LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LoopSimplify.cpp
Go to the documentation of this file.
1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs several transformations to transform natural loops into a
11 // simpler form, which makes subsequent analyses and transformations simpler and
12 // more effective.
13 //
14 // Loop pre-header insertion guarantees that there is a single, non-critical
15 // entry edge from outside of the loop to the loop header. This simplifies a
16 // number of analyses and transformations, such as LICM.
17 //
18 // Loop exit-block insertion guarantees that all exit blocks from the loop
19 // (blocks which are outside of the loop that have predecessors inside of the
20 // loop) only have predecessors from inside of the loop (and are thus dominated
21 // by the loop header). This simplifies transformations such as store-sinking
22 // that are built into LICM.
23 //
24 // This pass also guarantees that loops will have exactly one backedge.
25 //
26 // Indirectbr instructions introduce several complications. If the loop
27 // contains or is entered by an indirectbr instruction, it may not be possible
28 // to transform the loop and make these guarantees. Client code should check
29 // that these conditions are true before relying on them.
30 //
31 // Note that the simplifycfg pass will clean up blocks which are split out but
32 // end up being unnecessary, so usage of this pass should not pessimize
33 // generated code.
34 //
35 // This pass obviously modifies the CFG, but updates loop information and
36 // dominator information.
37 //
38 //===----------------------------------------------------------------------===//
39 
40 #define DEBUG_TYPE "loop-simplify"
41 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/ADT/SetOperations.h"
44 #include "llvm/ADT/SetVector.h"
45 #include "llvm/ADT/Statistic.h"
50 #include "llvm/Analysis/LoopPass.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/Support/CFG.h"
59 #include "llvm/Support/Debug.h"
63 using namespace llvm;
64 
65 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
66 STATISTIC(NumNested , "Number of nested loops split out");
67 
68 namespace {
69  struct LoopSimplify : public LoopPass {
70  static char ID; // Pass identification, replacement for typeid
71  LoopSimplify() : LoopPass(ID) {
73  }
74 
75  // AA - If we have an alias analysis object to update, this is it, otherwise
76  // this is null.
77  AliasAnalysis *AA;
78  LoopInfo *LI;
79  DominatorTree *DT;
80  ScalarEvolution *SE;
81  Loop *L;
82  virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
83 
84  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85  // We need loop information to identify the loops...
88 
89  AU.addRequired<LoopInfo>();
90  AU.addPreserved<LoopInfo>();
91 
95  AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added.
96  }
97 
98  /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
99  void verifyAnalysis() const;
100 
101  private:
102  bool ProcessLoop(Loop *L, LPPassManager &LPM);
103  BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
104  Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
105  BasicBlock *Preheader);
106  BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
107  };
108 }
109 
110 static void PlaceSplitBlockCarefully(BasicBlock *NewBB,
111  SmallVectorImpl<BasicBlock*> &SplitPreds,
112  Loop *L);
113 
114 char LoopSimplify::ID = 0;
115 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
116  "Canonicalize natural loops", true, false)
119 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
120  "Canonicalize natural loops", true, false)
121 
122 // Publicly exposed interface to pass...
123 char &llvm::LoopSimplifyID = LoopSimplify::ID;
124 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
125 
126 /// runOnLoop - Run down all loops in the CFG (recursively, but we could do
127 /// it in any convenient order) inserting preheaders...
128 ///
129 bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
130  L = l;
131  bool Changed = false;
132  LI = &getAnalysis<LoopInfo>();
133  AA = getAnalysisIfAvailable<AliasAnalysis>();
134  DT = &getAnalysis<DominatorTree>();
135  SE = getAnalysisIfAvailable<ScalarEvolution>();
136 
137  Changed |= ProcessLoop(L, LPM);
138 
139  return Changed;
140 }
141 
142 /// ProcessLoop - Walk the loop structure in depth first order, ensuring that
143 /// all loops have preheaders.
144 ///
145 bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
146  bool Changed = false;
147 ReprocessLoop:
148 
149  // Check to see that no blocks (other than the header) in this loop have
150  // predecessors that are not in the loop. This is not valid for natural
151  // loops, but can occur if the blocks are unreachable. Since they are
152  // unreachable we can just shamelessly delete those CFG edges!
153  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
154  BB != E; ++BB) {
155  if (*BB == L->getHeader()) continue;
156 
158  for (pred_iterator PI = pred_begin(*BB),
159  PE = pred_end(*BB); PI != PE; ++PI) {
160  BasicBlock *P = *PI;
161  if (!L->contains(P))
162  BadPreds.insert(P);
163  }
164 
165  // Delete each unique out-of-loop (and thus dead) predecessor.
167  E = BadPreds.end(); I != E; ++I) {
168 
169  DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
170  << (*I)->getName() << "\n");
171 
172  // Inform each successor of each dead pred.
173  for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
174  (*SI)->removePredecessor(*I);
175  // Zap the dead pred's terminator and replace it with unreachable.
176  TerminatorInst *TI = (*I)->getTerminator();
178  (*I)->getTerminator()->eraseFromParent();
179  new UnreachableInst((*I)->getContext(), *I);
180  Changed = true;
181  }
182  }
183 
184  // If there are exiting blocks with branches on undef, resolve the undef in
185  // the direction which will exit the loop. This will help simplify loop
186  // trip count computations.
187  SmallVector<BasicBlock*, 8> ExitingBlocks;
188  L->getExitingBlocks(ExitingBlocks);
189  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
190  E = ExitingBlocks.end(); I != E; ++I)
191  if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
192  if (BI->isConditional()) {
193  if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
194 
195  DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
196  << (*I)->getName() << "\n");
197 
198  BI->setCondition(ConstantInt::get(Cond->getType(),
199  !L->contains(BI->getSuccessor(0))));
200 
201  // This may make the loop analyzable, force SCEV recomputation.
202  if (SE)
203  SE->forgetLoop(L);
204 
205  Changed = true;
206  }
207  }
208 
209  // Does the loop already have a preheader? If so, don't insert one.
210  BasicBlock *Preheader = L->getLoopPreheader();
211  if (!Preheader) {
212  Preheader = InsertPreheaderForLoop(L, this);
213  if (Preheader) {
214  ++NumInserted;
215  Changed = true;
216  }
217  }
218 
219  // Next, check to make sure that all exit nodes of the loop only have
220  // predecessors that are inside of the loop. This check guarantees that the
221  // loop preheader/header will dominate the exit blocks. If the exit block has
222  // predecessors from outside of the loop, split the edge now.
223  SmallVector<BasicBlock*, 8> ExitBlocks;
224  L->getExitBlocks(ExitBlocks);
225 
226  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
227  ExitBlocks.end());
228  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
229  E = ExitBlockSet.end(); I != E; ++I) {
230  BasicBlock *ExitBlock = *I;
231  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
232  PI != PE; ++PI)
233  // Must be exactly this loop: no subloops, parent loops, or non-loop preds
234  // allowed.
235  if (!L->contains(*PI)) {
236  if (RewriteLoopExitBlock(L, ExitBlock)) {
237  ++NumInserted;
238  Changed = true;
239  }
240  break;
241  }
242  }
243 
244  // If the header has more than two predecessors at this point (from the
245  // preheader and from multiple backedges), we must adjust the loop.
246  BasicBlock *LoopLatch = L->getLoopLatch();
247  if (!LoopLatch) {
248  // If this is really a nested loop, rip it out into a child loop. Don't do
249  // this for loops with a giant number of backedges, just factor them into a
250  // common backedge instead.
251  if (L->getNumBackEdges() < 8) {
252  if (SeparateNestedLoop(L, LPM, Preheader)) {
253  ++NumNested;
254  // This is a big restructuring change, reprocess the whole loop.
255  Changed = true;
256  // GCC doesn't tail recursion eliminate this.
257  goto ReprocessLoop;
258  }
259  }
260 
261  // If we either couldn't, or didn't want to, identify nesting of the loops,
262  // insert a new block that all backedges target, then make it jump to the
263  // loop header.
264  LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
265  if (LoopLatch) {
266  ++NumInserted;
267  Changed = true;
268  }
269  }
270 
271  // Scan over the PHI nodes in the loop header. Since they now have only two
272  // incoming values (the loop is canonicalized), we may have simplified the PHI
273  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
274  PHINode *PN;
275  for (BasicBlock::iterator I = L->getHeader()->begin();
276  (PN = dyn_cast<PHINode>(I++)); )
277  if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
278  if (AA) AA->deleteValue(PN);
279  if (SE) SE->forgetValue(PN);
280  PN->replaceAllUsesWith(V);
281  PN->eraseFromParent();
282  }
283 
284  // If this loop has multiple exits and the exits all go to the same
285  // block, attempt to merge the exits. This helps several passes, such
286  // as LoopRotation, which do not support loops with multiple exits.
287  // SimplifyCFG also does this (and this code uses the same utility
288  // function), however this code is loop-aware, where SimplifyCFG is
289  // not. That gives it the advantage of being able to hoist
290  // loop-invariant instructions out of the way to open up more
291  // opportunities, and the disadvantage of having the responsibility
292  // to preserve dominator information.
293  bool UniqueExit = true;
294  if (!ExitBlocks.empty())
295  for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
296  if (ExitBlocks[i] != ExitBlocks[0]) {
297  UniqueExit = false;
298  break;
299  }
300  if (UniqueExit) {
301  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
302  BasicBlock *ExitingBlock = ExitingBlocks[i];
303  if (!ExitingBlock->getSinglePredecessor()) continue;
304  BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
305  if (!BI || !BI->isConditional()) continue;
306  CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
307  if (!CI || CI->getParent() != ExitingBlock) continue;
308 
309  // Attempt to hoist out all instructions except for the
310  // comparison and the branch.
311  bool AllInvariant = true;
312  for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
313  Instruction *Inst = I++;
314  // Skip debug info intrinsics.
315  if (isa<DbgInfoIntrinsic>(Inst))
316  continue;
317  if (Inst == CI)
318  continue;
319  if (!L->makeLoopInvariant(Inst, Changed,
320  Preheader ? Preheader->getTerminator() : 0)) {
321  AllInvariant = false;
322  break;
323  }
324  }
325  if (!AllInvariant) continue;
326 
327  // The block has now been cleared of all instructions except for
328  // a comparison and a conditional branch. SimplifyCFG may be able
329  // to fold it now.
330  if (!FoldBranchToCommonDest(BI)) continue;
331 
332  // Success. The block is now dead, so remove it from the loop,
333  // update the dominator tree and delete it.
334  DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
335  << ExitingBlock->getName() << "\n");
336 
337  // If any reachable control flow within this loop has changed, notify
338  // ScalarEvolution. Currently assume the parent loop doesn't change
339  // (spliting edges doesn't count). If blocks, CFG edges, or other values
340  // in the parent loop change, then we need call to forgetLoop() for the
341  // parent instead.
342  if (SE)
343  SE->forgetLoop(L);
344 
345  assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
346  Changed = true;
347  LI->removeBlock(ExitingBlock);
348 
349  DomTreeNode *Node = DT->getNode(ExitingBlock);
350  const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
351  Node->getChildren();
352  while (!Children.empty()) {
353  DomTreeNode *Child = Children.front();
354  DT->changeImmediateDominator(Child, Node->getIDom());
355  }
356  DT->eraseNode(ExitingBlock);
357 
358  BI->getSuccessor(0)->removePredecessor(ExitingBlock);
359  BI->getSuccessor(1)->removePredecessor(ExitingBlock);
360  ExitingBlock->eraseFromParent();
361  }
362  }
363 
364  return Changed;
365 }
366 
367 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
368 /// preheader, this method is called to insert one. This method has two phases:
369 /// preheader insertion and analysis updating.
370 ///
372  BasicBlock *Header = L->getHeader();
373 
374  // Compute the set of predecessors of the loop that are not in the loop.
375  SmallVector<BasicBlock*, 8> OutsideBlocks;
376  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
377  PI != PE; ++PI) {
378  BasicBlock *P = *PI;
379  if (!L->contains(P)) { // Coming in from outside the loop?
380  // If the loop is branched to from an indirect branch, we won't
381  // be able to fully transform the loop, because it prohibits
382  // edge splitting.
383  if (isa<IndirectBrInst>(P->getTerminator())) return 0;
384 
385  // Keep track of it.
386  OutsideBlocks.push_back(P);
387  }
388  }
389 
390  // Split out the loop pre-header.
391  BasicBlock *PreheaderBB;
392  if (!Header->isLandingPad()) {
393  PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
394  PP);
395  } else {
397  SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
398  ".split-lp", PP, NewBBs);
399  PreheaderBB = NewBBs[0];
400  }
401 
402  PreheaderBB->getTerminator()->setDebugLoc(
403  Header->getFirstNonPHI()->getDebugLoc());
404  DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
405  << PreheaderBB->getName() << "\n");
406 
407  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
408  // code layout too horribly.
409  PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
410 
411  return PreheaderBB;
412 }
413 
414 /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
415 /// blocks. This method is used to split exit blocks that have predecessors
416 /// outside of the loop.
417 BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
418  SmallVector<BasicBlock*, 8> LoopBlocks;
419  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
420  BasicBlock *P = *I;
421  if (L->contains(P)) {
422  // Don't do this if the loop is exited via an indirect branch.
423  if (isa<IndirectBrInst>(P->getTerminator())) return 0;
424 
425  LoopBlocks.push_back(P);
426  }
427  }
428 
429  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
430  BasicBlock *NewExitBB = 0;
431 
432  if (Exit->isLandingPad()) {
435  LoopBlocks.size()),
436  ".loopexit", ".nonloopexit",
437  this, NewBBs);
438  NewExitBB = NewBBs[0];
439  } else {
440  NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
441  }
442 
443  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
444  << NewExitBB->getName() << "\n");
445  return NewExitBB;
446 }
447 
448 /// AddBlockAndPredsToSet - Add the specified block, and all of its
449 /// predecessors, to the specified set, if it's not already in there. Stop
450 /// predecessor traversal when we reach StopBlock.
451 static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
452  std::set<BasicBlock*> &Blocks) {
453  std::vector<BasicBlock *> WorkList;
454  WorkList.push_back(InputBB);
455  do {
456  BasicBlock *BB = WorkList.back(); WorkList.pop_back();
457  if (Blocks.insert(BB).second && BB != StopBlock)
458  // If BB is not already processed and it is not a stop block then
459  // insert its predecessor in the work list
460  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
461  BasicBlock *WBB = *I;
462  WorkList.push_back(WBB);
463  }
464  } while(!WorkList.empty());
465 }
466 
467 /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
468 /// PHI node that tells us how to partition the loops.
470  AliasAnalysis *AA, LoopInfo *LI) {
471  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
472  PHINode *PN = cast<PHINode>(I);
473  ++I;
474  if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
475  // This is a degenerate PHI already, don't modify it!
476  PN->replaceAllUsesWith(V);
477  if (AA) AA->deleteValue(PN);
478  PN->eraseFromParent();
479  continue;
480  }
481 
482  // Scan this PHI node looking for a use of the PHI node by itself.
483  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
484  if (PN->getIncomingValue(i) == PN &&
485  L->contains(PN->getIncomingBlock(i)))
486  // We found something tasty to remove.
487  return PN;
488  }
489  return 0;
490 }
491 
492 // PlaceSplitBlockCarefully - If the block isn't already, move the new block to
493 // right after some 'outside block' block. This prevents the preheader from
494 // being placed inside the loop body, e.g. when the loop hasn't been rotated.
496  SmallVectorImpl<BasicBlock*> &SplitPreds,
497  Loop *L) {
498  // Check to see if NewBB is already well placed.
499  Function::iterator BBI = NewBB; --BBI;
500  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
501  if (&*BBI == SplitPreds[i])
502  return;
503  }
504 
505  // If it isn't already after an outside block, move it after one. This is
506  // always good as it makes the uncond branch from the outside block into a
507  // fall-through.
508 
509  // Figure out *which* outside block to put this after. Prefer an outside
510  // block that neighbors a BB actually in the loop.
511  BasicBlock *FoundBB = 0;
512  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
513  Function::iterator BBI = SplitPreds[i];
514  if (++BBI != NewBB->getParent()->end() &&
515  L->contains(BBI)) {
516  FoundBB = SplitPreds[i];
517  break;
518  }
519  }
520 
521  // If our heuristic for a *good* bb to place this after doesn't find
522  // anything, just pick something. It's likely better than leaving it within
523  // the loop.
524  if (!FoundBB)
525  FoundBB = SplitPreds[0];
526  NewBB->moveAfter(FoundBB);
527 }
528 
529 
530 /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
531 /// them out into a nested loop. This is important for code that looks like
532 /// this:
533 ///
534 /// Loop:
535 /// ...
536 /// br cond, Loop, Next
537 /// ...
538 /// br cond2, Loop, Out
539 ///
540 /// To identify this common case, we look at the PHI nodes in the header of the
541 /// loop. PHI nodes with unchanging values on one backedge correspond to values
542 /// that change in the "outer" loop, but not in the "inner" loop.
543 ///
544 /// If we are able to separate out a loop, return the new outer loop that was
545 /// created.
546 ///
547 Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
548  BasicBlock *Preheader) {
549  // Don't try to separate loops without a preheader.
550  if (!Preheader)
551  return 0;
552 
553  // The header is not a landing pad; preheader insertion should ensure this.
554  assert(!L->getHeader()->isLandingPad() &&
555  "Can't insert backedge to landing pad");
556 
557  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
558  if (PN == 0) return 0; // No known way to partition.
559 
560  // Pull out all predecessors that have varying values in the loop. This
561  // handles the case when a PHI node has multiple instances of itself as
562  // arguments.
563  SmallVector<BasicBlock*, 8> OuterLoopPreds;
564  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
565  if (PN->getIncomingValue(i) != PN ||
566  !L->contains(PN->getIncomingBlock(i))) {
567  // We can't split indirectbr edges.
568  if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
569  return 0;
570  OuterLoopPreds.push_back(PN->getIncomingBlock(i));
571  }
572  }
573  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
574 
575  // If ScalarEvolution is around and knows anything about values in
576  // this loop, tell it to forget them, because we're about to
577  // substantially change it.
578  if (SE)
579  SE->forgetLoop(L);
580 
581  BasicBlock *Header = L->getHeader();
582  BasicBlock *NewBB =
583  SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", this);
584 
585  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
586  // code layout too horribly.
587  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
588 
589  // Create the new outer loop.
590  Loop *NewOuter = new Loop();
591 
592  // Change the parent loop to use the outer loop as its child now.
593  if (Loop *Parent = L->getParentLoop())
594  Parent->replaceChildLoopWith(L, NewOuter);
595  else
596  LI->changeTopLevelLoop(L, NewOuter);
597 
598  // L is now a subloop of our outer loop.
599  NewOuter->addChildLoop(L);
600 
601  // Add the new loop to the pass manager queue.
602  LPM.insertLoopIntoQueue(NewOuter);
603 
604  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
605  I != E; ++I)
606  NewOuter->addBlockEntry(*I);
607 
608  // Now reset the header in L, which had been moved by
609  // SplitBlockPredecessors for the outer loop.
610  L->moveToHeader(Header);
611 
612  // Determine which blocks should stay in L and which should be moved out to
613  // the Outer loop now.
614  std::set<BasicBlock*> BlocksInL;
615  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
616  BasicBlock *P = *PI;
617  if (DT->dominates(Header, P))
618  AddBlockAndPredsToSet(P, Header, BlocksInL);
619  }
620 
621  // Scan all of the loop children of L, moving them to OuterLoop if they are
622  // not part of the inner loop.
623  const std::vector<Loop*> &SubLoops = L->getSubLoops();
624  for (size_t I = 0; I != SubLoops.size(); )
625  if (BlocksInL.count(SubLoops[I]->getHeader()))
626  ++I; // Loop remains in L
627  else
628  NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
629 
630  // Now that we know which blocks are in L and which need to be moved to
631  // OuterLoop, move any blocks that need it.
632  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
633  BasicBlock *BB = L->getBlocks()[i];
634  if (!BlocksInL.count(BB)) {
635  // Move this block to the parent, updating the exit blocks sets
636  L->removeBlockFromLoop(BB);
637  if ((*LI)[BB] == L)
638  LI->changeLoopFor(BB, NewOuter);
639  --i;
640  }
641  }
642 
643  return NewOuter;
644 }
645 
646 
647 
648 /// InsertUniqueBackedgeBlock - This method is called when the specified loop
649 /// has more than one backedge in it. If this occurs, revector all of these
650 /// backedges to target a new basic block and have that block branch to the loop
651 /// header. This ensures that loops have exactly one backedge.
652 ///
653 BasicBlock *
654 LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
655  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
656 
657  // Get information about the loop
658  BasicBlock *Header = L->getHeader();
659  Function *F = Header->getParent();
660 
661  // Unique backedge insertion currently depends on having a preheader.
662  if (!Preheader)
663  return 0;
664 
665  // The header is not a landing pad; preheader insertion should ensure this.
666  assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
667 
668  // Figure out which basic blocks contain back-edges to the loop header.
669  std::vector<BasicBlock*> BackedgeBlocks;
670  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
671  BasicBlock *P = *I;
672 
673  // Indirectbr edges cannot be split, so we must fail if we find one.
674  if (isa<IndirectBrInst>(P->getTerminator()))
675  return 0;
676 
677  if (P != Preheader) BackedgeBlocks.push_back(P);
678  }
679 
680  // Create and insert the new backedge block...
681  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
682  Header->getName()+".backedge", F);
683  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
684 
685  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
686  << BEBlock->getName() << "\n");
687 
688  // Move the new backedge block to right after the last backedge block.
689  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
690  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
691 
692  // Now that the block has been inserted into the function, create PHI nodes in
693  // the backedge block which correspond to any PHI nodes in the header block.
694  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
695  PHINode *PN = cast<PHINode>(I);
696  PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
697  PN->getName()+".be", BETerminator);
698  if (AA) AA->copyValue(PN, NewPN);
699 
700  // Loop over the PHI node, moving all entries except the one for the
701  // preheader over to the new PHI node.
702  unsigned PreheaderIdx = ~0U;
703  bool HasUniqueIncomingValue = true;
704  Value *UniqueValue = 0;
705  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
706  BasicBlock *IBB = PN->getIncomingBlock(i);
707  Value *IV = PN->getIncomingValue(i);
708  if (IBB == Preheader) {
709  PreheaderIdx = i;
710  } else {
711  NewPN->addIncoming(IV, IBB);
712  if (HasUniqueIncomingValue) {
713  if (UniqueValue == 0)
714  UniqueValue = IV;
715  else if (UniqueValue != IV)
716  HasUniqueIncomingValue = false;
717  }
718  }
719  }
720 
721  // Delete all of the incoming values from the old PN except the preheader's
722  assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
723  if (PreheaderIdx != 0) {
724  PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
725  PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
726  }
727  // Nuke all entries except the zero'th.
728  for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
729  PN->removeIncomingValue(e-i, false);
730 
731  // Finally, add the newly constructed PHI node as the entry for the BEBlock.
732  PN->addIncoming(NewPN, BEBlock);
733 
734  // As an optimization, if all incoming values in the new PhiNode (which is a
735  // subset of the incoming values of the old PHI node) have the same value,
736  // eliminate the PHI Node.
737  if (HasUniqueIncomingValue) {
738  NewPN->replaceAllUsesWith(UniqueValue);
739  if (AA) AA->deleteValue(NewPN);
740  BEBlock->getInstList().erase(NewPN);
741  }
742  }
743 
744  // Now that all of the PHI nodes have been inserted and adjusted, modify the
745  // backedge blocks to just to the BEBlock instead of the header.
746  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
747  TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
748  for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
749  if (TI->getSuccessor(Op) == Header)
750  TI->setSuccessor(Op, BEBlock);
751  }
752 
753  //===--- Update all analyses which we must preserve now -----------------===//
754 
755  // Update Loop Information - we know that this block is now in the current
756  // loop and all parent loops.
757  L->addBasicBlockToLoop(BEBlock, LI->getBase());
758 
759  // Update dominator information
760  DT->splitBlock(BEBlock);
761 
762  return BEBlock;
763 }
764 
765 void LoopSimplify::verifyAnalysis() const {
766  // It used to be possible to just assert L->isLoopSimplifyForm(), however
767  // with the introduction of indirectbr, there are now cases where it's
768  // not possible to transform a loop as necessary. We can at least check
769  // that there is an indirectbr near any time there's trouble.
770 
771  // Indirectbr can interfere with preheader and unique backedge insertion.
772  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
773  bool HasIndBrPred = false;
774  for (pred_iterator PI = pred_begin(L->getHeader()),
775  PE = pred_end(L->getHeader()); PI != PE; ++PI)
776  if (isa<IndirectBrInst>((*PI)->getTerminator())) {
777  HasIndBrPred = true;
778  break;
779  }
780  assert(HasIndBrPred &&
781  "LoopSimplify has no excuse for missing loop header info!");
782  (void)HasIndBrPred;
783  }
784 
785  // Indirectbr can interfere with exit block canonicalization.
786  if (!L->hasDedicatedExits()) {
787  bool HasIndBrExiting = false;
788  SmallVector<BasicBlock*, 8> ExitingBlocks;
789  L->getExitingBlocks(ExitingBlocks);
790  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
791  if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
792  HasIndBrExiting = true;
793  break;
794  }
795  }
796 
797  assert(HasIndBrExiting &&
798  "LoopSimplify has no excuse for missing exit block info!");
799  (void)HasIndBrExiting;
800  }
801 }
unsigned getNumBackEdges() const
Definition: LoopInfo.h:164
loop Canonicalize natural loops
Pass * createLoopSimplifyPass()
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
AnalysisUsage & addPreserved()
void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs=false)
Notify the BasicBlock that the predecessor Pred is no longer able to reach it.
Definition: BasicBlock.cpp:216
void addIncoming(Value *V, BasicBlock *BB)
static PassRegistry * getPassRegistry()
const Instruction & back() const
Definition: BasicBlock.h:207
static void PlaceSplitBlockCarefully(BasicBlock *NewBB, SmallVectorImpl< BasicBlock * > &SplitPreds, Loop *L)
iterator end()
Definition: Function.h:397
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
static PHINode * FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, AliasAnalysis *AA, LoopInfo *LI)
LoopT * getParentLoop() const
Definition: LoopInfo.h:96
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
F(f)
const std::vector< BlockT * > & getBlocks() const
Definition: LoopInfo.h:138
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
BlockT * getHeader() const
Definition: LoopInfo.h:95
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
LoopT * removeChildLoop(iterator I)
Definition: LoopInfo.h:261
StringRef getName() const
Definition: Value.cpp:167
BlockT * getLoopLatch() const
Definition: LoopInfoImpl.h:154
iterator begin()
Definition: BasicBlock.h:193
DomTreeNodeBase< NodeT > * getIDom() const
Definition: Dominators.h:83
static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, std::set< BasicBlock * > &Blocks)
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
BasicBlock * InsertPreheaderForLoop(Loop *L, Pass *P)
INITIALIZE_PASS_BEGIN(LoopSimplify,"loop-simplify","Canonicalize natural loops", true, false) INITIALIZE_PASS_END(LoopSimplify
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
Instruction * getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:130
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
void getExitingBlocks(SmallVectorImpl< BlockT * > &ExitingBlocks) const
Definition: LoopInfoImpl.h:33
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define false
Definition: ConvertUTF.c:64
void getExitBlocks(SmallVectorImpl< BlockT * > &ExitBlocks) const
Definition: LoopInfoImpl.h:62
Interval::succ_iterator succ_begin(Interval *I)
Definition: Interval.h:107
BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, Pass *P=0)
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase< BlockT, LoopT > &LI)
Definition: LoopInfoImpl.h:185
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
void addChildLoop(LoopT *NewChild)
Definition: LoopInfo.h:252
BasicBlock * getSuccessor(unsigned i) const
void insertLoopIntoQueue(Loop *L)
Definition: LoopPass.cpp:107
AnalysisUsage & addPreservedID(const void *ID)
void setSuccessor(unsigned idx, BasicBlock *B)
Definition: InstrTypes.h:71
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
unsigned getNumIncomingValues() const
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:110
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
#define P(N)
BlockT * getLoopPreheader() const
Definition: LoopInfoImpl.h:106
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
char & BreakCriticalEdgesID
Instr is a loop (backwards branch).
Definition: GCMetadata.h:51
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
BasicBlock * getIncomingBlock(unsigned i) const
bool contains(const LoopT *L) const
Definition: LoopInfo.h:104
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
bool makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt=0) const
Definition: LoopInfo.cpp:87
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
void addBlockEntry(BlockT *BB)
Definition: LoopInfo.h:273
bool hasDedicatedExits() const
Definition: LoopInfo.cpp:335
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
virtual void deleteValue(Value *V)
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
iterator erase(iterator where)
Definition: ilist.h:465
void removeBlockFromLoop(BlockT *BB)
Definition: LoopInfo.h:306
char & LoopSimplifyID
bool FoldBranchToCommonDest(BranchInst *BI)
const std::vector< DomTreeNodeBase< NodeT > * > & getChildren() const
Definition: Dominators.h:84
bool isConditional() const
SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
Definition: SmallPtrSet.h:174
A SetVector that performs no allocations if smaller than a certain size.
Definition: SetVector.h:218
void moveAfter(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it right after MovePos in the function M...
Definition: BasicBlock.cpp:113
const BasicBlockListType & getBasicBlockList() const
Definition: Function.h:374
void setIncomingBlock(unsigned i, BasicBlock *BB)
Value * getIncomingValue(unsigned i) const
Type * getType() const
Definition: Value.h:111
void eraseFromParent()
Unlink 'this' from the containing function and delete it.
Definition: BasicBlock.cpp:100
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
void splice(iterator where, iplist &L2)
Definition: ilist.h:570
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
STATISTIC(NumInserted,"Number of pre-header or exit blocks inserted")
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
std::vector< BlockT * >::const_iterator block_iterator
Definition: LoopInfo.h:139
block_iterator block_end() const
Definition: LoopInfo.h:141
Value * getCondition() const
void moveToHeader(BlockT *BB)
Definition: LoopInfo.h:291
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool isLandingPad() const
Return true if this basic block is a landing pad.
Definition: BasicBlock.cpp:360
iterator end() const
Definition: SmallPtrSet.h:279
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=0, BasicBlock *InsertBefore=0)
Creates a new BasicBlock.
Definition: BasicBlock.h:109
void initializeLoopSimplifyPass(PassRegistry &)
LLVM Value Representation.
Definition: Value.h:66
iterator begin() const
Definition: SmallPtrSet.h:276
#define DEBUG(X)
Definition: Debug.h:97
const std::vector< LoopT * > & getSubLoops() const
Definition: LoopInfo.h:125
block_iterator block_begin() const
Definition: LoopInfo.h:140
loop Canonicalize natural true
void SplitLandingPadPredecessors(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix, const char *Suffix2, Pass *P, SmallVectorImpl< BasicBlock * > &NewBBs)
void setIncomingValue(unsigned i, Value *V)
loop simplify
const BasicBlock * getParent() const
Definition: Instruction.h:52