LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Lint.cpp
Go to the documentation of this file.
1 //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass statically checks for common and easily-identified constructs
11 // which produce undefined or likely unintended behavior in LLVM IR.
12 //
13 // It is not a guarantee of correctness, in two ways. First, it isn't
14 // comprehensive. There are checks which could be done statically which are
15 // not yet implemented. Some of these are indicated by TODO comments, but
16 // those aren't comprehensive either. Second, many conditions cannot be
17 // checked statically. This pass does no dynamic instrumentation, so it
18 // can't check for all possible problems.
19 //
20 // Another limitation is that it assumes all code will be executed. A store
21 // through a null pointer in a basic block which is never reached is harmless,
22 // but this pass will warn about it anyway. This is the main reason why most
23 // of these checks live here instead of in the Verifier pass.
24 //
25 // Optimization passes may make conditions that this pass checks for more or
26 // less obvious. If an optimization pass appears to be introducing a warning,
27 // it may be that the optimization pass is merely exposing an existing
28 // condition in the code.
29 //
30 // This code may be run before instcombine. In many cases, instcombine checks
31 // for the same kinds of things and turns instructions with undefined behavior
32 // into unreachable (or equivalent). Because of this, this pass makes some
33 // effort to look through bitcasts and so on.
34 //
35 //===----------------------------------------------------------------------===//
36 
37 #include "llvm/Analysis/Lint.h"
38 #include "llvm/ADT/STLExtras.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/Passes.h"
46 #include "llvm/Assembly/Writer.h"
47 #include "llvm/IR/DataLayout.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/InstVisitor.h"
51 #include "llvm/Pass.h"
52 #include "llvm/PassManager.h"
53 #include "llvm/Support/CallSite.h"
54 #include "llvm/Support/Debug.h"
57 using namespace llvm;
58 
59 namespace {
60  namespace MemRef {
61  static unsigned Read = 1;
62  static unsigned Write = 2;
63  static unsigned Callee = 4;
64  static unsigned Branchee = 8;
65  }
66 
67  class Lint : public FunctionPass, public InstVisitor<Lint> {
68  friend class InstVisitor<Lint>;
69 
70  void visitFunction(Function &F);
71 
72  void visitCallSite(CallSite CS);
73  void visitMemoryReference(Instruction &I, Value *Ptr,
74  uint64_t Size, unsigned Align,
75  Type *Ty, unsigned Flags);
76 
77  void visitCallInst(CallInst &I);
78  void visitInvokeInst(InvokeInst &I);
79  void visitReturnInst(ReturnInst &I);
80  void visitLoadInst(LoadInst &I);
81  void visitStoreInst(StoreInst &I);
82  void visitXor(BinaryOperator &I);
83  void visitSub(BinaryOperator &I);
84  void visitLShr(BinaryOperator &I);
85  void visitAShr(BinaryOperator &I);
86  void visitShl(BinaryOperator &I);
87  void visitSDiv(BinaryOperator &I);
88  void visitUDiv(BinaryOperator &I);
89  void visitSRem(BinaryOperator &I);
90  void visitURem(BinaryOperator &I);
91  void visitAllocaInst(AllocaInst &I);
92  void visitVAArgInst(VAArgInst &I);
93  void visitIndirectBrInst(IndirectBrInst &I);
94  void visitExtractElementInst(ExtractElementInst &I);
95  void visitInsertElementInst(InsertElementInst &I);
96  void visitUnreachableInst(UnreachableInst &I);
97 
98  Value *findValue(Value *V, bool OffsetOk) const;
99  Value *findValueImpl(Value *V, bool OffsetOk,
100  SmallPtrSet<Value *, 4> &Visited) const;
101 
102  public:
103  Module *Mod;
104  AliasAnalysis *AA;
105  DominatorTree *DT;
106  DataLayout *TD;
107  TargetLibraryInfo *TLI;
108 
109  std::string Messages;
110  raw_string_ostream MessagesStr;
111 
112  static char ID; // Pass identification, replacement for typeid
113  Lint() : FunctionPass(ID), MessagesStr(Messages) {
115  }
116 
117  virtual bool runOnFunction(Function &F);
118 
119  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
120  AU.setPreservesAll();
124  }
125  virtual void print(raw_ostream &O, const Module *M) const {}
126 
127  void WriteValue(const Value *V) {
128  if (!V) return;
129  if (isa<Instruction>(V)) {
130  MessagesStr << *V << '\n';
131  } else {
132  WriteAsOperand(MessagesStr, V, true, Mod);
133  MessagesStr << '\n';
134  }
135  }
136 
137  // CheckFailed - A check failed, so print out the condition and the message
138  // that failed. This provides a nice place to put a breakpoint if you want
139  // to see why something is not correct.
140  void CheckFailed(const Twine &Message,
141  const Value *V1 = 0, const Value *V2 = 0,
142  const Value *V3 = 0, const Value *V4 = 0) {
143  MessagesStr << Message.str() << "\n";
144  WriteValue(V1);
145  WriteValue(V2);
146  WriteValue(V3);
147  WriteValue(V4);
148  }
149  };
150 }
151 
152 char Lint::ID = 0;
153 INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR",
154  false, true)
158 INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR",
159  false, true)
160 
161 // Assert - We know that cond should be true, if not print an error message.
162 #define Assert(C, M) \
163  do { if (!(C)) { CheckFailed(M); return; } } while (0)
164 #define Assert1(C, M, V1) \
165  do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
166 #define Assert2(C, M, V1, V2) \
167  do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
168 #define Assert3(C, M, V1, V2, V3) \
169  do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
170 #define Assert4(C, M, V1, V2, V3, V4) \
171  do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
172 
173 // Lint::run - This is the main Analysis entry point for a
174 // function.
175 //
176 bool Lint::runOnFunction(Function &F) {
177  Mod = F.getParent();
178  AA = &getAnalysis<AliasAnalysis>();
179  DT = &getAnalysis<DominatorTree>();
180  TD = getAnalysisIfAvailable<DataLayout>();
181  TLI = &getAnalysis<TargetLibraryInfo>();
182  visit(F);
183  dbgs() << MessagesStr.str();
184  Messages.clear();
185  return false;
186 }
187 
188 void Lint::visitFunction(Function &F) {
189  // This isn't undefined behavior, it's just a little unusual, and it's a
190  // fairly common mistake to neglect to name a function.
191  Assert1(F.hasName() || F.hasLocalLinkage(),
192  "Unusual: Unnamed function with non-local linkage", &F);
193 
194  // TODO: Check for irreducible control flow.
195 }
196 
197 void Lint::visitCallSite(CallSite CS) {
198  Instruction &I = *CS.getInstruction();
199  Value *Callee = CS.getCalledValue();
200 
201  visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize,
202  0, 0, MemRef::Callee);
203 
204  if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) {
206  "Undefined behavior: Caller and callee calling convention differ",
207  &I);
208 
209  FunctionType *FT = F->getFunctionType();
210  unsigned NumActualArgs = CS.arg_size();
211 
212  Assert1(FT->isVarArg() ?
213  FT->getNumParams() <= NumActualArgs :
214  FT->getNumParams() == NumActualArgs,
215  "Undefined behavior: Call argument count mismatches callee "
216  "argument count", &I);
217 
218  Assert1(FT->getReturnType() == I.getType(),
219  "Undefined behavior: Call return type mismatches "
220  "callee return type", &I);
221 
222  // Check argument types (in case the callee was casted) and attributes.
223  // TODO: Verify that caller and callee attributes are compatible.
224  Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
225  CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
226  for (; AI != AE; ++AI) {
227  Value *Actual = *AI;
228  if (PI != PE) {
229  Argument *Formal = PI++;
230  Assert1(Formal->getType() == Actual->getType(),
231  "Undefined behavior: Call argument type mismatches "
232  "callee parameter type", &I);
233 
234  // Check that noalias arguments don't alias other arguments. This is
235  // not fully precise because we don't know the sizes of the dereferenced
236  // memory regions.
237  if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy())
238  for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI)
239  if (AI != BI && (*BI)->getType()->isPointerTy()) {
240  AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI);
241  Assert1(Result != AliasAnalysis::MustAlias &&
242  Result != AliasAnalysis::PartialAlias,
243  "Unusual: noalias argument aliases another argument", &I);
244  }
245 
246  // Check that an sret argument points to valid memory.
247  if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
248  Type *Ty =
249  cast<PointerType>(Formal->getType())->getElementType();
250  visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty),
251  TD ? TD->getABITypeAlignment(Ty) : 0,
252  Ty, MemRef::Read | MemRef::Write);
253  }
254  }
255  }
256  }
257 
258  if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall())
259  for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
260  AI != AE; ++AI) {
261  Value *Obj = findValue(*AI, /*OffsetOk=*/true);
262  Assert1(!isa<AllocaInst>(Obj),
263  "Undefined behavior: Call with \"tail\" keyword references "
264  "alloca", &I);
265  }
266 
267 
268  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
269  switch (II->getIntrinsicID()) {
270  default: break;
271 
272  // TODO: Check more intrinsics
273 
274  case Intrinsic::memcpy: {
275  MemCpyInst *MCI = cast<MemCpyInst>(&I);
276  // TODO: If the size is known, use it.
277  visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize,
278  MCI->getAlignment(), 0,
279  MemRef::Write);
280  visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize,
281  MCI->getAlignment(), 0,
282  MemRef::Read);
283 
284  // Check that the memcpy arguments don't overlap. The AliasAnalysis API
285  // isn't expressive enough for what we really want to do. Known partial
286  // overlap is not distinguished from the case where nothing is known.
287  uint64_t Size = 0;
288  if (const ConstantInt *Len =
289  dyn_cast<ConstantInt>(findValue(MCI->getLength(),
290  /*OffsetOk=*/false)))
291  if (Len->getValue().isIntN(32))
292  Size = Len->getValue().getZExtValue();
293  Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
295  "Undefined behavior: memcpy source and destination overlap", &I);
296  break;
297  }
298  case Intrinsic::memmove: {
299  MemMoveInst *MMI = cast<MemMoveInst>(&I);
300  // TODO: If the size is known, use it.
301  visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize,
302  MMI->getAlignment(), 0,
303  MemRef::Write);
304  visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize,
305  MMI->getAlignment(), 0,
306  MemRef::Read);
307  break;
308  }
309  case Intrinsic::memset: {
310  MemSetInst *MSI = cast<MemSetInst>(&I);
311  // TODO: If the size is known, use it.
312  visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize,
313  MSI->getAlignment(), 0,
314  MemRef::Write);
315  break;
316  }
317 
318  case Intrinsic::vastart:
320  "Undefined behavior: va_start called in a non-varargs function",
321  &I);
322 
323  visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
324  0, 0, MemRef::Read | MemRef::Write);
325  break;
326  case Intrinsic::vacopy:
327  visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
328  0, 0, MemRef::Write);
329  visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize,
330  0, 0, MemRef::Read);
331  break;
332  case Intrinsic::vaend:
333  visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
334  0, 0, MemRef::Read | MemRef::Write);
335  break;
336 
338  // Stackrestore doesn't read or write memory, but it sets the
339  // stack pointer, which the compiler may read from or write to
340  // at any time, so check it for both readability and writeability.
341  visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize,
342  0, 0, MemRef::Read | MemRef::Write);
343  break;
344  }
345 }
346 
347 void Lint::visitCallInst(CallInst &I) {
348  return visitCallSite(&I);
349 }
350 
351 void Lint::visitInvokeInst(InvokeInst &I) {
352  return visitCallSite(&I);
353 }
354 
355 void Lint::visitReturnInst(ReturnInst &I) {
356  Function *F = I.getParent()->getParent();
357  Assert1(!F->doesNotReturn(),
358  "Unusual: Return statement in function with noreturn attribute",
359  &I);
360 
361  if (Value *V = I.getReturnValue()) {
362  Value *Obj = findValue(V, /*OffsetOk=*/true);
363  Assert1(!isa<AllocaInst>(Obj),
364  "Unusual: Returning alloca value", &I);
365  }
366 }
367 
368 // TODO: Check that the reference is in bounds.
369 // TODO: Check readnone/readonly function attributes.
370 void Lint::visitMemoryReference(Instruction &I,
371  Value *Ptr, uint64_t Size, unsigned Align,
372  Type *Ty, unsigned Flags) {
373  // If no memory is being referenced, it doesn't matter if the pointer
374  // is valid.
375  if (Size == 0)
376  return;
377 
378  Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
379  Assert1(!isa<ConstantPointerNull>(UnderlyingObject),
380  "Undefined behavior: Null pointer dereference", &I);
381  Assert1(!isa<UndefValue>(UnderlyingObject),
382  "Undefined behavior: Undef pointer dereference", &I);
383  Assert1(!isa<ConstantInt>(UnderlyingObject) ||
384  !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(),
385  "Unusual: All-ones pointer dereference", &I);
386  Assert1(!isa<ConstantInt>(UnderlyingObject) ||
387  !cast<ConstantInt>(UnderlyingObject)->isOne(),
388  "Unusual: Address one pointer dereference", &I);
389 
390  if (Flags & MemRef::Write) {
391  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
392  Assert1(!GV->isConstant(),
393  "Undefined behavior: Write to read-only memory", &I);
394  Assert1(!isa<Function>(UnderlyingObject) &&
395  !isa<BlockAddress>(UnderlyingObject),
396  "Undefined behavior: Write to text section", &I);
397  }
398  if (Flags & MemRef::Read) {
399  Assert1(!isa<Function>(UnderlyingObject),
400  "Unusual: Load from function body", &I);
401  Assert1(!isa<BlockAddress>(UnderlyingObject),
402  "Undefined behavior: Load from block address", &I);
403  }
404  if (Flags & MemRef::Callee) {
405  Assert1(!isa<BlockAddress>(UnderlyingObject),
406  "Undefined behavior: Call to block address", &I);
407  }
408  if (Flags & MemRef::Branchee) {
409  Assert1(!isa<Constant>(UnderlyingObject) ||
410  isa<BlockAddress>(UnderlyingObject),
411  "Undefined behavior: Branch to non-blockaddress", &I);
412  }
413 
414  // Check for buffer overflows and misalignment.
415  // Only handles memory references that read/write something simple like an
416  // alloca instruction or a global variable.
417  int64_t Offset = 0;
418  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, TD)) {
419  // OK, so the access is to a constant offset from Ptr. Check that Ptr is
420  // something we can handle and if so extract the size of this base object
421  // along with its alignment.
422  uint64_t BaseSize = AliasAnalysis::UnknownSize;
423  unsigned BaseAlign = 0;
424 
425  if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
426  Type *ATy = AI->getAllocatedType();
427  if (TD && !AI->isArrayAllocation() && ATy->isSized())
428  BaseSize = TD->getTypeAllocSize(ATy);
429  BaseAlign = AI->getAlignment();
430  if (TD && BaseAlign == 0 && ATy->isSized())
431  BaseAlign = TD->getABITypeAlignment(ATy);
432  } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
433  // If the global may be defined differently in another compilation unit
434  // then don't warn about funky memory accesses.
435  if (GV->hasDefinitiveInitializer()) {
436  Type *GTy = GV->getType()->getElementType();
437  if (TD && GTy->isSized())
438  BaseSize = TD->getTypeAllocSize(GTy);
439  BaseAlign = GV->getAlignment();
440  if (TD && BaseAlign == 0 && GTy->isSized())
441  BaseAlign = TD->getABITypeAlignment(GTy);
442  }
443  }
444 
445  // Accesses from before the start or after the end of the object are not
446  // defined.
448  BaseSize == AliasAnalysis::UnknownSize ||
449  (Offset >= 0 && Offset + Size <= BaseSize),
450  "Undefined behavior: Buffer overflow", &I);
451 
452  // Accesses that say that the memory is more aligned than it is are not
453  // defined.
454  if (TD && Align == 0 && Ty && Ty->isSized())
455  Align = TD->getABITypeAlignment(Ty);
456  Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset),
457  "Undefined behavior: Memory reference address is misaligned", &I);
458  }
459 }
460 
461 void Lint::visitLoadInst(LoadInst &I) {
462  visitMemoryReference(I, I.getPointerOperand(),
463  AA->getTypeStoreSize(I.getType()), I.getAlignment(),
464  I.getType(), MemRef::Read);
465 }
466 
467 void Lint::visitStoreInst(StoreInst &I) {
468  visitMemoryReference(I, I.getPointerOperand(),
469  AA->getTypeStoreSize(I.getOperand(0)->getType()),
470  I.getAlignment(),
471  I.getOperand(0)->getType(), MemRef::Write);
472 }
473 
474 void Lint::visitXor(BinaryOperator &I) {
475  Assert1(!isa<UndefValue>(I.getOperand(0)) ||
476  !isa<UndefValue>(I.getOperand(1)),
477  "Undefined result: xor(undef, undef)", &I);
478 }
479 
480 void Lint::visitSub(BinaryOperator &I) {
481  Assert1(!isa<UndefValue>(I.getOperand(0)) ||
482  !isa<UndefValue>(I.getOperand(1)),
483  "Undefined result: sub(undef, undef)", &I);
484 }
485 
486 void Lint::visitLShr(BinaryOperator &I) {
487  if (ConstantInt *CI =
488  dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
489  Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
490  "Undefined result: Shift count out of range", &I);
491 }
492 
493 void Lint::visitAShr(BinaryOperator &I) {
494  if (ConstantInt *CI =
495  dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
496  Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
497  "Undefined result: Shift count out of range", &I);
498 }
499 
500 void Lint::visitShl(BinaryOperator &I) {
501  if (ConstantInt *CI =
502  dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
503  Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
504  "Undefined result: Shift count out of range", &I);
505 }
506 
507 static bool isZero(Value *V, DataLayout *DL) {
508  // Assume undef could be zero.
509  if (isa<UndefValue>(V))
510  return true;
511 
512  VectorType *VecTy = dyn_cast<VectorType>(V->getType());
513  if (!VecTy) {
514  unsigned BitWidth = V->getType()->getIntegerBitWidth();
515  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
516  ComputeMaskedBits(V, KnownZero, KnownOne, DL);
517  return KnownZero.isAllOnesValue();
518  }
519 
520  // Per-component check doesn't work with zeroinitializer
521  Constant *C = dyn_cast<Constant>(V);
522  if (!C)
523  return false;
524 
525  if (C->isZeroValue())
526  return true;
527 
528  // For a vector, KnownZero will only be true if all values are zero, so check
529  // this per component
530  unsigned BitWidth = VecTy->getElementType()->getIntegerBitWidth();
531  for (unsigned I = 0, N = VecTy->getNumElements(); I != N; ++I) {
532  Constant *Elem = C->getAggregateElement(I);
533  if (isa<UndefValue>(Elem))
534  return true;
535 
536  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
537  ComputeMaskedBits(Elem, KnownZero, KnownOne, DL);
538  if (KnownZero.isAllOnesValue())
539  return true;
540  }
541 
542  return false;
543 }
544 
545 void Lint::visitSDiv(BinaryOperator &I) {
546  Assert1(!isZero(I.getOperand(1), TD),
547  "Undefined behavior: Division by zero", &I);
548 }
549 
550 void Lint::visitUDiv(BinaryOperator &I) {
551  Assert1(!isZero(I.getOperand(1), TD),
552  "Undefined behavior: Division by zero", &I);
553 }
554 
555 void Lint::visitSRem(BinaryOperator &I) {
556  Assert1(!isZero(I.getOperand(1), TD),
557  "Undefined behavior: Division by zero", &I);
558 }
559 
560 void Lint::visitURem(BinaryOperator &I) {
561  Assert1(!isZero(I.getOperand(1), TD),
562  "Undefined behavior: Division by zero", &I);
563 }
564 
565 void Lint::visitAllocaInst(AllocaInst &I) {
566  if (isa<ConstantInt>(I.getArraySize()))
567  // This isn't undefined behavior, it's just an obvious pessimization.
569  "Pessimization: Static alloca outside of entry block", &I);
570 
571  // TODO: Check for an unusual size (MSB set?)
572 }
573 
574 void Lint::visitVAArgInst(VAArgInst &I) {
575  visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0,
576  MemRef::Read | MemRef::Write);
577 }
578 
579 void Lint::visitIndirectBrInst(IndirectBrInst &I) {
580  visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0,
581  MemRef::Branchee);
582 
583  Assert1(I.getNumDestinations() != 0,
584  "Undefined behavior: indirectbr with no destinations", &I);
585 }
586 
587 void Lint::visitExtractElementInst(ExtractElementInst &I) {
588  if (ConstantInt *CI =
589  dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
590  /*OffsetOk=*/false)))
591  Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()),
592  "Undefined result: extractelement index out of range", &I);
593 }
594 
595 void Lint::visitInsertElementInst(InsertElementInst &I) {
596  if (ConstantInt *CI =
597  dyn_cast<ConstantInt>(findValue(I.getOperand(2),
598  /*OffsetOk=*/false)))
599  Assert1(CI->getValue().ult(I.getType()->getNumElements()),
600  "Undefined result: insertelement index out of range", &I);
601 }
602 
603 void Lint::visitUnreachableInst(UnreachableInst &I) {
604  // This isn't undefined behavior, it's merely suspicious.
605  Assert1(&I == I.getParent()->begin() ||
606  prior(BasicBlock::iterator(&I))->mayHaveSideEffects(),
607  "Unusual: unreachable immediately preceded by instruction without "
608  "side effects", &I);
609 }
610 
611 /// findValue - Look through bitcasts and simple memory reference patterns
612 /// to identify an equivalent, but more informative, value. If OffsetOk
613 /// is true, look through getelementptrs with non-zero offsets too.
614 ///
615 /// Most analysis passes don't require this logic, because instcombine
616 /// will simplify most of these kinds of things away. But it's a goal of
617 /// this Lint pass to be useful even on non-optimized IR.
618 Value *Lint::findValue(Value *V, bool OffsetOk) const {
619  SmallPtrSet<Value *, 4> Visited;
620  return findValueImpl(V, OffsetOk, Visited);
621 }
622 
623 /// findValueImpl - Implementation helper for findValue.
624 Value *Lint::findValueImpl(Value *V, bool OffsetOk,
625  SmallPtrSet<Value *, 4> &Visited) const {
626  // Detect self-referential values.
627  if (!Visited.insert(V))
628  return UndefValue::get(V->getType());
629 
630  // TODO: Look through sext or zext cast, when the result is known to
631  // be interpreted as signed or unsigned, respectively.
632  // TODO: Look through eliminable cast pairs.
633  // TODO: Look through calls with unique return values.
634  // TODO: Look through vector insert/extract/shuffle.
635  V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts();
636  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
637  BasicBlock::iterator BBI = L;
638  BasicBlock *BB = L->getParent();
640  for (;;) {
641  if (!VisitedBlocks.insert(BB)) break;
642  if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(),
643  BB, BBI, 6, AA))
644  return findValueImpl(U, OffsetOk, Visited);
645  if (BBI != BB->begin()) break;
646  BB = BB->getUniquePredecessor();
647  if (!BB) break;
648  BBI = BB->end();
649  }
650  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
651  if (Value *W = PN->hasConstantValue())
652  if (W != V)
653  return findValueImpl(W, OffsetOk, Visited);
654  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
655  if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) :
657  return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
658  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
659  if (Value *W = FindInsertedValue(Ex->getAggregateOperand(),
660  Ex->getIndices()))
661  if (W != V)
662  return findValueImpl(W, OffsetOk, Visited);
663  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
664  // Same as above, but for ConstantExpr instead of Instruction.
665  if (Instruction::isCast(CE->getOpcode())) {
666  if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
667  CE->getOperand(0)->getType(),
668  CE->getType(),
669  TD ? TD->getIntPtrType(V->getContext()) :
671  return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
672  } else if (CE->getOpcode() == Instruction::ExtractValue) {
673  ArrayRef<unsigned> Indices = CE->getIndices();
674  if (Value *W = FindInsertedValue(CE->getOperand(0), Indices))
675  if (W != V)
676  return findValueImpl(W, OffsetOk, Visited);
677  }
678  }
679 
680  // As a last resort, try SimplifyInstruction or constant folding.
681  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
682  if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT))
683  return findValueImpl(W, OffsetOk, Visited);
684  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
685  if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI))
686  if (W != V)
687  return findValueImpl(W, OffsetOk, Visited);
688  }
689 
690  return V;
691 }
692 
693 //===----------------------------------------------------------------------===//
694 // Implement the public interfaces to this file...
695 //===----------------------------------------------------------------------===//
696 
698  return new Lint();
699 }
700 
701 /// lintFunction - Check a function for errors, printing messages on stderr.
702 ///
703 void llvm::lintFunction(const Function &f) {
704  Function &F = const_cast<Function&>(f);
705  assert(!F.isDeclaration() && "Cannot lint external functions");
706 
708  Lint *V = new Lint();
709  FPM.add(V);
710  FPM.run(F);
711 }
712 
713 /// lintModule - Check a module for errors, printing messages on stderr.
714 ///
715 void llvm::lintModule(const Module &M) {
716  PassManager PM;
717  Lint *V = new Lint();
718  PM.add(V);
719  PM.run(const_cast<Module&>(M));
720 }
unsigned getAlignment() const
bool hasNoAliasAttr() const
Return true if this argument has the noalias attribute on it in its containing function.
Definition: Function.cpp:103
Pointers differ, but pointees overlap.
void lintModule(const Module &M)
Check a module.
Definition: Lint.cpp:715
BasicBlock * getUniquePredecessor()
Return this block if it has a unique predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:196
static PassRegistry * getPassRegistry()
LLVM Argument representation.
Definition: Argument.h:35
Base class for instruction visitors.
Definition: InstVisitor.h:81
bool hasName() const
Definition: Value.h:117
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
IterTy arg_end() const
Definition: CallSite.h:143
unsigned arg_size() const
Definition: CallSite.h:145
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
Value * GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, const DataLayout *TD)
void lintFunction(const Function &F)
Definition: Lint.cpp:703
Statically lint checks LLVM false
Definition: Lint.cpp:158
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
DenseSet< const BlockT * > VisitedBlocks
Definition: LoopInfoImpl.h:412
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
arg_iterator arg_end()
Definition: Function.h:418
F(f)
INITIALIZE_PASS_BEGIN(Lint,"lint","Statically lint-checks LLVM IR", false, true) INITIALIZE_PASS_END(Lint
static IntegerType * getInt64Ty(LLVMContext &C)
Definition: Type.cpp:242
ValTy * getArgument(unsigned ArgNo) const
Definition: CallSite.h:111
CallingConv::ID getCallingConv() const
Definition: Function.h:161
iterator begin()
Definition: BasicBlock.h:193
bool isCast() const
Definition: Instruction.h:89
void WriteAsOperand(raw_ostream &, const Value *, bool PrintTy=true, const Module *Context=0)
Definition: AsmWriter.cpp:1179
Value * GetUnderlyingObject(Value *V, const DataLayout *TD=0, unsigned MaxLookup=6)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
std::string str() const
str - Return the twine contents as a std::string.
Definition: Twine.cpp:16
static unsigned getBitWidth(Type *Ty, const DataLayout *TD)
Value * FindInsertedValue(Value *V, ArrayRef< unsigned > idx_range, Instruction *InsertBefore=0)
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
Base class of casting instructions.
Definition: InstrTypes.h:387
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
VectorType * getVectorOperandType() const
static bool isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DstTy, Type *IntPtrTy)
Determine if the described cast is a no-op cast.
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
VectorType * getType() const
bool hasStructRetAttr() const
Return true if this argument has the sret attribute on it in its containing function.
Definition: Function.cpp:119
Constant * ConstantFoldConstantExpression(const ConstantExpr *CE, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
CallingConv::ID getCallingConv() const
Definition: CallSite.h:170
lint
Definition: Lint.cpp:158
ValTy * getCalledValue() const
Definition: CallSite.h:85
unsigned getNumElements() const
Return the number of elements in the Vector type.
Definition: DerivedTypes.h:408
Type * getElementType() const
Definition: DerivedTypes.h:319
void ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, const DataLayout *TD=0, unsigned Depth=0)
#define true
Definition: ConvertUTF.c:65
unsigned getAlignment() const
Definition: Instructions.h:301
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
InstrTy * getInstruction() const
Definition: CallSite.h:79
LLVM Constant Representation.
Definition: Constant.h:41
bool isZeroValue() const
Return true if the value is negative zero or null value.
Definition: Constants.cpp:66
bool doesNotReturn() const
Determine if the function cannot return.
Definition: Function.h:256
Value * getOperand(unsigned i) const
Definition: User.h:88
Value * getPointerOperand()
Definition: Instructions.h:223
arg_iterator arg_begin()
Definition: Function.h:410
Constant * getAggregateElement(unsigned Elt) const
Definition: Constants.cpp:183
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
FunctionPass * createLintPass()
Create a lint pass.
Definition: Lint.cpp:697
#define Assert1(C, M, V1)
Definition: Lint.cpp:164
static bool isZero(Value *V, DataLayout *DL)
Definition: Lint.cpp:507
unsigned getIntegerBitWidth() const
Definition: Type.cpp:178
Class for constant integers.
Definition: Constants.h:51
Value * FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=6, AliasAnalysis *AA=0, MDNode **TBAATag=0)
Definition: Loads.cpp:139
Value * getDest() const
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
Value * getLength() const
void initializeLintPass(PassRegistry &)
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
Class for arbitrary precision integers.
Definition: APInt.h:75
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
Value * getSource() const
uint64_t MinAlign(uint64_t A, uint64_t B)
Definition: MathExtras.h:535
bool isDeclaration() const
Definition: Globals.cpp:66
bool isCall() const
Definition: CallSite.h:73
unsigned getAlignment() const
Definition: Instructions.h:181
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
FunctionType * getFunctionType() const
Definition: Function.cpp:171
static uint64_t const UnknownSize
Definition: AliasAnalysis.h:84
IterTy arg_begin() const
Definition: CallSite.h:137
bool hasLocalLinkage() const
Definition: GlobalValue.h:211
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
const Value * getArraySize() const
Definition: Instructions.h:86
bool isSized() const
Definition: Type.h:278
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
bool isVarArg() const
Definition: Function.cpp:175
Value * getPointerOperand()
Definition: Instructions.h:346
unsigned getNumDestinations() const
Statically lint checks LLVM IR
Definition: Lint.cpp:158
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD