LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
InlineFunction.cpp
Go to the documentation of this file.
1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements inlining of a function into a call site, resolving
11 // parameters and the return value as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/DebugInfo.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/Support/CallSite.h"
32 using namespace llvm;
33 
35  bool InsertLifetime) {
36  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
37 }
39  bool InsertLifetime) {
40  return InlineFunction(CallSite(II), IFI, InsertLifetime);
41 }
42 
43 namespace {
44  /// A class for recording information about inlining through an invoke.
45  class InvokeInliningInfo {
46  BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
47  BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
48  LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke.
49  PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts.
50  SmallVector<Value*, 8> UnwindDestPHIValues;
51 
52  public:
53  InvokeInliningInfo(InvokeInst *II)
54  : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
55  CallerLPad(0), InnerEHValuesPHI(0) {
56  // If there are PHI nodes in the unwind destination block, we need to keep
57  // track of which values came into them from the invoke before removing
58  // the edge from this block.
59  llvm::BasicBlock *InvokeBB = II->getParent();
60  BasicBlock::iterator I = OuterResumeDest->begin();
61  for (; isa<PHINode>(I); ++I) {
62  // Save the value to use for this edge.
63  PHINode *PHI = cast<PHINode>(I);
64  UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
65  }
66 
67  CallerLPad = cast<LandingPadInst>(I);
68  }
69 
70  /// getOuterResumeDest - The outer unwind destination is the target of
71  /// unwind edges introduced for calls within the inlined function.
72  BasicBlock *getOuterResumeDest() const {
73  return OuterResumeDest;
74  }
75 
76  BasicBlock *getInnerResumeDest();
77 
78  LandingPadInst *getLandingPadInst() const { return CallerLPad; }
79 
80  /// forwardResume - Forward the 'resume' instruction to the caller's landing
81  /// pad block. When the landing pad block has only one predecessor, this is
82  /// a simple branch. When there is more than one predecessor, we need to
83  /// split the landing pad block after the landingpad instruction and jump
84  /// to there.
85  void forwardResume(ResumeInst *RI,
86  SmallPtrSet<LandingPadInst*, 16> &InlinedLPads);
87 
88  /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
89  /// destination block for the given basic block, using the values for the
90  /// original invoke's source block.
91  void addIncomingPHIValuesFor(BasicBlock *BB) const {
92  addIncomingPHIValuesForInto(BB, OuterResumeDest);
93  }
94 
95  void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
96  BasicBlock::iterator I = dest->begin();
97  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
98  PHINode *phi = cast<PHINode>(I);
99  phi->addIncoming(UnwindDestPHIValues[i], src);
100  }
101  }
102  };
103 }
104 
105 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
106 BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
107  if (InnerResumeDest) return InnerResumeDest;
108 
109  // Split the landing pad.
110  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
111  InnerResumeDest =
112  OuterResumeDest->splitBasicBlock(SplitPoint,
113  OuterResumeDest->getName() + ".body");
114 
115  // The number of incoming edges we expect to the inner landing pad.
116  const unsigned PHICapacity = 2;
117 
118  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
119  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
120  BasicBlock::iterator I = OuterResumeDest->begin();
121  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
122  PHINode *OuterPHI = cast<PHINode>(I);
123  PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
124  OuterPHI->getName() + ".lpad-body",
125  InsertPoint);
126  OuterPHI->replaceAllUsesWith(InnerPHI);
127  InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
128  }
129 
130  // Create a PHI for the exception values.
131  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
132  "eh.lpad-body", InsertPoint);
133  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
134  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
135 
136  // All done.
137  return InnerResumeDest;
138 }
139 
140 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad
141 /// block. When the landing pad block has only one predecessor, this is a simple
142 /// branch. When there is more than one predecessor, we need to split the
143 /// landing pad block after the landingpad instruction and jump to there.
144 void InvokeInliningInfo::forwardResume(ResumeInst *RI,
145  SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
146  BasicBlock *Dest = getInnerResumeDest();
147  LandingPadInst *OuterLPad = getLandingPadInst();
148  BasicBlock *Src = RI->getParent();
149 
150  BranchInst::Create(Dest, Src);
151 
152  // Update the PHIs in the destination. They were inserted in an order which
153  // makes this work.
154  addIncomingPHIValuesForInto(Src, Dest);
155 
156  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
157  RI->eraseFromParent();
158 
159  // Append the clauses from the outer landing pad instruction into the inlined
160  // landing pad instructions.
161  for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
162  E = InlinedLPads.end(); I != E; ++I) {
163  LandingPadInst *InlinedLPad = *I;
164  for (unsigned OuterIdx = 0, OuterNum = OuterLPad->getNumClauses();
165  OuterIdx != OuterNum; ++OuterIdx)
166  InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
167  }
168 }
169 
170 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
171 /// an invoke, we have to turn all of the calls that can throw into
172 /// invokes. This function analyze BB to see if there are any calls, and if so,
173 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
174 /// nodes in that block with the values specified in InvokeDestPHIValues.
175 ///
176 /// Returns true to indicate that the next block should be skipped.
178  InvokeInliningInfo &Invoke) {
179  LandingPadInst *LPI = Invoke.getLandingPadInst();
180 
181  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
182  Instruction *I = BBI++;
183 
184  if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
185  unsigned NumClauses = LPI->getNumClauses();
186  L->reserveClauses(NumClauses);
187  for (unsigned i = 0; i != NumClauses; ++i)
188  L->addClause(LPI->getClause(i));
189  }
190 
191  // We only need to check for function calls: inlined invoke
192  // instructions require no special handling.
193  CallInst *CI = dyn_cast<CallInst>(I);
194 
195  // If this call cannot unwind, don't convert it to an invoke.
196  // Inline asm calls cannot throw.
197  if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
198  continue;
199 
200  // Convert this function call into an invoke instruction. First, split the
201  // basic block.
202  BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
203 
204  // Delete the unconditional branch inserted by splitBasicBlock
205  BB->getInstList().pop_back();
206 
207  // Create the new invoke instruction.
208  ImmutableCallSite CS(CI);
209  SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
211  Invoke.getOuterResumeDest(),
212  InvokeArgs, CI->getName(), BB);
213  II->setCallingConv(CI->getCallingConv());
214  II->setAttributes(CI->getAttributes());
215 
216  // Make sure that anything using the call now uses the invoke! This also
217  // updates the CallGraph if present, because it uses a WeakVH.
218  CI->replaceAllUsesWith(II);
219 
220  // Delete the original call
221  Split->getInstList().pop_front();
222 
223  // Update any PHI nodes in the exceptional block to indicate that there is
224  // now a new entry in them.
225  Invoke.addIncomingPHIValuesFor(BB);
226  return false;
227  }
228 
229  return false;
230 }
231 
232 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
233 /// in the body of the inlined function into invokes.
234 ///
235 /// II is the invoke instruction being inlined. FirstNewBlock is the first
236 /// block of the inlined code (the last block is the end of the function),
237 /// and InlineCodeInfo is information about the code that got inlined.
238 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
239  ClonedCodeInfo &InlinedCodeInfo) {
240  BasicBlock *InvokeDest = II->getUnwindDest();
241 
242  Function *Caller = FirstNewBlock->getParent();
243 
244  // The inlined code is currently at the end of the function, scan from the
245  // start of the inlined code to its end, checking for stuff we need to
246  // rewrite.
247  InvokeInliningInfo Invoke(II);
248 
249  // Get all of the inlined landing pad instructions.
251  for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
252  if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
253  InlinedLPads.insert(II->getLandingPadInst());
254 
255  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
256  if (InlinedCodeInfo.ContainsCalls)
257  if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
258  // Honor a request to skip the next block.
259  ++BB;
260  continue;
261  }
262 
263  // Forward any resumes that are remaining here.
264  if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
265  Invoke.forwardResume(RI, InlinedLPads);
266  }
267 
268  // Now that everything is happy, we have one final detail. The PHI nodes in
269  // the exception destination block still have entries due to the original
270  // invoke instruction. Eliminate these entries (which might even delete the
271  // PHI node) now.
272  InvokeDest->removePredecessor(II->getParent());
273 }
274 
275 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
276 /// into the caller, update the specified callgraph to reflect the changes we
277 /// made. Note that it's possible that not all code was copied over, so only
278 /// some edges of the callgraph may remain.
280  Function::iterator FirstNewBlock,
281  ValueToValueMapTy &VMap,
282  InlineFunctionInfo &IFI) {
283  CallGraph &CG = *IFI.CG;
284  const Function *Caller = CS.getInstruction()->getParent()->getParent();
285  const Function *Callee = CS.getCalledFunction();
286  CallGraphNode *CalleeNode = CG[Callee];
287  CallGraphNode *CallerNode = CG[Caller];
288 
289  // Since we inlined some uninlined call sites in the callee into the caller,
290  // add edges from the caller to all of the callees of the callee.
291  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
292 
293  // Consider the case where CalleeNode == CallerNode.
295  if (CalleeNode == CallerNode) {
296  CallCache.assign(I, E);
297  I = CallCache.begin();
298  E = CallCache.end();
299  }
300 
301  for (; I != E; ++I) {
302  const Value *OrigCall = I->first;
303 
304  ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
305  // Only copy the edge if the call was inlined!
306  if (VMI == VMap.end() || VMI->second == 0)
307  continue;
308 
309  // If the call was inlined, but then constant folded, there is no edge to
310  // add. Check for this case.
311  Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
312  if (NewCall == 0) continue;
313 
314  // Remember that this call site got inlined for the client of
315  // InlineFunction.
316  IFI.InlinedCalls.push_back(NewCall);
317 
318  // It's possible that inlining the callsite will cause it to go from an
319  // indirect to a direct call by resolving a function pointer. If this
320  // happens, set the callee of the new call site to a more precise
321  // destination. This can also happen if the call graph node of the caller
322  // was just unnecessarily imprecise.
323  if (I->second->getFunction() == 0)
324  if (Function *F = CallSite(NewCall).getCalledFunction()) {
325  // Indirect call site resolved to direct call.
326  CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
327 
328  continue;
329  }
330 
331  CallerNode->addCalledFunction(CallSite(NewCall), I->second);
332  }
333 
334  // Update the call graph by deleting the edge from Callee to Caller. We must
335  // do this after the loop above in case Caller and Callee are the same.
336  CallerNode->removeCallEdgeFor(CS);
337 }
338 
339 /// HandleByValArgument - When inlining a call site that has a byval argument,
340 /// we have to make the implicit memcpy explicit by adding it.
342  const Function *CalledFunc,
343  InlineFunctionInfo &IFI,
344  unsigned ByValAlignment) {
345  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
346 
347  // If the called function is readonly, then it could not mutate the caller's
348  // copy of the byval'd memory. In this case, it is safe to elide the copy and
349  // temporary.
350  if (CalledFunc->onlyReadsMemory()) {
351  // If the byval argument has a specified alignment that is greater than the
352  // passed in pointer, then we either have to round up the input pointer or
353  // give up on this transformation.
354  if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
355  return Arg;
356 
357  // If the pointer is already known to be sufficiently aligned, or if we can
358  // round it up to a larger alignment, then we don't need a temporary.
359  if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
360  IFI.TD) >= ByValAlignment)
361  return Arg;
362 
363  // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
364  // for code quality, but rarely happens and is required for correctness.
365  }
366 
367  LLVMContext &Context = Arg->getContext();
368 
369  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
370 
371  // Create the alloca. If we have DataLayout, use nice alignment.
372  unsigned Align = 1;
373  if (IFI.TD)
374  Align = IFI.TD->getPrefTypeAlignment(AggTy);
375 
376  // If the byval had an alignment specified, we *must* use at least that
377  // alignment, as it is required by the byval argument (and uses of the
378  // pointer inside the callee).
379  Align = std::max(Align, ByValAlignment);
380 
381  Function *Caller = TheCall->getParent()->getParent();
382 
383  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
384  &*Caller->begin()->begin());
385  // Emit a memcpy.
386  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
387  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
389  Tys);
390  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
391  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
392 
393  Value *Size;
394  if (IFI.TD == 0)
395  Size = ConstantExpr::getSizeOf(AggTy);
396  else
397  Size = ConstantInt::get(Type::getInt64Ty(Context),
398  IFI.TD->getTypeStoreSize(AggTy));
399 
400  // Always generate a memcpy of alignment 1 here because we don't know
401  // the alignment of the src pointer. Other optimizations can infer
402  // better alignment.
403  Value *CallArgs[] = {
404  DestCast, SrcCast, Size,
405  ConstantInt::get(Type::getInt32Ty(Context), 1),
406  ConstantInt::getFalse(Context) // isVolatile
407  };
408  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
409 
410  // Uses of the argument in the function should use our new alloca
411  // instead.
412  return NewAlloca;
413 }
414 
415 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
416 // intrinsic.
417 static bool isUsedByLifetimeMarker(Value *V) {
418  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
419  ++UI) {
420  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
421  switch (II->getIntrinsicID()) {
422  default: break;
425  return true;
426  }
427  }
428  }
429  return false;
430 }
431 
432 // hasLifetimeMarkers - Check whether the given alloca already has
433 // lifetime.start or lifetime.end intrinsics.
434 static bool hasLifetimeMarkers(AllocaInst *AI) {
435  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
436  if (AI->getType() == Int8PtrTy)
437  return isUsedByLifetimeMarker(AI);
438 
439  // Do a scan to find all the casts to i8*.
440  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
441  ++I) {
442  if (I->getType() != Int8PtrTy) continue;
443  if (I->stripPointerCasts() != AI) continue;
444  if (isUsedByLifetimeMarker(*I))
445  return true;
446  }
447  return false;
448 }
449 
450 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
451 /// recursively update InlinedAtEntry of a DebugLoc.
453  const DebugLoc &InlinedAtDL,
454  LLVMContext &Ctx) {
455  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
456  DebugLoc NewInlinedAtDL
457  = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
458  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
459  NewInlinedAtDL.getAsMDNode(Ctx));
460  }
461 
462  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
463  InlinedAtDL.getAsMDNode(Ctx));
464 }
465 
466 /// fixupLineNumbers - Update inlined instructions' line numbers to
467 /// to encode location where these instructions are inlined.
469  Instruction *TheCall) {
470  DebugLoc TheCallDL = TheCall->getDebugLoc();
471  if (TheCallDL.isUnknown())
472  return;
473 
474  for (; FI != Fn->end(); ++FI) {
475  for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
476  BI != BE; ++BI) {
477  DebugLoc DL = BI->getDebugLoc();
478  if (!DL.isUnknown()) {
479  BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
480  if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
481  LLVMContext &Ctx = BI->getContext();
482  MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
483  DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
484  InlinedAt, Ctx));
485  }
486  }
487  }
488  }
489 }
490 
491 /// InlineFunction - This function inlines the called function into the basic
492 /// block of the caller. This returns false if it is not possible to inline
493 /// this call. The program is still in a well defined state if this occurs
494 /// though.
495 ///
496 /// Note that this only does one level of inlining. For example, if the
497 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
498 /// exists in the instruction stream. Similarly this will inline a recursive
499 /// function by one level.
501  bool InsertLifetime) {
502  Instruction *TheCall = CS.getInstruction();
503  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
504  "Instruction not in function!");
505 
506  // If IFI has any state in it, zap it before we fill it in.
507  IFI.reset();
508 
509  const Function *CalledFunc = CS.getCalledFunction();
510  if (CalledFunc == 0 || // Can't inline external function or indirect
511  CalledFunc->isDeclaration() || // call, or call to a vararg function!
512  CalledFunc->getFunctionType()->isVarArg()) return false;
513 
514  // If the call to the callee is not a tail call, we must clear the 'tail'
515  // flags on any calls that we inline.
516  bool MustClearTailCallFlags =
517  !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
518 
519  // If the call to the callee cannot throw, set the 'nounwind' flag on any
520  // calls that we inline.
521  bool MarkNoUnwind = CS.doesNotThrow();
522 
523  BasicBlock *OrigBB = TheCall->getParent();
524  Function *Caller = OrigBB->getParent();
525 
526  // GC poses two hazards to inlining, which only occur when the callee has GC:
527  // 1. If the caller has no GC, then the callee's GC must be propagated to the
528  // caller.
529  // 2. If the caller has a differing GC, it is invalid to inline.
530  if (CalledFunc->hasGC()) {
531  if (!Caller->hasGC())
532  Caller->setGC(CalledFunc->getGC());
533  else if (CalledFunc->getGC() != Caller->getGC())
534  return false;
535  }
536 
537  // Get the personality function from the callee if it contains a landing pad.
538  Value *CalleePersonality = 0;
539  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
540  I != E; ++I)
541  if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
542  const BasicBlock *BB = II->getUnwindDest();
543  const LandingPadInst *LP = BB->getLandingPadInst();
544  CalleePersonality = LP->getPersonalityFn();
545  break;
546  }
547 
548  // Find the personality function used by the landing pads of the caller. If it
549  // exists, then check to see that it matches the personality function used in
550  // the callee.
551  if (CalleePersonality) {
552  for (Function::const_iterator I = Caller->begin(), E = Caller->end();
553  I != E; ++I)
554  if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
555  const BasicBlock *BB = II->getUnwindDest();
556  const LandingPadInst *LP = BB->getLandingPadInst();
557 
558  // If the personality functions match, then we can perform the
559  // inlining. Otherwise, we can't inline.
560  // TODO: This isn't 100% true. Some personality functions are proper
561  // supersets of others and can be used in place of the other.
562  if (LP->getPersonalityFn() != CalleePersonality)
563  return false;
564 
565  break;
566  }
567  }
568 
569  // Get an iterator to the last basic block in the function, which will have
570  // the new function inlined after it.
571  Function::iterator LastBlock = &Caller->back();
572 
573  // Make sure to capture all of the return instructions from the cloned
574  // function.
576  ClonedCodeInfo InlinedFunctionInfo;
577  Function::iterator FirstNewBlock;
578 
579  { // Scope to destroy VMap after cloning.
580  ValueToValueMapTy VMap;
581 
582  assert(CalledFunc->arg_size() == CS.arg_size() &&
583  "No varargs calls can be inlined!");
584 
585  // Calculate the vector of arguments to pass into the function cloner, which
586  // matches up the formal to the actual argument values.
588  unsigned ArgNo = 0;
589  for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
590  E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
591  Value *ActualArg = *AI;
592 
593  // When byval arguments actually inlined, we need to make the copy implied
594  // by them explicit. However, we don't do this if the callee is readonly
595  // or readnone, because the copy would be unneeded: the callee doesn't
596  // modify the struct.
597  if (CS.isByValArgument(ArgNo)) {
598  ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
599  CalledFunc->getParamAlignment(ArgNo+1));
600 
601  // Calls that we inline may use the new alloca, so we need to clear
602  // their 'tail' flags if HandleByValArgument introduced a new alloca and
603  // the callee has calls.
604  MustClearTailCallFlags |= ActualArg != *AI;
605  }
606 
607  VMap[I] = ActualArg;
608  }
609 
610  // We want the inliner to prune the code as it copies. We would LOVE to
611  // have no dead or constant instructions leftover after inlining occurs
612  // (which can happen, e.g., because an argument was constant), but we'll be
613  // happy with whatever the cloner can do.
614  CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
615  /*ModuleLevelChanges=*/false, Returns, ".i",
616  &InlinedFunctionInfo, IFI.TD, TheCall);
617 
618  // Remember the first block that is newly cloned over.
619  FirstNewBlock = LastBlock; ++FirstNewBlock;
620 
621  // Update the callgraph if requested.
622  if (IFI.CG)
623  UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
624 
625  // Update inlined instructions' line number information.
626  fixupLineNumbers(Caller, FirstNewBlock, TheCall);
627  }
628 
629  // If there are any alloca instructions in the block that used to be the entry
630  // block for the callee, move them to the entry block of the caller. First
631  // calculate which instruction they should be inserted before. We insert the
632  // instructions at the end of the current alloca list.
633  {
634  BasicBlock::iterator InsertPoint = Caller->begin()->begin();
635  for (BasicBlock::iterator I = FirstNewBlock->begin(),
636  E = FirstNewBlock->end(); I != E; ) {
637  AllocaInst *AI = dyn_cast<AllocaInst>(I++);
638  if (AI == 0) continue;
639 
640  // If the alloca is now dead, remove it. This often occurs due to code
641  // specialization.
642  if (AI->use_empty()) {
643  AI->eraseFromParent();
644  continue;
645  }
646 
647  if (!isa<Constant>(AI->getArraySize()))
648  continue;
649 
650  // Keep track of the static allocas that we inline into the caller.
651  IFI.StaticAllocas.push_back(AI);
652 
653  // Scan for the block of allocas that we can move over, and move them
654  // all at once.
655  while (isa<AllocaInst>(I) &&
656  isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
657  IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
658  ++I;
659  }
660 
661  // Transfer all of the allocas over in a block. Using splice means
662  // that the instructions aren't removed from the symbol table, then
663  // reinserted.
664  Caller->getEntryBlock().getInstList().splice(InsertPoint,
665  FirstNewBlock->getInstList(),
666  AI, I);
667  }
668  }
669 
670  // Leave lifetime markers for the static alloca's, scoping them to the
671  // function we just inlined.
672  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
673  IRBuilder<> builder(FirstNewBlock->begin());
674  for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
675  AllocaInst *AI = IFI.StaticAllocas[ai];
676 
677  // If the alloca is already scoped to something smaller than the whole
678  // function then there's no need to add redundant, less accurate markers.
679  if (hasLifetimeMarkers(AI))
680  continue;
681 
682  // Try to determine the size of the allocation.
683  ConstantInt *AllocaSize = 0;
684  if (ConstantInt *AIArraySize =
685  dyn_cast<ConstantInt>(AI->getArraySize())) {
686  if (IFI.TD) {
687  Type *AllocaType = AI->getAllocatedType();
688  uint64_t AllocaTypeSize = IFI.TD->getTypeAllocSize(AllocaType);
689  uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
690  assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
691  // Check that array size doesn't saturate uint64_t and doesn't
692  // overflow when it's multiplied by type size.
693  if (AllocaArraySize != ~0ULL &&
694  UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
695  AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
696  AllocaArraySize * AllocaTypeSize);
697  }
698  }
699  }
700 
701  builder.CreateLifetimeStart(AI, AllocaSize);
702  for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
703  IRBuilder<> builder(Returns[ri]);
704  builder.CreateLifetimeEnd(AI, AllocaSize);
705  }
706  }
707  }
708 
709  // If the inlined code contained dynamic alloca instructions, wrap the inlined
710  // code with llvm.stacksave/llvm.stackrestore intrinsics.
711  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
712  Module *M = Caller->getParent();
713  // Get the two intrinsics we care about.
716 
717  // Insert the llvm.stacksave.
718  CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
719  .CreateCall(StackSave, "savedstack");
720 
721  // Insert a call to llvm.stackrestore before any return instructions in the
722  // inlined function.
723  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
724  IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
725  }
726  }
727 
728  // If we are inlining tail call instruction through a call site that isn't
729  // marked 'tail', we must remove the tail marker for any calls in the inlined
730  // code. Also, calls inlined through a 'nounwind' call site should be marked
731  // 'nounwind'.
732  if (InlinedFunctionInfo.ContainsCalls &&
733  (MustClearTailCallFlags || MarkNoUnwind)) {
734  for (Function::iterator BB = FirstNewBlock, E = Caller->end();
735  BB != E; ++BB)
736  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
737  if (CallInst *CI = dyn_cast<CallInst>(I)) {
738  if (MustClearTailCallFlags)
739  CI->setTailCall(false);
740  if (MarkNoUnwind)
741  CI->setDoesNotThrow();
742  }
743  }
744 
745  // If we are inlining for an invoke instruction, we must make sure to rewrite
746  // any call instructions into invoke instructions.
747  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
748  HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
749 
750  // If we cloned in _exactly one_ basic block, and if that block ends in a
751  // return instruction, we splice the body of the inlined callee directly into
752  // the calling basic block.
753  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
754  // Move all of the instructions right before the call.
755  OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
756  FirstNewBlock->begin(), FirstNewBlock->end());
757  // Remove the cloned basic block.
758  Caller->getBasicBlockList().pop_back();
759 
760  // If the call site was an invoke instruction, add a branch to the normal
761  // destination.
762  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
763  BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
764  NewBr->setDebugLoc(Returns[0]->getDebugLoc());
765  }
766 
767  // If the return instruction returned a value, replace uses of the call with
768  // uses of the returned value.
769  if (!TheCall->use_empty()) {
770  ReturnInst *R = Returns[0];
771  if (TheCall == R->getReturnValue())
772  TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
773  else
774  TheCall->replaceAllUsesWith(R->getReturnValue());
775  }
776  // Since we are now done with the Call/Invoke, we can delete it.
777  TheCall->eraseFromParent();
778 
779  // Since we are now done with the return instruction, delete it also.
780  Returns[0]->eraseFromParent();
781 
782  // We are now done with the inlining.
783  return true;
784  }
785 
786  // Otherwise, we have the normal case, of more than one block to inline or
787  // multiple return sites.
788 
789  // We want to clone the entire callee function into the hole between the
790  // "starter" and "ender" blocks. How we accomplish this depends on whether
791  // this is an invoke instruction or a call instruction.
792  BasicBlock *AfterCallBB;
793  BranchInst *CreatedBranchToNormalDest = NULL;
794  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
795 
796  // Add an unconditional branch to make this look like the CallInst case...
797  CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
798 
799  // Split the basic block. This guarantees that no PHI nodes will have to be
800  // updated due to new incoming edges, and make the invoke case more
801  // symmetric to the call case.
802  AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
803  CalledFunc->getName()+".exit");
804 
805  } else { // It's a call
806  // If this is a call instruction, we need to split the basic block that
807  // the call lives in.
808  //
809  AfterCallBB = OrigBB->splitBasicBlock(TheCall,
810  CalledFunc->getName()+".exit");
811  }
812 
813  // Change the branch that used to go to AfterCallBB to branch to the first
814  // basic block of the inlined function.
815  //
816  TerminatorInst *Br = OrigBB->getTerminator();
817  assert(Br && Br->getOpcode() == Instruction::Br &&
818  "splitBasicBlock broken!");
819  Br->setOperand(0, FirstNewBlock);
820 
821 
822  // Now that the function is correct, make it a little bit nicer. In
823  // particular, move the basic blocks inserted from the end of the function
824  // into the space made by splitting the source basic block.
825  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
826  FirstNewBlock, Caller->end());
827 
828  // Handle all of the return instructions that we just cloned in, and eliminate
829  // any users of the original call/invoke instruction.
830  Type *RTy = CalledFunc->getReturnType();
831 
832  PHINode *PHI = 0;
833  if (Returns.size() > 1) {
834  // The PHI node should go at the front of the new basic block to merge all
835  // possible incoming values.
836  if (!TheCall->use_empty()) {
837  PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
838  AfterCallBB->begin());
839  // Anything that used the result of the function call should now use the
840  // PHI node as their operand.
841  TheCall->replaceAllUsesWith(PHI);
842  }
843 
844  // Loop over all of the return instructions adding entries to the PHI node
845  // as appropriate.
846  if (PHI) {
847  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
848  ReturnInst *RI = Returns[i];
849  assert(RI->getReturnValue()->getType() == PHI->getType() &&
850  "Ret value not consistent in function!");
851  PHI->addIncoming(RI->getReturnValue(), RI->getParent());
852  }
853  }
854 
855 
856  // Add a branch to the merge points and remove return instructions.
857  DebugLoc Loc;
858  for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
859  ReturnInst *RI = Returns[i];
860  BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
861  Loc = RI->getDebugLoc();
862  BI->setDebugLoc(Loc);
863  RI->eraseFromParent();
864  }
865  // We need to set the debug location to *somewhere* inside the
866  // inlined function. The line number may be nonsensical, but the
867  // instruction will at least be associated with the right
868  // function.
869  if (CreatedBranchToNormalDest)
870  CreatedBranchToNormalDest->setDebugLoc(Loc);
871  } else if (!Returns.empty()) {
872  // Otherwise, if there is exactly one return value, just replace anything
873  // using the return value of the call with the computed value.
874  if (!TheCall->use_empty()) {
875  if (TheCall == Returns[0]->getReturnValue())
876  TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
877  else
878  TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
879  }
880 
881  // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
882  BasicBlock *ReturnBB = Returns[0]->getParent();
883  ReturnBB->replaceAllUsesWith(AfterCallBB);
884 
885  // Splice the code from the return block into the block that it will return
886  // to, which contains the code that was after the call.
887  AfterCallBB->getInstList().splice(AfterCallBB->begin(),
888  ReturnBB->getInstList());
889 
890  if (CreatedBranchToNormalDest)
891  CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
892 
893  // Delete the return instruction now and empty ReturnBB now.
894  Returns[0]->eraseFromParent();
895  ReturnBB->eraseFromParent();
896  } else if (!TheCall->use_empty()) {
897  // No returns, but something is using the return value of the call. Just
898  // nuke the result.
899  TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
900  }
901 
902  // Since we are now done with the Call/Invoke, we can delete it.
903  TheCall->eraseFromParent();
904 
905  // We should always be able to fold the entry block of the function into the
906  // single predecessor of the block...
907  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
908  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
909 
910  // Splice the code entry block into calling block, right before the
911  // unconditional branch.
912  CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
913  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
914 
915  // Remove the unconditional branch.
916  OrigBB->getInstList().erase(Br);
917 
918  // Now we can remove the CalleeEntry block, which is now empty.
919  Caller->getBasicBlockList().erase(CalleeEntry);
920 
921  // If we inserted a phi node, check to see if it has a single value (e.g. all
922  // the entries are the same or undef). If so, remove the PHI so it doesn't
923  // block other optimizations.
924  if (PHI) {
925  if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
926  PHI->replaceAllUsesWith(V);
927  PHI->eraseFromParent();
928  }
929  }
930 
931  return true;
932 }
const Value * getCalledValue() const
use_iterator use_end()
Definition: Value.h:152
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:445
void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs=false)
Notify the BasicBlock that the predecessor Pred is no longer able to reach it.
Definition: BasicBlock.cpp:216
void addIncoming(Value *V, BasicBlock *BB)
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=0, const DataLayout *TD=0, Instruction *TheCall=0)
void pop_back()
Definition: ilist.h:559
bool onlyReadsMemory() const
Determine if the function does not access or only reads memory.
Definition: Function.h:246
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
IterTy arg_end() const
Definition: CallSite.h:143
bool InlineFunction(CallInst *C, InlineFunctionInfo &IFI, bool InsertLifetime=true)
iterator end()
Definition: Function.h:397
unsigned arg_size() const
Definition: CallSite.h:145
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getPrefTypeAlignment(Type *Ty) const
Definition: DataLayout.cpp:600
const char * getGC() const
Definition: Function.cpp:315
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
Type * getReturnType() const
Definition: Function.cpp:179
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
arg_iterator arg_end()
Definition: Function.h:418
MDNode * getAsMDNode(const LLVMContext &Ctx) const
Definition: DebugLoc.cpp:100
MDNode - a tuple of other values.
Definition: Metadata.h:69
F(f)
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
Value * getPersonalityFn() const
static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, const DebugLoc &InlinedAtDL, LLVMContext &Ctx)
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
CallInst * CreateLifetimeEnd(Value *Ptr, ConstantInt *Size=0)
Create a lifetime.end intrinsic.
Definition: IRBuilder.cpp:140
SmallVector< AllocaInst *, 4 > StaticAllocas
Definition: Cloning.h:172
size_t arg_size() const
Definition: Function.cpp:248
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
void addCalledFunction(CallSite CS, CallGraphNode *M)
Definition: CallGraph.h:262
std::vector< CallRecord >::iterator iterator
Definition: CallGraph.h:208
bool isUnknown() const
isUnknown - Return true if this is an unknown location.
Definition: DebugLoc.h:70
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
iterator end()
Definition: CallGraph.h:215
Definition: Use.h:60
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
This file contains the simple types necessary to represent the attributes associated with functions a...
Type * getAllocatedType() const
unsigned getLine() const
Definition: DebugLoc.h:72
LandingPadInst * getLandingPadInst() const
bool doesNotThrow() const
Determine if the call cannot unwind.
static Constant * getSizeOf(Type *Ty)
Definition: Constants.cpp:1756
static void UpdateCallGraphAfterInlining(CallSite CS, Function::iterator FirstNewBlock, ValueToValueMapTy &VMap, InlineFunctionInfo &IFI)
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
const BasicBlock & back() const
Definition: Function.h:404
iterator find(const KeyT &Val)
Definition: ValueMap.h:116
This class represents a no-op cast from one type to another.
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:683
unsigned getNumClauses() const
getNumClauses - Get the number of clauses for this landing pad.
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
iterator begin()
Definition: Function.h:395
void addClause(Value *ClauseVal)
addClause - Add a catch or filter clause to the landing pad.
BasicBlock * getNormalDest() const
unsigned getCol() const
Definition: DebugLoc.h:76
static bool isUsedByLifetimeMarker(Value *V)
Value * getClause(unsigned Idx) const
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
InstrTy * getInstruction() const
Definition: CallSite.h:79
PointerType * getType() const
Definition: Instructions.h:91
static InvokeInst * Create(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef< Value * > Args, const Twine &NameStr="", Instruction *InsertBefore=0)
LandingPadInst * getLandingPadInst()
Return the landingpad instruction associated with the landing pad.
Definition: BasicBlock.cpp:366
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
SmallVector< WeakVH, 8 > InlinedCalls
Definition: Cloning.h:176
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
static bool hasLifetimeMarkers(AllocaInst *AI)
Value * getOperand(unsigned i) const
Definition: User.h:88
MDNode * getInlinedAt(const LLVMContext &Ctx) const
Definition: DebugLoc.cpp:37
arg_iterator arg_begin()
Definition: Function.h:410
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
const DataLayout * TD
Definition: Cloning.h:168
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:284
iterator erase(iterator where)
Definition: ilist.h:465
iterator end()
Definition: ValueMap.h:99
SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
Definition: SmallPtrSet.h:174
MDNode * getScope(const LLVMContext &Ctx) const
Definition: DebugLoc.cpp:20
static void Split(std::vector< std::string > &V, const StringRef S)
const BasicBlockListType & getBasicBlockList() const
Definition: Function.h:374
BasicBlock * getUnwindDest() const
See the file comment.
Definition: ValueMap.h:75
bool doesNotThrow() const
Determine if the call cannot unwind.
Definition: CallSite.h:240
Class for constant integers.
Definition: Constants.h:51
bool isByValArgument(unsigned ArgNo) const
Determine whether this argument is passed by value.
Definition: CallSite.h:256
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
void eraseFromParent()
Unlink 'this' from the containing function and delete it.
Definition: BasicBlock.cpp:100
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
static void fixupLineNumbers(Function *Fn, Function::iterator FI, Instruction *TheCall)
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
void splice(iterator where, iplist &L2)
Definition: ilist.h:570
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
Value * getIncomingValueForBlock(const BasicBlock *BB) const
bool hasGC() const
Definition: Function.cpp:310
void setGC(const char *Str)
Definition: Function.cpp:321
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
const AttributeSet & getAttributes() const
static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, InvokeInliningInfo &Invoke)
static DebugLoc get(unsigned Line, unsigned Col, MDNode *Scope, MDNode *InlinedAt=0)
Definition: DebugLoc.cpp:74
use_iterator use_begin()
Definition: Value.h:150
unsigned getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, const DataLayout *TD=0)
Definition: Local.cpp:922
DIVariable createInlinedVariable(MDNode *DV, MDNode *InlinedScope, LLVMContext &VMContext)
Definition: DebugInfo.cpp:865
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
bool isDeclaration() const
Definition: Globals.cpp:66
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:318
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
FunctionType * getFunctionType() const
Definition: Function.cpp:171
iterator end() const
Definition: SmallPtrSet.h:279
static Value * HandleByValArgument(Value *Arg, Instruction *TheCall, const Function *CalledFunc, InlineFunctionInfo &IFI, unsigned ByValAlignment)
static DebugLoc getFromDILocation(MDNode *N)
getFromDILocation - Translate the DILocation quad into a DebugLoc.
Definition: DebugLoc.cpp:117
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="")
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:298
uint64_t getTypeStoreSize(Type *Ty) const
Definition: DataLayout.h:311
IterTy arg_begin() const
Definition: CallSite.h:137
bool isVarArg() const
Definition: DerivedTypes.h:120
bool use_empty() const
Definition: Value.h:149
bool ContainsDynamicAllocas
Definition: Cloning.h:63
unsigned getParamAlignment(unsigned i) const
Extract the alignment for a call or parameter (0=unknown).
Definition: Function.h:232
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
void pop_front()
Definition: ilist.h:555
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
iterator begin() const
Definition: SmallPtrSet.h:276
void removeCallEdgeFor(CallSite CS)
Definition: CallGraph.cpp:206
const Value * getArraySize() const
Definition: Instructions.h:86
iterator begin()
Definition: CallGraph.h:214
CallingConv::ID getCallingConv() const
std::vector< CallRecord > CalledFunctionsVector
Definition: CallGraph.h:195
const BasicBlock * getParent() const
Definition: Instruction.h:52
FunTy * getCalledFunction() const
Definition: CallSite.h:93
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, ClonedCodeInfo &InlinedCodeInfo)