
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:661
static unsigned getBitWidth(Type *Ty, const DataLayout *TD)
Type::subtype_iterator element_iterator
Definition: DerivedTypes.h:277
const StructLayout * getStructLayout(StructType *Ty) const
Definition: DataLayout.cpp:445
#define llvm_unreachable(msg)
Definition: Use.h:60
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:658
virtual MVT getPointerTy(uint32_t=0) const
bool mayReadFromMemory() const
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
reverse_iterator rbegin() const
Definition: ArrayRef.h:100
#define T
static bool nextRealType(SmallVectorImpl< CompositeType * > &SubTypes, SmallVectorImpl< unsigned > &Path)
ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred)
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
Considered to not alias after call.
Definition: Attributes.h:80
bool hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos, const TargetLowering &TLI)
uint64_t getElementOffset(unsigned Idx) const
Definition: DataLayout.h:442
static bool indexReallyValid(CompositeType *T, unsigned Idx)
reverse_iterator rend() const
Definition: ArrayRef.h:101
bool isTypeLegal(EVT VT) const
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
InstrTy * getInstruction() const
Definition: CallSite.h:79
bool isInTailCallPosition(ImmutableCallSite CS, const TargetLowering &TLI)
Return value is always equal to this argument.
Definition: Attributes.h:95
op_iterator op_end()
Definition: User.h:118
const DataLayout * getDataLayout() const
Type * getTypeAtIndex(const Value *V)
Definition: Type.cpp:627
unsigned GuaranteedTailCallOpt
Value * getOperand(unsigned i) const
Definition: User.h:88
Zero extended before/after call.
Definition: Attributes.h:110
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:660
static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal, SmallVectorImpl< unsigned > &RetIndices, SmallVectorImpl< unsigned > &CallIndices, bool AllowDifferingSizes, const TargetLoweringBase &TLI)
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:668
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:666
signed greater than
Definition: InstrTypes.h:678
bool isSafeToSpeculativelyExecute(const Value *V, const DataLayout *TD=0)
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:655
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
static bool isNoopBitcast(Type *T1, Type *T2, const TargetLoweringBase &TLI)
iterator end()
Definition: BasicBlock.h:195
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:665
Type * getType() const
Definition: Value.h:111
signed less than
Definition: InstrTypes.h:680
Value * stripPointerCasts()
Strips off any unneeded pointer casts, all-zero GEPs and aliases from the specified value...
Definition: Value.cpp:385
ISD::CondCode getFCmpCodeWithoutNaN(ISD::CondCode CC)
AttributeSet getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:170
signed less or equal
Definition: InstrTypes.h:681
bool hasInitializer() const
bool isAggregateType() const
Definition: Type.h:270
unsigned greater or equal
Definition: InstrTypes.h:675
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:318
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
void resize(unsigned N)
Definition: SmallVector.h:401
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:659
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:663
static EVT getEVT(Type *Ty, bool HandleUnknown=false)
Definition: ValueTypes.cpp:275
AttributeSet getAttributes(LLVMContext &C, ID id)
static const Value * getNoopInput(const Value *V, SmallVectorImpl< unsigned > &ValLoc, unsigned &DataBits, const TargetLoweringBase &TLI)
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:654
LLVM Value Representation.
Definition: Value.h:66
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:664
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
unsigned greater than
Definition: InstrTypes.h:674
static bool advanceToNextLeafType(SmallVectorImpl< CompositeType * > &SubTypes, SmallVectorImpl< unsigned > &Path)
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:656
unsigned ComputeLinearIndex(Type *Ty, const unsigned *Indices, const unsigned *IndicesEnd, unsigned CurIndex=0)
std::vector< ConstraintInfo > ConstraintInfoVector
Definition: InlineAsm.h:118
const BasicBlock * getParent() const
Definition: Instruction.h:52
#define T1
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:653
signed greater or equal
Definition: InstrTypes.h:679
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140
static bool firstRealType(Type *Next, SmallVectorImpl< CompositeType * > &SubTypes, SmallVectorImpl< unsigned > &Path)