LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LinkModules.cpp
Go to the documentation of this file.
1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Linker.h"
15 #include "llvm-c/Linker.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/TypeFinder.h"
22 #include "llvm/Support/Debug.h"
25 #include <cctype>
26 using namespace llvm;
27 
28 //===----------------------------------------------------------------------===//
29 // TypeMap implementation.
30 //===----------------------------------------------------------------------===//
31 
32 namespace {
33  typedef SmallPtrSet<StructType*, 32> TypeSet;
34 
35 class TypeMapTy : public ValueMapTypeRemapper {
36  /// MappedTypes - This is a mapping from a source type to a destination type
37  /// to use.
38  DenseMap<Type*, Type*> MappedTypes;
39 
40  /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
41  /// we speculatively add types to MappedTypes, but keep track of them here in
42  /// case we need to roll back.
43  SmallVector<Type*, 16> SpeculativeTypes;
44 
45  /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
46  /// source module that are mapped to an opaque struct in the destination
47  /// module.
48  SmallVector<StructType*, 16> SrcDefinitionsToResolve;
49 
50  /// DstResolvedOpaqueTypes - This is the set of opaque types in the
51  /// destination modules who are getting a body from the source module.
52  SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
53 
54 public:
55  TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
56 
57  TypeSet &DstStructTypesSet;
58  /// addTypeMapping - Indicate that the specified type in the destination
59  /// module is conceptually equivalent to the specified type in the source
60  /// module.
61  void addTypeMapping(Type *DstTy, Type *SrcTy);
62 
63  /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
64  /// module from a type definition in the source module.
65  void linkDefinedTypeBodies();
66 
67  /// get - Return the mapped type to use for the specified input type from the
68  /// source module.
69  Type *get(Type *SrcTy);
70 
71  FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
72 
73  /// dump - Dump out the type map for debugging purposes.
74  void dump() const {
76  I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
77  dbgs() << "TypeMap: ";
78  I->first->dump();
79  dbgs() << " => ";
80  I->second->dump();
81  dbgs() << '\n';
82  }
83  }
84 
85 private:
86  Type *getImpl(Type *T);
87  /// remapType - Implement the ValueMapTypeRemapper interface.
88  Type *remapType(Type *SrcTy) {
89  return get(SrcTy);
90  }
91 
92  bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
93 };
94 }
95 
96 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
97  Type *&Entry = MappedTypes[SrcTy];
98  if (Entry) return;
99 
100  if (DstTy == SrcTy) {
101  Entry = DstTy;
102  return;
103  }
104 
105  // Check to see if these types are recursively isomorphic and establish a
106  // mapping between them if so.
107  if (!areTypesIsomorphic(DstTy, SrcTy)) {
108  // Oops, they aren't isomorphic. Just discard this request by rolling out
109  // any speculative mappings we've established.
110  for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
111  MappedTypes.erase(SpeculativeTypes[i]);
112  }
113  SpeculativeTypes.clear();
114 }
115 
116 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
117 /// if they are isomorphic, false if they are not.
118 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
119  // Two types with differing kinds are clearly not isomorphic.
120  if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
121 
122  // If we have an entry in the MappedTypes table, then we have our answer.
123  Type *&Entry = MappedTypes[SrcTy];
124  if (Entry)
125  return Entry == DstTy;
126 
127  // Two identical types are clearly isomorphic. Remember this
128  // non-speculatively.
129  if (DstTy == SrcTy) {
130  Entry = DstTy;
131  return true;
132  }
133 
134  // Okay, we have two types with identical kinds that we haven't seen before.
135 
136  // If this is an opaque struct type, special case it.
137  if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
138  // Mapping an opaque type to any struct, just keep the dest struct.
139  if (SSTy->isOpaque()) {
140  Entry = DstTy;
141  SpeculativeTypes.push_back(SrcTy);
142  return true;
143  }
144 
145  // Mapping a non-opaque source type to an opaque dest. If this is the first
146  // type that we're mapping onto this destination type then we succeed. Keep
147  // the dest, but fill it in later. This doesn't need to be speculative. If
148  // this is the second (different) type that we're trying to map onto the
149  // same opaque type then we fail.
150  if (cast<StructType>(DstTy)->isOpaque()) {
151  // We can only map one source type onto the opaque destination type.
152  if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
153  return false;
154  SrcDefinitionsToResolve.push_back(SSTy);
155  Entry = DstTy;
156  return true;
157  }
158  }
159 
160  // If the number of subtypes disagree between the two types, then we fail.
161  if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
162  return false;
163 
164  // Fail if any of the extra properties (e.g. array size) of the type disagree.
165  if (isa<IntegerType>(DstTy))
166  return false; // bitwidth disagrees.
167  if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
168  if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
169  return false;
170 
171  } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
172  if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
173  return false;
174  } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
175  StructType *SSTy = cast<StructType>(SrcTy);
176  if (DSTy->isLiteral() != SSTy->isLiteral() ||
177  DSTy->isPacked() != SSTy->isPacked())
178  return false;
179  } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
180  if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
181  return false;
182  } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
183  if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
184  return false;
185  }
186 
187  // Otherwise, we speculate that these two types will line up and recursively
188  // check the subelements.
189  Entry = DstTy;
190  SpeculativeTypes.push_back(SrcTy);
191 
192  for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
193  if (!areTypesIsomorphic(DstTy->getContainedType(i),
194  SrcTy->getContainedType(i)))
195  return false;
196 
197  // If everything seems to have lined up, then everything is great.
198  return true;
199 }
200 
201 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
202 /// module from a type definition in the source module.
203 void TypeMapTy::linkDefinedTypeBodies() {
204  SmallVector<Type*, 16> Elements;
205  SmallString<16> TmpName;
206 
207  // Note that processing entries in this loop (calling 'get') can add new
208  // entries to the SrcDefinitionsToResolve vector.
209  while (!SrcDefinitionsToResolve.empty()) {
210  StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
211  StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
212 
213  // TypeMap is a many-to-one mapping, if there were multiple types that
214  // provide a body for DstSTy then previous iterations of this loop may have
215  // already handled it. Just ignore this case.
216  if (!DstSTy->isOpaque()) continue;
217  assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
218 
219  // Map the body of the source type over to a new body for the dest type.
220  Elements.resize(SrcSTy->getNumElements());
221  for (unsigned i = 0, e = Elements.size(); i != e; ++i)
222  Elements[i] = getImpl(SrcSTy->getElementType(i));
223 
224  DstSTy->setBody(Elements, SrcSTy->isPacked());
225 
226  // If DstSTy has no name or has a longer name than STy, then viciously steal
227  // STy's name.
228  if (!SrcSTy->hasName()) continue;
229  StringRef SrcName = SrcSTy->getName();
230 
231  if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
232  TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
233  SrcSTy->setName("");
234  DstSTy->setName(TmpName.str());
235  TmpName.clear();
236  }
237  }
238 
239  DstResolvedOpaqueTypes.clear();
240 }
241 
242 /// get - Return the mapped type to use for the specified input type from the
243 /// source module.
244 Type *TypeMapTy::get(Type *Ty) {
245  Type *Result = getImpl(Ty);
246 
247  // If this caused a reference to any struct type, resolve it before returning.
248  if (!SrcDefinitionsToResolve.empty())
249  linkDefinedTypeBodies();
250  return Result;
251 }
252 
253 /// getImpl - This is the recursive version of get().
254 Type *TypeMapTy::getImpl(Type *Ty) {
255  // If we already have an entry for this type, return it.
256  Type **Entry = &MappedTypes[Ty];
257  if (*Entry) return *Entry;
258 
259  // If this is not a named struct type, then just map all of the elements and
260  // then rebuild the type from inside out.
261  if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
262  // If there are no element types to map, then the type is itself. This is
263  // true for the anonymous {} struct, things like 'float', integers, etc.
264  if (Ty->getNumContainedTypes() == 0)
265  return *Entry = Ty;
266 
267  // Remap all of the elements, keeping track of whether any of them change.
268  bool AnyChange = false;
269  SmallVector<Type*, 4> ElementTypes;
270  ElementTypes.resize(Ty->getNumContainedTypes());
271  for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
272  ElementTypes[i] = getImpl(Ty->getContainedType(i));
273  AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
274  }
275 
276  // If we found our type while recursively processing stuff, just use it.
277  Entry = &MappedTypes[Ty];
278  if (*Entry) return *Entry;
279 
280  // If all of the element types mapped directly over, then the type is usable
281  // as-is.
282  if (!AnyChange)
283  return *Entry = Ty;
284 
285  // Otherwise, rebuild a modified type.
286  switch (Ty->getTypeID()) {
287  default: llvm_unreachable("unknown derived type to remap");
288  case Type::ArrayTyID:
289  return *Entry = ArrayType::get(ElementTypes[0],
290  cast<ArrayType>(Ty)->getNumElements());
291  case Type::VectorTyID:
292  return *Entry = VectorType::get(ElementTypes[0],
293  cast<VectorType>(Ty)->getNumElements());
294  case Type::PointerTyID:
295  return *Entry = PointerType::get(ElementTypes[0],
296  cast<PointerType>(Ty)->getAddressSpace());
297  case Type::FunctionTyID:
298  return *Entry = FunctionType::get(ElementTypes[0],
299  makeArrayRef(ElementTypes).slice(1),
300  cast<FunctionType>(Ty)->isVarArg());
301  case Type::StructTyID:
302  // Note that this is only reached for anonymous structs.
303  return *Entry = StructType::get(Ty->getContext(), ElementTypes,
304  cast<StructType>(Ty)->isPacked());
305  }
306  }
307 
308  // Otherwise, this is an unmapped named struct. If the struct can be directly
309  // mapped over, just use it as-is. This happens in a case when the linked-in
310  // module has something like:
311  // %T = type {%T*, i32}
312  // @GV = global %T* null
313  // where T does not exist at all in the destination module.
314  //
315  // The other case we watch for is when the type is not in the destination
316  // module, but that it has to be rebuilt because it refers to something that
317  // is already mapped. For example, if the destination module has:
318  // %A = type { i32 }
319  // and the source module has something like
320  // %A' = type { i32 }
321  // %B = type { %A'* }
322  // @GV = global %B* null
323  // then we want to create a new type: "%B = type { %A*}" and have it take the
324  // pristine "%B" name from the source module.
325  //
326  // To determine which case this is, we have to recursively walk the type graph
327  // speculating that we'll be able to reuse it unmodified. Only if this is
328  // safe would we map the entire thing over. Because this is an optimization,
329  // and is not required for the prettiness of the linked module, we just skip
330  // it and always rebuild a type here.
331  StructType *STy = cast<StructType>(Ty);
332 
333  // If the type is opaque, we can just use it directly.
334  if (STy->isOpaque()) {
335  // A named structure type from src module is used. Add it to the Set of
336  // identified structs in the destination module.
337  DstStructTypesSet.insert(STy);
338  return *Entry = STy;
339  }
340 
341  // Otherwise we create a new type and resolve its body later. This will be
342  // resolved by the top level of get().
343  SrcDefinitionsToResolve.push_back(STy);
345  // A new identified structure type was created. Add it to the set of
346  // identified structs in the destination module.
347  DstStructTypesSet.insert(DTy);
348  DstResolvedOpaqueTypes.insert(DTy);
349  return *Entry = DTy;
350 }
351 
352 //===----------------------------------------------------------------------===//
353 // ModuleLinker implementation.
354 //===----------------------------------------------------------------------===//
355 
356 namespace {
357  class ModuleLinker;
358 
359  /// ValueMaterializerTy - Creates prototypes for functions that are lazily
360  /// linked on the fly. This speeds up linking for modules with many
361  /// lazily linked functions of which few get used.
362  class ValueMaterializerTy : public ValueMaterializer {
363  TypeMapTy &TypeMap;
364  Module *DstM;
365  std::vector<Function*> &LazilyLinkFunctions;
366  public:
367  ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
368  std::vector<Function*> &LazilyLinkFunctions) :
369  ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
370  LazilyLinkFunctions(LazilyLinkFunctions) {
371  }
372 
373  virtual Value *materializeValueFor(Value *V);
374  };
375 
376  /// ModuleLinker - This is an implementation class for the LinkModules
377  /// function, which is the entrypoint for this file.
378  class ModuleLinker {
379  Module *DstM, *SrcM;
380 
381  TypeMapTy TypeMap;
382  ValueMaterializerTy ValMaterializer;
383 
384  /// ValueMap - Mapping of values from what they used to be in Src, to what
385  /// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves
386  /// some overhead due to the use of Value handles which the Linker doesn't
387  /// actually need, but this allows us to reuse the ValueMapper code.
389 
390  struct AppendingVarInfo {
391  GlobalVariable *NewGV; // New aggregate global in dest module.
392  Constant *DstInit; // Old initializer from dest module.
393  Constant *SrcInit; // Old initializer from src module.
394  };
395 
396  std::vector<AppendingVarInfo> AppendingVars;
397 
398  unsigned Mode; // Mode to treat source module.
399 
400  // Set of items not to link in from source.
401  SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
402 
403  // Vector of functions to lazily link in.
404  std::vector<Function*> LazilyLinkFunctions;
405 
406  public:
407  std::string ErrorMsg;
408 
409  ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode)
410  : DstM(dstM), SrcM(srcM), TypeMap(Set),
411  ValMaterializer(TypeMap, DstM, LazilyLinkFunctions),
412  Mode(mode) { }
413 
414  bool run();
415 
416  private:
417  /// emitError - Helper method for setting a message and returning an error
418  /// code.
419  bool emitError(const Twine &Message) {
420  ErrorMsg = Message.str();
421  return true;
422  }
423 
424  /// getLinkageResult - This analyzes the two global values and determines
425  /// what the result will look like in the destination module.
426  bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
429  bool &LinkFromSrc);
430 
431  /// getLinkedToGlobal - Given a global in the source module, return the
432  /// global in the destination module that is being linked to, if any.
433  GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
434  // If the source has no name it can't link. If it has local linkage,
435  // there is no name match-up going on.
436  if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
437  return 0;
438 
439  // Otherwise see if we have a match in the destination module's symtab.
440  GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
441  if (DGV == 0) return 0;
442 
443  // If we found a global with the same name in the dest module, but it has
444  // internal linkage, we are really not doing any linkage here.
445  if (DGV->hasLocalLinkage())
446  return 0;
447 
448  // Otherwise, we do in fact link to the destination global.
449  return DGV;
450  }
451 
452  void computeTypeMapping();
453 
454  bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
455  bool linkGlobalProto(GlobalVariable *SrcGV);
456  bool linkFunctionProto(Function *SrcF);
457  bool linkAliasProto(GlobalAlias *SrcA);
458  bool linkModuleFlagsMetadata();
459 
460  void linkAppendingVarInit(const AppendingVarInfo &AVI);
461  void linkGlobalInits();
462  void linkFunctionBody(Function *Dst, Function *Src);
463  void linkAliasBodies();
464  void linkNamedMDNodes();
465  };
466 }
467 
468 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
469 /// in the symbol table. This is good for all clients except for us. Go
470 /// through the trouble to force this back.
472  // If the global doesn't force its name or if it already has the right name,
473  // there is nothing for us to do.
474  if (GV->hasLocalLinkage() || GV->getName() == Name)
475  return;
476 
477  Module *M = GV->getParent();
478 
479  // If there is a conflict, rename the conflict.
480  if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
481  GV->takeName(ConflictGV);
482  ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
483  assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
484  } else {
485  GV->setName(Name); // Force the name back
486  }
487 }
488 
489 /// copyGVAttributes - copy additional attributes (those not needed to construct
490 /// a GlobalValue) from the SrcGV to the DestGV.
491 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
492  // Use the maximum alignment, rather than just copying the alignment of SrcGV.
493  unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
494  DestGV->copyAttributesFrom(SrcGV);
495  DestGV->setAlignment(Alignment);
496 
497  forceRenaming(DestGV, SrcGV->getName());
498 }
499 
503  return false;
505  return true;
507  return false;
509  return true;
510  return false;
511 }
512 
513 Value *ValueMaterializerTy::materializeValueFor(Value *V) {
514  Function *SF = dyn_cast<Function>(V);
515  if (!SF)
516  return NULL;
517 
518  Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
519  SF->getLinkage(), SF->getName(), DstM);
520  copyGVAttributes(DF, SF);
521 
522  LazilyLinkFunctions.push_back(SF);
523  return DF;
524 }
525 
526 
527 /// getLinkageResult - This analyzes the two global values and determines what
528 /// the result will look like in the destination module. In particular, it
529 /// computes the resultant linkage type and visibility, computes whether the
530 /// global in the source should be copied over to the destination (replacing
531 /// the existing one), and computes whether this linkage is an error or not.
532 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
535  bool &LinkFromSrc) {
536  assert(Dest && "Must have two globals being queried");
537  assert(!Src->hasLocalLinkage() &&
538  "If Src has internal linkage, Dest shouldn't be set!");
539 
540  bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
541  bool DestIsDeclaration = Dest->isDeclaration();
542 
543  if (SrcIsDeclaration) {
544  // If Src is external or if both Src & Dest are external.. Just link the
545  // external globals, we aren't adding anything.
546  if (Src->hasDLLImportLinkage()) {
547  // If one of GVs has DLLImport linkage, result should be dllimport'ed.
548  if (DestIsDeclaration) {
549  LinkFromSrc = true;
550  LT = Src->getLinkage();
551  }
552  } else if (Dest->hasExternalWeakLinkage()) {
553  // If the Dest is weak, use the source linkage.
554  LinkFromSrc = true;
555  LT = Src->getLinkage();
556  } else {
557  LinkFromSrc = false;
558  LT = Dest->getLinkage();
559  }
560  } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
561  // If Dest is external but Src is not:
562  LinkFromSrc = true;
563  LT = Src->getLinkage();
564  } else if (Src->isWeakForLinker()) {
565  // At this point we know that Dest has LinkOnce, External*, Weak, Common,
566  // or DLL* linkage.
567  if (Dest->hasExternalWeakLinkage() ||
569  (Dest->hasLinkOnceLinkage() &&
570  (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
571  LinkFromSrc = true;
572  LT = Src->getLinkage();
573  } else {
574  LinkFromSrc = false;
575  LT = Dest->getLinkage();
576  }
577  } else if (Dest->isWeakForLinker()) {
578  // At this point we know that Src has External* or DLL* linkage.
579  if (Src->hasExternalWeakLinkage()) {
580  LinkFromSrc = false;
581  LT = Dest->getLinkage();
582  } else {
583  LinkFromSrc = true;
585  }
586  } else {
587  assert((Dest->hasExternalLinkage() || Dest->hasDLLImportLinkage() ||
588  Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
589  (Src->hasExternalLinkage() || Src->hasDLLImportLinkage() ||
590  Src->hasDLLExportLinkage() || Src->hasExternalWeakLinkage()) &&
591  "Unexpected linkage type!");
592  return emitError("Linking globals named '" + Src->getName() +
593  "': symbol multiply defined!");
594  }
595 
596  // Compute the visibility. We follow the rules in the System V Application
597  // Binary Interface.
598  Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
599  Dest->getVisibility() : Src->getVisibility();
600  return false;
601 }
602 
603 /// computeTypeMapping - Loop over all of the linked values to compute type
604 /// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then
605 /// we have two struct types 'Foo' but one got renamed when the module was
606 /// loaded into the same LLVMContext.
607 void ModuleLinker::computeTypeMapping() {
608  // Incorporate globals.
609  for (Module::global_iterator I = SrcM->global_begin(),
610  E = SrcM->global_end(); I != E; ++I) {
611  GlobalValue *DGV = getLinkedToGlobal(I);
612  if (DGV == 0) continue;
613 
614  if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
615  TypeMap.addTypeMapping(DGV->getType(), I->getType());
616  continue;
617  }
618 
619  // Unify the element type of appending arrays.
620  ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
621  ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
622  TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
623  }
624 
625  // Incorporate functions.
626  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
627  if (GlobalValue *DGV = getLinkedToGlobal(I))
628  TypeMap.addTypeMapping(DGV->getType(), I->getType());
629  }
630 
631  // Incorporate types by name, scanning all the types in the source module.
632  // At this point, the destination module may have a type "%foo = { i32 }" for
633  // example. When the source module got loaded into the same LLVMContext, if
634  // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
635  TypeFinder SrcStructTypes;
636  SrcStructTypes.run(*SrcM, true);
637  SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
638  SrcStructTypes.end());
639 
640  for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
641  StructType *ST = SrcStructTypes[i];
642  if (!ST->hasName()) continue;
643 
644  // Check to see if there is a dot in the name followed by a digit.
645  size_t DotPos = ST->getName().rfind('.');
646  if (DotPos == 0 || DotPos == StringRef::npos ||
647  ST->getName().back() == '.' ||
648  !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
649  continue;
650 
651  // Check to see if the destination module has a struct with the prefix name.
652  if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
653  // Don't use it if this actually came from the source module. They're in
654  // the same LLVMContext after all. Also don't use it unless the type is
655  // actually used in the destination module. This can happen in situations
656  // like this:
657  //
658  // Module A Module B
659  // -------- --------
660  // %Z = type { %A } %B = type { %C.1 }
661  // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
662  // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
663  // %C = type { i8* } %B.3 = type { %C.1 }
664  //
665  // When we link Module B with Module A, the '%B' in Module B is
666  // used. However, that would then use '%C.1'. But when we process '%C.1',
667  // we prefer to take the '%C' version. So we are then left with both
668  // '%C.1' and '%C' being used for the same types. This leads to some
669  // variables using one type and some using the other.
670  if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
671  TypeMap.addTypeMapping(DST, ST);
672  }
673 
674  // Don't bother incorporating aliases, they aren't generally typed well.
675 
676  // Now that we have discovered all of the type equivalences, get a body for
677  // any 'opaque' types in the dest module that are now resolved.
678  TypeMap.linkDefinedTypeBodies();
679 }
680 
681 /// linkAppendingVarProto - If there were any appending global variables, link
682 /// them together now. Return true on error.
683 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
684  GlobalVariable *SrcGV) {
685 
686  if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
687  return emitError("Linking globals named '" + SrcGV->getName() +
688  "': can only link appending global with another appending global!");
689 
690  ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
691  ArrayType *SrcTy =
692  cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
693  Type *EltTy = DstTy->getElementType();
694 
695  // Check to see that they two arrays agree on type.
696  if (EltTy != SrcTy->getElementType())
697  return emitError("Appending variables with different element types!");
698  if (DstGV->isConstant() != SrcGV->isConstant())
699  return emitError("Appending variables linked with different const'ness!");
700 
701  if (DstGV->getAlignment() != SrcGV->getAlignment())
702  return emitError(
703  "Appending variables with different alignment need to be linked!");
704 
705  if (DstGV->getVisibility() != SrcGV->getVisibility())
706  return emitError(
707  "Appending variables with different visibility need to be linked!");
708 
709  if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
710  return emitError(
711  "Appending variables with different unnamed_addr need to be linked!");
712 
713  if (DstGV->getSection() != SrcGV->getSection())
714  return emitError(
715  "Appending variables with different section name need to be linked!");
716 
717  uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
718  ArrayType *NewType = ArrayType::get(EltTy, NewSize);
719 
720  // Create the new global variable.
721  GlobalVariable *NG =
722  new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
723  DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
724  DstGV->getThreadLocalMode(),
725  DstGV->getType()->getAddressSpace());
726 
727  // Propagate alignment, visibility and section info.
728  copyGVAttributes(NG, DstGV);
729 
730  AppendingVarInfo AVI;
731  AVI.NewGV = NG;
732  AVI.DstInit = DstGV->getInitializer();
733  AVI.SrcInit = SrcGV->getInitializer();
734  AppendingVars.push_back(AVI);
735 
736  // Replace any uses of the two global variables with uses of the new
737  // global.
738  ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
739 
741  DstGV->eraseFromParent();
742 
743  // Track the source variable so we don't try to link it.
744  DoNotLinkFromSource.insert(SrcGV);
745 
746  return false;
747 }
748 
749 /// linkGlobalProto - Loop through the global variables in the src module and
750 /// merge them into the dest module.
751 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
752  GlobalValue *DGV = getLinkedToGlobal(SGV);
754  bool HasUnnamedAddr = SGV->hasUnnamedAddr();
755 
756  if (DGV) {
757  // Concatenation of appending linkage variables is magic and handled later.
758  if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
759  return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
760 
761  // Determine whether linkage of these two globals follows the source
762  // module's definition or the destination module's definition.
765  bool LinkFromSrc = false;
766  if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
767  return true;
768  NewVisibility = NV;
769  HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
770 
771  // If we're not linking from the source, then keep the definition that we
772  // have.
773  if (!LinkFromSrc) {
774  // Special case for const propagation.
775  if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
776  if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
777  DGVar->setConstant(true);
778 
779  // Set calculated linkage, visibility and unnamed_addr.
780  DGV->setLinkage(NewLinkage);
781  DGV->setVisibility(*NewVisibility);
782  DGV->setUnnamedAddr(HasUnnamedAddr);
783 
784  // Make sure to remember this mapping.
785  ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
786 
787  // Track the source global so that we don't attempt to copy it over when
788  // processing global initializers.
789  DoNotLinkFromSource.insert(SGV);
790 
791  return false;
792  }
793  }
794 
795  // No linking to be performed or linking from the source: simply create an
796  // identical version of the symbol over in the dest module... the
797  // initializer will be filled in later by LinkGlobalInits.
798  GlobalVariable *NewDGV =
799  new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
800  SGV->isConstant(), SGV->getLinkage(), /*init*/0,
801  SGV->getName(), /*insertbefore*/0,
802  SGV->getThreadLocalMode(),
803  SGV->getType()->getAddressSpace());
804  // Propagate alignment, visibility and section info.
805  copyGVAttributes(NewDGV, SGV);
806  if (NewVisibility)
807  NewDGV->setVisibility(*NewVisibility);
808  NewDGV->setUnnamedAddr(HasUnnamedAddr);
809 
810  if (DGV) {
812  DGV->eraseFromParent();
813  }
814 
815  // Make sure to remember this mapping.
816  ValueMap[SGV] = NewDGV;
817  return false;
818 }
819 
820 /// linkFunctionProto - Link the function in the source module into the
821 /// destination module if needed, setting up mapping information.
822 bool ModuleLinker::linkFunctionProto(Function *SF) {
823  GlobalValue *DGV = getLinkedToGlobal(SF);
825  bool HasUnnamedAddr = SF->hasUnnamedAddr();
826 
827  if (DGV) {
829  bool LinkFromSrc = false;
831  if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
832  return true;
833  NewVisibility = NV;
834  HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
835 
836  if (!LinkFromSrc) {
837  // Set calculated linkage
838  DGV->setLinkage(NewLinkage);
839  DGV->setVisibility(*NewVisibility);
840  DGV->setUnnamedAddr(HasUnnamedAddr);
841 
842  // Make sure to remember this mapping.
843  ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
844 
845  // Track the function from the source module so we don't attempt to remap
846  // it.
847  DoNotLinkFromSource.insert(SF);
848 
849  return false;
850  }
851  }
852 
853  // If the function is to be lazily linked, don't create it just yet.
854  // The ValueMaterializerTy will deal with creating it if it's used.
855  if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
857  DoNotLinkFromSource.insert(SF);
858  return false;
859  }
860 
861  // If there is no linkage to be performed or we are linking from the source,
862  // bring SF over.
863  Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
864  SF->getLinkage(), SF->getName(), DstM);
865  copyGVAttributes(NewDF, SF);
866  if (NewVisibility)
867  NewDF->setVisibility(*NewVisibility);
868  NewDF->setUnnamedAddr(HasUnnamedAddr);
869 
870  if (DGV) {
871  // Any uses of DF need to change to NewDF, with cast.
873  DGV->eraseFromParent();
874  }
875 
876  ValueMap[SF] = NewDF;
877  return false;
878 }
879 
880 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
881 /// source module.
882 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
883  GlobalValue *DGV = getLinkedToGlobal(SGA);
885 
886  if (DGV) {
889  bool LinkFromSrc = false;
890  if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
891  return true;
892  NewVisibility = NV;
893 
894  if (!LinkFromSrc) {
895  // Set calculated linkage.
896  DGV->setLinkage(NewLinkage);
897  DGV->setVisibility(*NewVisibility);
898 
899  // Make sure to remember this mapping.
900  ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
901 
902  // Track the alias from the source module so we don't attempt to remap it.
903  DoNotLinkFromSource.insert(SGA);
904 
905  return false;
906  }
907  }
908 
909  // If there is no linkage to be performed or we're linking from the source,
910  // bring over SGA.
911  GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
912  SGA->getLinkage(), SGA->getName(),
913  /*aliasee*/0, DstM);
914  copyGVAttributes(NewDA, SGA);
915  if (NewVisibility)
916  NewDA->setVisibility(*NewVisibility);
917 
918  if (DGV) {
919  // Any uses of DGV need to change to NewDA, with cast.
921  DGV->eraseFromParent();
922  }
923 
924  ValueMap[SGA] = NewDA;
925  return false;
926 }
927 
929  unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
930 
931  for (unsigned i = 0; i != NumElements; ++i)
932  Dest.push_back(C->getAggregateElement(i));
933 }
934 
935 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
936  // Merge the initializer.
938  getArrayElements(AVI.DstInit, Elements);
939 
940  Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap, &ValMaterializer);
941  getArrayElements(SrcInit, Elements);
942 
943  ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
944  AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
945 }
946 
947 /// linkGlobalInits - Update the initializers in the Dest module now that all
948 /// globals that may be referenced are in Dest.
949 void ModuleLinker::linkGlobalInits() {
950  // Loop over all of the globals in the src module, mapping them over as we go
951  for (Module::const_global_iterator I = SrcM->global_begin(),
952  E = SrcM->global_end(); I != E; ++I) {
953 
954  // Only process initialized GV's or ones not already in dest.
955  if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
956 
957  // Grab destination global variable.
958  GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
959  // Figure out what the initializer looks like in the dest module.
960  DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
961  RF_None, &TypeMap, &ValMaterializer));
962  }
963 }
964 
965 /// linkFunctionBody - Copy the source function over into the dest function and
966 /// fix up references to values. At this point we know that Dest is an external
967 /// function, and that Src is not.
968 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
969  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
970 
971  // Go through and convert function arguments over, remembering the mapping.
972  Function::arg_iterator DI = Dst->arg_begin();
973  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
974  I != E; ++I, ++DI) {
975  DI->setName(I->getName()); // Copy the name over.
976 
977  // Add a mapping to our mapping.
978  ValueMap[I] = DI;
979  }
980 
981  if (Mode == Linker::DestroySource) {
982  // Splice the body of the source function into the dest function.
983  Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
984 
985  // At this point, all of the instructions and values of the function are now
986  // copied over. The only problem is that they are still referencing values in
987  // the Source function as operands. Loop through all of the operands of the
988  // functions and patch them up to point to the local versions.
989  for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
990  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
992  &TypeMap, &ValMaterializer);
993 
994  } else {
995  // Clone the body of the function into the dest function.
996  SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
997  CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL,
998  &TypeMap, &ValMaterializer);
999  }
1000 
1001  // There is no need to map the arguments anymore.
1002  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
1003  I != E; ++I)
1004  ValueMap.erase(I);
1005 
1006 }
1007 
1008 /// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
1009 void ModuleLinker::linkAliasBodies() {
1010  for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
1011  I != E; ++I) {
1012  if (DoNotLinkFromSource.count(I))
1013  continue;
1014  if (Constant *Aliasee = I->getAliasee()) {
1015  GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
1016  DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None,
1017  &TypeMap, &ValMaterializer));
1018  }
1019  }
1020 }
1021 
1022 /// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
1023 /// module.
1024 void ModuleLinker::linkNamedMDNodes() {
1025  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1026  for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1027  E = SrcM->named_metadata_end(); I != E; ++I) {
1028  // Don't link module flags here. Do them separately.
1029  if (&*I == SrcModFlags) continue;
1030  NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1031  // Add Src elements into Dest node.
1032  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1033  DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
1034  RF_None, &TypeMap, &ValMaterializer));
1035  }
1036 }
1037 
1038 /// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1039 /// module.
1040 bool ModuleLinker::linkModuleFlagsMetadata() {
1041  // If the source module has no module flags, we are done.
1042  const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1043  if (!SrcModFlags) return false;
1044 
1045  // If the destination module doesn't have module flags yet, then just copy
1046  // over the source module's flags.
1047  NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1048  if (DstModFlags->getNumOperands() == 0) {
1049  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1050  DstModFlags->addOperand(SrcModFlags->getOperand(I));
1051 
1052  return false;
1053  }
1054 
1055  // First build a map of the existing module flags and requirements.
1057  SmallSetVector<MDNode*, 16> Requirements;
1058  for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1059  MDNode *Op = DstModFlags->getOperand(I);
1060  ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1061  MDString *ID = cast<MDString>(Op->getOperand(1));
1062 
1063  if (Behavior->getZExtValue() == Module::Require) {
1064  Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1065  } else {
1066  Flags[ID] = Op;
1067  }
1068  }
1069 
1070  // Merge in the flags from the source module, and also collect its set of
1071  // requirements.
1072  bool HasErr = false;
1073  for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1074  MDNode *SrcOp = SrcModFlags->getOperand(I);
1075  ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
1076  MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1077  MDNode *DstOp = Flags.lookup(ID);
1078  unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1079 
1080  // If this is a requirement, add it and continue.
1081  if (SrcBehaviorValue == Module::Require) {
1082  // If the destination module does not already have this requirement, add
1083  // it.
1084  if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1085  DstModFlags->addOperand(SrcOp);
1086  }
1087  continue;
1088  }
1089 
1090  // If there is no existing flag with this ID, just add it.
1091  if (!DstOp) {
1092  Flags[ID] = SrcOp;
1093  DstModFlags->addOperand(SrcOp);
1094  continue;
1095  }
1096 
1097  // Otherwise, perform a merge.
1098  ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
1099  unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1100 
1101  // If either flag has override behavior, handle it first.
1102  if (DstBehaviorValue == Module::Override) {
1103  // Diagnose inconsistent flags which both have override behavior.
1104  if (SrcBehaviorValue == Module::Override &&
1105  SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1106  HasErr |= emitError("linking module flags '" + ID->getString() +
1107  "': IDs have conflicting override values");
1108  }
1109  continue;
1110  } else if (SrcBehaviorValue == Module::Override) {
1111  // Update the destination flag to that of the source.
1112  DstOp->replaceOperandWith(0, SrcBehavior);
1113  DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1114  continue;
1115  }
1116 
1117  // Diagnose inconsistent merge behavior types.
1118  if (SrcBehaviorValue != DstBehaviorValue) {
1119  HasErr |= emitError("linking module flags '" + ID->getString() +
1120  "': IDs have conflicting behaviors");
1121  continue;
1122  }
1123 
1124  // Perform the merge for standard behavior types.
1125  switch (SrcBehaviorValue) {
1126  case Module::Require:
1127  case Module::Override: assert(0 && "not possible"); break;
1128  case Module::Error: {
1129  // Emit an error if the values differ.
1130  if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1131  HasErr |= emitError("linking module flags '" + ID->getString() +
1132  "': IDs have conflicting values");
1133  }
1134  continue;
1135  }
1136  case Module::Warning: {
1137  // Emit a warning if the values differ.
1138  if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1139  errs() << "WARNING: linking module flags '" << ID->getString()
1140  << "': IDs have conflicting values";
1141  }
1142  continue;
1143  }
1144  case Module::Append: {
1145  MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1146  MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1147  unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
1148  Value **VP, **Values = VP = new Value*[NumOps];
1149  for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
1150  *VP = DstValue->getOperand(i);
1151  for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
1152  *VP = SrcValue->getOperand(i);
1153  DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1154  ArrayRef<Value*>(Values,
1155  NumOps)));
1156  delete[] Values;
1157  break;
1158  }
1159  case Module::AppendUnique: {
1161  MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1162  MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1163  for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1164  Elts.insert(DstValue->getOperand(i));
1165  for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1166  Elts.insert(SrcValue->getOperand(i));
1167  DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1168  ArrayRef<Value*>(Elts.begin(),
1169  Elts.end())));
1170  break;
1171  }
1172  }
1173  }
1174 
1175  // Check all of the requirements.
1176  for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1177  MDNode *Requirement = Requirements[I];
1178  MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1179  Value *ReqValue = Requirement->getOperand(1);
1180 
1181  MDNode *Op = Flags[Flag];
1182  if (!Op || Op->getOperand(2) != ReqValue) {
1183  HasErr |= emitError("linking module flags '" + Flag->getString() +
1184  "': does not have the required value");
1185  continue;
1186  }
1187  }
1188 
1189  return HasErr;
1190 }
1191 
1192 bool ModuleLinker::run() {
1193  assert(DstM && "Null destination module");
1194  assert(SrcM && "Null source module");
1195 
1196  // Inherit the target data from the source module if the destination module
1197  // doesn't have one already.
1198  if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1199  DstM->setDataLayout(SrcM->getDataLayout());
1200 
1201  // Copy the target triple from the source to dest if the dest's is empty.
1202  if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1203  DstM->setTargetTriple(SrcM->getTargetTriple());
1204 
1205  if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1206  SrcM->getDataLayout() != DstM->getDataLayout())
1207  errs() << "WARNING: Linking two modules of different data layouts!\n";
1208  if (!SrcM->getTargetTriple().empty() &&
1209  DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1210  errs() << "WARNING: Linking two modules of different target triples: ";
1211  if (!SrcM->getModuleIdentifier().empty())
1212  errs() << SrcM->getModuleIdentifier() << ": ";
1213  errs() << "'" << SrcM->getTargetTriple() << "' and '"
1214  << DstM->getTargetTriple() << "'\n";
1215  }
1216 
1217  // Append the module inline asm string.
1218  if (!SrcM->getModuleInlineAsm().empty()) {
1219  if (DstM->getModuleInlineAsm().empty())
1220  DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1221  else
1222  DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1223  SrcM->getModuleInlineAsm());
1224  }
1225 
1226  // Loop over all of the linked values to compute type mappings.
1227  computeTypeMapping();
1228 
1229  // Insert all of the globals in src into the DstM module... without linking
1230  // initializers (which could refer to functions not yet mapped over).
1231  for (Module::global_iterator I = SrcM->global_begin(),
1232  E = SrcM->global_end(); I != E; ++I)
1233  if (linkGlobalProto(I))
1234  return true;
1235 
1236  // Link the functions together between the two modules, without doing function
1237  // bodies... this just adds external function prototypes to the DstM
1238  // function... We do this so that when we begin processing function bodies,
1239  // all of the global values that may be referenced are available in our
1240  // ValueMap.
1241  for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1242  if (linkFunctionProto(I))
1243  return true;
1244 
1245  // If there were any aliases, link them now.
1246  for (Module::alias_iterator I = SrcM->alias_begin(),
1247  E = SrcM->alias_end(); I != E; ++I)
1248  if (linkAliasProto(I))
1249  return true;
1250 
1251  for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1252  linkAppendingVarInit(AppendingVars[i]);
1253 
1254  // Update the initializers in the DstM module now that all globals that may
1255  // be referenced are in DstM.
1256  linkGlobalInits();
1257 
1258  // Link in the function bodies that are defined in the source module into
1259  // DstM.
1260  for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1261  // Skip if not linking from source.
1262  if (DoNotLinkFromSource.count(SF)) continue;
1263 
1264  Function *DF = cast<Function>(ValueMap[SF]);
1265  if (SF->hasPrefixData()) {
1266  // Link in the prefix data.
1267  DF->setPrefixData(MapValue(
1268  SF->getPrefixData(), ValueMap, RF_None, &TypeMap, &ValMaterializer));
1269  }
1270 
1271  // Skip if no body (function is external) or materialize.
1272  if (SF->isDeclaration()) {
1273  if (!SF->isMaterializable())
1274  continue;
1275  if (SF->Materialize(&ErrorMsg))
1276  return true;
1277  }
1278 
1279  linkFunctionBody(DF, SF);
1280  SF->Dematerialize();
1281  }
1282 
1283  // Resolve all uses of aliases with aliasees.
1284  linkAliasBodies();
1285 
1286  // Remap all of the named MDNodes in Src into the DstM module. We do this
1287  // after linking GlobalValues so that MDNodes that reference GlobalValues
1288  // are properly remapped.
1289  linkNamedMDNodes();
1290 
1291  // Merge the module flags into the DstM module.
1292  if (linkModuleFlagsMetadata())
1293  return true;
1294 
1295  // Process vector of lazily linked in functions.
1296  bool LinkedInAnyFunctions;
1297  do {
1298  LinkedInAnyFunctions = false;
1299 
1300  for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1301  E = LazilyLinkFunctions.end(); I != E; ++I) {
1302  Function *SF = *I;
1303  if (!SF)
1304  continue;
1305 
1306  Function *DF = cast<Function>(ValueMap[SF]);
1307  if (SF->hasPrefixData()) {
1308  // Link in the prefix data.
1310  ValueMap,
1311  RF_None,
1312  &TypeMap,
1313  &ValMaterializer));
1314  }
1315 
1316  // Materialize if necessary.
1317  if (SF->isDeclaration()) {
1318  if (!SF->isMaterializable())
1319  continue;
1320  if (SF->Materialize(&ErrorMsg))
1321  return true;
1322  }
1323 
1324  // Erase from vector *before* the function body is linked - linkFunctionBody could
1325  // invalidate I.
1326  LazilyLinkFunctions.erase(I);
1327 
1328  // Link in function body.
1329  linkFunctionBody(DF, SF);
1330  SF->Dematerialize();
1331 
1332  // Set flag to indicate we may have more functions to lazily link in
1333  // since we linked in a function.
1334  LinkedInAnyFunctions = true;
1335  break;
1336  }
1337  } while (LinkedInAnyFunctions);
1338 
1339  // Now that all of the types from the source are used, resolve any structs
1340  // copied over to the dest that didn't exist there.
1341  TypeMap.linkDefinedTypeBodies();
1342 
1343  return false;
1344 }
1345 
1346 Linker::Linker(Module *M) : Composite(M) {
1347  TypeFinder StructTypes;
1348  StructTypes.run(*M, true);
1349  IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
1350 }
1351 
1353 }
1354 
1356  delete Composite;
1357  Composite = NULL;
1358 }
1359 
1360 bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
1361  ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode);
1362  if (TheLinker.run()) {
1363  if (ErrorMsg)
1364  *ErrorMsg = TheLinker.ErrorMsg;
1365  return true;
1366  }
1367  return false;
1368 }
1369 
1370 //===----------------------------------------------------------------------===//
1371 // LinkModules entrypoint.
1372 //===----------------------------------------------------------------------===//
1373 
1374 /// LinkModules - This function links two modules together, with the resulting
1375 /// Dest module modified to be the composite of the two input modules. If an
1376 /// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1377 /// the problem. Upon failure, the Dest module could be in a modified state,
1378 /// and shouldn't be relied on to be consistent.
1379 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1380  std::string *ErrorMsg) {
1381  Linker L(Dest);
1382  return L.linkInModule(Src, Mode, ErrorMsg);
1383 }
1384 
1385 //===----------------------------------------------------------------------===//
1386 // C API.
1387 //===----------------------------------------------------------------------===//
1388 
1390  LLVMLinkerMode Mode, char **OutMessages) {
1391  std::string Messages;
1392  LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
1393  Mode, OutMessages? &Messages : 0);
1394  if (OutMessages)
1395  *OutMessages = strdup(Messages.c_str());
1396  return Result;
1397 }
void setVisibility(VisibilityTypes V)
Definition: GlobalValue.h:93
LinkageTypes getLinkage() const
Definition: GlobalValue.h:218
StringRef getString() const
Definition: Metadata.h:46
raw_ostream & errs()
VisibilityTypes getVisibility() const
Definition: GlobalValue.h:87
virtual void copyAttributesFrom(const GlobalValue *Src)
Definition: Globals.cpp:51
ThreadLocalMode getThreadLocalMode() const
bool hasName() const
Definition: Value.h:117
size_t size() const
size - Get the string size.
Definition: StringRef.h:113
bool isOpaque() const
Definition: DerivedTypes.h:249
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
void deleteModule()
unsigned getAlignment() const
Definition: GlobalValue.h:79
iterator end()
Definition: Function.h:397
int LLVMBool
Definition: Core.h:65
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
getNumOperands - Return number of MDNode operands.
Definition: Metadata.h:142
void addOperand(MDNode *M)
addOperand - Add metadata operand.
Definition: Metadata.cpp:551
bool hasAppendingLinkage() const
Definition: GlobalValue.h:204
static PointerType * get(Type *ElementType, unsigned AddressSpace)
Definition: Type.cpp:730
size_t rfind(char C, size_t From=npos) const
Definition: StringRef.h:250
StringRef substr(size_t Start, size_t N=npos) const
Definition: StringRef.h:392
Externally visible function.
Definition: GlobalValue.h:34
iterator insert(iterator I, const T &Elt)
Definition: SmallVector.h:537
bool hasAvailableExternallyLinkage() const
Definition: GlobalValue.h:195
int isdigit(int c);
arg_iterator arg_end()
Definition: Function.h:418
12: Structures
Definition: Type.h:70
MDNode - a tuple of other values.
Definition: Metadata.h:69
unsigned getAddressSpace() const
Return the address space of the Pointer type.
Definition: DerivedTypes.h:445
LLVMContext ** unwrap(LLVMContextRef *Tys)
Definition: LLVMContext.h:119
static bool isLessConstraining(GlobalValue::VisibilityTypes a, GlobalValue::VisibilityTypes b)
14: Pointers
Definition: Type.h:72
const Constant * getInitializer() const
void Dematerialize()
Definition: Globals.cpp:39
11: Functions
Definition: Type.h:69
iterator end()
Get an iterator to the end of the SetVector.
Definition: SetVector.h:79
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=0, ValueMaterializer *Materializer=0)
size_type size() const
Determine the number of elements in the SetVector.
Definition: SetVector.h:64
Linker(Module *M)
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc, ValueToValueMapTy &VMap, bool ModuleLevelChanges, SmallVectorImpl< ReturnInst * > &Returns, const char *NameSuffix="", ClonedCodeInfo *CodeInfo=0, ValueMapTypeRemapper *TypeMapper=0, ValueMaterializer *Materializer=0)
Value * MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=0, ValueMaterializer *Materializer=0)
Definition: ValueMapper.cpp:27
static MDNode * get(LLVMContext &Context, ArrayRef< Value * > Vals)
Definition: Metadata.cpp:268
StringRef getName() const
Definition: Value.cpp:167
Value * getOperand(unsigned i) const LLVM_READONLY
getOperand - Return specified operand.
Definition: Metadata.cpp:307
Appends the two values, which are required to be metadata nodes.
Definition: Module.h:176
bool isPacked() const
Definition: DerivedTypes.h:241
std::string str() const
str - Return the twine contents as a std::string.
Definition: Twine.cpp:16
bool hasCommonLinkage() const
Definition: GlobalValue.h:215
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:261
void setInitializer(Constant *InitVal)
Definition: Globals.cpp:166
#define llvm_unreachable(msg)
bool isLiteral() const
Definition: DerivedTypes.h:245
void setName(const Twine &Name)
Definition: Value.cpp:175
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV)
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:102
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
#define T
VisibilityTypes
An enumeration for the kinds of visibility of global values.
Definition: GlobalValue.h:52
bool isMaterializable() const
Definition: Globals.cpp:30
iterator begin()
Get an iterator to the beginning of the SetVector.
Definition: SetVector.h:69
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
Definition: Type.cpp:361
TypeID getTypeID() const
Definition: Type.h:137
static void forceRenaming(GlobalValue *GV, StringRef Name)
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
void takeName(Value *V)
Definition: Value.cpp:239
iterator begin()
Definition: Function.h:395
Type * getElementType() const
Definition: DerivedTypes.h:319
static bool LinkModules(Module *Dest, Module *Src, unsigned Mode, std::string *ErrorMsg)
iterator begin() const
Definition: StringRef.h:97
static bool isWeakForLinker(LinkageTypes Linkage)
Definition: GlobalValue.h:183
static void getArrayElements(Constant *C, SmallVectorImpl< Constant * > &Dest)
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
Type * getContainedType(unsigned i) const
Definition: Type.h:339
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:287
LLVM Constant Representation.
Definition: Constant.h:41
LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src, LLVMLinkerMode Mode, char **OutMessages)
bool hasDLLExportLinkage() const
Definition: GlobalValue.h:213
char back() const
back - Get the last character in the string.
Definition: StringRef.h:122
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:745
LLVMLinkerMode
Definition: c/Linker.h:24
virtual void eraseFromParent()
Definition: Globals.cpp:142
uint64_t getNumElements() const
Definition: DerivedTypes.h:348
MDNode * getOperand(unsigned i) const
getOperand - Return specified operand.
Definition: Metadata.cpp:545
arg_iterator arg_begin()
Definition: Function.h:410
Constant * getAggregateElement(unsigned Elt) const
Definition: Constants.cpp:183
unsigned getNumContainedTypes() const
Definition: Type.h:346
const std::string & getSection() const
Definition: GlobalValue.h:96
bool hasWeakLinkage() const
Definition: GlobalValue.h:201
void setBody(ArrayRef< Type * > Elements, bool isPacked=false)
setBody - Specify a body for an opaque identified type.
Definition: Type.cpp:426
char *strdup(const char *s1);
13: Arrays
Definition: Type.h:71
bool hasExternalWeakLinkage() const
Definition: GlobalValue.h:214
bool hasExternalLinkage() const
Definition: GlobalValue.h:194
static Constant * getBitCast(Constant *C, Type *Ty)
Definition: Constants.cpp:1661
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:218
const BasicBlockListType & getBasicBlockList() const
Definition: Function.h:374
See the file comment.
Definition: ValueMap.h:75
Class for constant integers.
Definition: Constants.h:51
15: SIMD 'packed' format, or other vector type
Definition: Type.h:73
void run(const Module &M, bool onlyNamed)
Definition: TypeFinder.cpp:23
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
Definition: Type.cpp:405
void setAlignment(unsigned Align)
Definition: Globals.cpp:58
bool linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg)
Link Src into the composite. The source is destroyed if Mode is DestroySource and preserved if it is ...
bool hasName() const
hasName - Return true if this is a named struct that has a non-empty name.
Definition: DerivedTypes.h:255
Type * getType() const
Definition: Value.h:111
void setUnnamedAddr(bool Val)
Definition: GlobalValue.h:85
void setAliasee(Constant *GV)
set/getAliasee - These methods retrive and set alias target.
Definition: Globals.cpp:225
iterator end()
Definition: TypeFinder.h:49
void setLinkage(LinkageTypes LT)
Definition: GlobalValue.h:217
void splice(iterator where, iplist &L2)
Definition: ilist.h:570
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
StringRef str() const
Explicit conversion to StringRef.
Definition: SmallString.h:270
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition: GlobalValue.h:33
bool isConstant() const
StringRef getName() const
Definition: Type.cpp:580
bool hasLinkOnceLinkage() const
Definition: GlobalValue.h:198
void setName(StringRef Name)
Definition: Type.cpp:441
PointerType * getType() const
getType - Global values are always pointers.
Definition: GlobalValue.h:107
static const size_t npos
Definition: StringRef.h:45
bool isDeclaration() const
Definition: Globals.cpp:66
#define I(x, y, z)
Definition: MD5.cpp:54
FunctionType * getFunctionType() const
Definition: Function.cpp:171
void resize(unsigned N)
Definition: SmallVector.h:401
static ArrayType * get(Type *ElementType, uint64_t NumElements)
Definition: Type.cpp:679
bool hasPrefixData() const
Definition: Function.h:430
Rename collisions when linking (static functions).
Definition: GlobalValue.h:41
Constant * getPrefixData() const
Definition: Function.cpp:741
bool hasLocalLinkage() const
Definition: GlobalValue.h:211
struct LLVMOpaqueModule * LLVMModuleRef
Definition: Core.h:80
size_t size() const
Definition: TypeFinder.h:55
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
bool hasUnnamedAddr() const
Definition: GlobalValue.h:84
static VectorType * get(Type *ElementType, unsigned NumElements)
Definition: Type.cpp:706
static StructType * create(LLVMContext &Context, StringRef Name)
StructType::create - This creates an identified struct.
Definition: Type.cpp:494
virtual void eraseFromParent()=0
iterator begin()
Definition: TypeFinder.h:48
bool hasDLLImportLinkage() const
Definition: GlobalValue.h:212
iterator end() const
Definition: StringRef.h:99
unsigned getNumOperands() const
getNumOperands - Return the number of NamedMDNode operands.
Definition: Metadata.cpp:540
bool Materialize(std::string *ErrInfo=0)
Definition: Globals.cpp:36
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:286
GlobalValue * getNamedValue(StringRef Name) const
Definition: Module.cpp:111
bool erase(const KeyT &Val)
Definition: ValueMap.h:147
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, const Twine &N="", Module *M=0)
Definition: Function.h:128
void setPrefixData(Constant *PrefixData)
Definition: Function.cpp:749