LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
SimplifyCFG.cpp
Go to the documentation of this file.
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "simplifycfg"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/MDBuilder.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/CFG.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/NoFolder.h"
47 #include <algorithm>
48 #include <map>
49 #include <set>
50 using namespace llvm;
51 using namespace PatternMatch;
52 
53 static cl::opt<unsigned>
54 PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
55  cl::desc("Control the amount of phi node folding to perform (default = 1)"));
56 
57 static cl::opt<bool>
58 DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
59  cl::desc("Duplicate return instructions into unconditional branches"));
60 
61 static cl::opt<bool>
62 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
63  cl::desc("Sink common instructions down to the end block"));
64 
65 static cl::opt<bool>
66 HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
67  cl::desc("Hoist conditional stores if an unconditional store preceeds"));
68 
69 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
70 STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
71 STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
72 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
73 
74 namespace {
75  /// ValueEqualityComparisonCase - Represents a case of a switch.
76  struct ValueEqualityComparisonCase {
78  BasicBlock *Dest;
79 
80  ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
81  : Value(Value), Dest(Dest) {}
82 
83  bool operator<(ValueEqualityComparisonCase RHS) const {
84  // Comparing pointers is ok as we only rely on the order for uniquing.
85  return Value < RHS.Value;
86  }
87 
88  bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
89  };
90 
91 class SimplifyCFGOpt {
92  const TargetTransformInfo &TTI;
93  const DataLayout *const TD;
94  Value *isValueEqualityComparison(TerminatorInst *TI);
95  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
96  std::vector<ValueEqualityComparisonCase> &Cases);
97  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
98  BasicBlock *Pred,
99  IRBuilder<> &Builder);
100  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
101  IRBuilder<> &Builder);
102 
103  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
104  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
105  bool SimplifyUnreachable(UnreachableInst *UI);
106  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
107  bool SimplifyIndirectBr(IndirectBrInst *IBI);
108  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
109  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
110 
111 public:
112  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *TD)
113  : TTI(TTI), TD(TD) {}
114  bool run(BasicBlock *BB);
115 };
116 }
117 
118 /// SafeToMergeTerminators - Return true if it is safe to merge these two
119 /// terminator instructions together.
120 ///
122  if (SI1 == SI2) return false; // Can't merge with self!
123 
124  // It is not safe to merge these two switch instructions if they have a common
125  // successor, and if that successor has a PHI node, and if *that* PHI node has
126  // conflicting incoming values from the two switch blocks.
127  BasicBlock *SI1BB = SI1->getParent();
128  BasicBlock *SI2BB = SI2->getParent();
129  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
130 
131  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
132  if (SI1Succs.count(*I))
133  for (BasicBlock::iterator BBI = (*I)->begin();
134  isa<PHINode>(BBI); ++BBI) {
135  PHINode *PN = cast<PHINode>(BBI);
136  if (PN->getIncomingValueForBlock(SI1BB) !=
137  PN->getIncomingValueForBlock(SI2BB))
138  return false;
139  }
140 
141  return true;
142 }
143 
144 /// isProfitableToFoldUnconditional - Return true if it is safe and profitable
145 /// to merge these two terminator instructions together, where SI1 is an
146 /// unconditional branch. PhiNodes will store all PHI nodes in common
147 /// successors.
148 ///
150  BranchInst *SI2,
151  Instruction *Cond,
152  SmallVectorImpl<PHINode*> &PhiNodes) {
153  if (SI1 == SI2) return false; // Can't merge with self!
154  assert(SI1->isUnconditional() && SI2->isConditional());
155 
156  // We fold the unconditional branch if we can easily update all PHI nodes in
157  // common successors:
158  // 1> We have a constant incoming value for the conditional branch;
159  // 2> We have "Cond" as the incoming value for the unconditional branch;
160  // 3> SI2->getCondition() and Cond have same operands.
161  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
162  if (!Ci2) return false;
163  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
164  Cond->getOperand(1) == Ci2->getOperand(1)) &&
165  !(Cond->getOperand(0) == Ci2->getOperand(1) &&
166  Cond->getOperand(1) == Ci2->getOperand(0)))
167  return false;
168 
169  BasicBlock *SI1BB = SI1->getParent();
170  BasicBlock *SI2BB = SI2->getParent();
171  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
172  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
173  if (SI1Succs.count(*I))
174  for (BasicBlock::iterator BBI = (*I)->begin();
175  isa<PHINode>(BBI); ++BBI) {
176  PHINode *PN = cast<PHINode>(BBI);
177  if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
178  !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
179  return false;
180  PhiNodes.push_back(PN);
181  }
182  return true;
183 }
184 
185 /// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
186 /// now be entries in it from the 'NewPred' block. The values that will be
187 /// flowing into the PHI nodes will be the same as those coming in from
188 /// ExistPred, an existing predecessor of Succ.
189 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
190  BasicBlock *ExistPred) {
191  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
192 
193  PHINode *PN;
194  for (BasicBlock::iterator I = Succ->begin();
195  (PN = dyn_cast<PHINode>(I)); ++I)
196  PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
197 }
198 
199 /// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
200 /// given instruction, which is assumed to be safe to speculate. 1 means
201 /// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
202 static unsigned ComputeSpeculationCost(const User *I) {
203  assert(isSafeToSpeculativelyExecute(I) &&
204  "Instruction is not safe to speculatively execute!");
205  switch (Operator::getOpcode(I)) {
206  default:
207  // In doubt, be conservative.
208  return UINT_MAX;
209  case Instruction::GetElementPtr:
210  // GEPs are cheap if all indices are constant.
211  if (!cast<GEPOperator>(I)->hasAllConstantIndices())
212  return UINT_MAX;
213  return 1;
214  case Instruction::Load:
215  case Instruction::Add:
216  case Instruction::Sub:
217  case Instruction::And:
218  case Instruction::Or:
219  case Instruction::Xor:
220  case Instruction::Shl:
221  case Instruction::LShr:
222  case Instruction::AShr:
223  case Instruction::ICmp:
224  case Instruction::Trunc:
225  case Instruction::ZExt:
226  case Instruction::SExt:
227  return 1; // These are all cheap.
228 
229  case Instruction::Call:
230  case Instruction::Select:
231  return 2;
232  }
233 }
234 
235 /// DominatesMergePoint - If we have a merge point of an "if condition" as
236 /// accepted above, return true if the specified value dominates the block. We
237 /// don't handle the true generality of domination here, just a special case
238 /// which works well enough for us.
239 ///
240 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
241 /// see if V (which must be an instruction) and its recursive operands
242 /// that do not dominate BB have a combined cost lower than CostRemaining and
243 /// are non-trapping. If both are true, the instruction is inserted into the
244 /// set and true is returned.
245 ///
246 /// The cost for most non-trapping instructions is defined as 1 except for
247 /// Select whose cost is 2.
248 ///
249 /// After this function returns, CostRemaining is decreased by the cost of
250 /// V plus its non-dominating operands. If that cost is greater than
251 /// CostRemaining, false is returned and CostRemaining is undefined.
253  SmallPtrSet<Instruction*, 4> *AggressiveInsts,
254  unsigned &CostRemaining) {
256  if (!I) {
257  // Non-instructions all dominate instructions, but not all constantexprs
258  // can be executed unconditionally.
259  if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
260  if (C->canTrap())
261  return false;
262  return true;
263  }
264  BasicBlock *PBB = I->getParent();
265 
266  // We don't want to allow weird loops that might have the "if condition" in
267  // the bottom of this block.
268  if (PBB == BB) return false;
269 
270  // If this instruction is defined in a block that contains an unconditional
271  // branch to BB, then it must be in the 'conditional' part of the "if
272  // statement". If not, it definitely dominates the region.
274  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
275  return true;
276 
277  // If we aren't allowing aggressive promotion anymore, then don't consider
278  // instructions in the 'if region'.
279  if (AggressiveInsts == 0) return false;
280 
281  // If we have seen this instruction before, don't count it again.
282  if (AggressiveInsts->count(I)) return true;
283 
284  // Okay, it looks like the instruction IS in the "condition". Check to
285  // see if it's a cheap instruction to unconditionally compute, and if it
286  // only uses stuff defined outside of the condition. If so, hoist it out.
288  return false;
289 
290  unsigned Cost = ComputeSpeculationCost(I);
291 
292  if (Cost > CostRemaining)
293  return false;
294 
295  CostRemaining -= Cost;
296 
297  // Okay, we can only really hoist these out if their operands do
298  // not take us over the cost threshold.
299  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
300  if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
301  return false;
302  // Okay, it's safe to do this! Remember this instruction.
303  AggressiveInsts->insert(I);
304  return true;
305 }
306 
307 /// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
308 /// and PointerNullValue. Return NULL if value is not a constant int.
310  // Normal constant int.
311  ConstantInt *CI = dyn_cast<ConstantInt>(V);
312  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
313  return CI;
314 
315  // This is some kind of pointer constant. Turn it into a pointer-sized
316  // ConstantInt if possible.
317  IntegerType *PtrTy = cast<IntegerType>(TD->getIntPtrType(V->getType()));
318 
319  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
320  if (isa<ConstantPointerNull>(V))
321  return ConstantInt::get(PtrTy, 0);
322 
323  // IntToPtr const int.
324  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
325  if (CE->getOpcode() == Instruction::IntToPtr)
326  if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
327  // The constant is very likely to have the right type already.
328  if (CI->getType() == PtrTy)
329  return CI;
330  else
331  return cast<ConstantInt>
332  (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
333  }
334  return 0;
335 }
336 
337 /// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
338 /// collection of icmp eq/ne instructions that compare a value against a
339 /// constant, return the value being compared, and stick the constant into the
340 /// Values vector.
341 static Value *
342 GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
343  const DataLayout *TD, bool isEQ, unsigned &UsedICmps) {
345  if (I == 0) return 0;
346 
347  // If this is an icmp against a constant, handle this as one of the cases.
348  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
349  if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
350  Value *RHSVal;
351  ConstantInt *RHSC;
352 
353  if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
354  // (x & ~2^x) == y --> x == y || x == y|2^x
355  // This undoes a transformation done by instcombine to fuse 2 compares.
356  if (match(ICI->getOperand(0),
357  m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
358  APInt Not = ~RHSC->getValue();
359  if (Not.isPowerOf2()) {
360  Vals.push_back(C);
361  Vals.push_back(
362  ConstantInt::get(C->getContext(), C->getValue() | Not));
363  UsedICmps++;
364  return RHSVal;
365  }
366  }
367 
368  UsedICmps++;
369  Vals.push_back(C);
370  return I->getOperand(0);
371  }
372 
373  // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
374  // the set.
375  ConstantRange Span =
376  ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
377 
378  // Shift the range if the compare is fed by an add. This is the range
379  // compare idiom as emitted by instcombine.
380  bool hasAdd =
381  match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)));
382  if (hasAdd)
383  Span = Span.subtract(RHSC->getValue());
384 
385  // If this is an and/!= check then we want to optimize "x ugt 2" into
386  // x != 0 && x != 1.
387  if (!isEQ)
388  Span = Span.inverse();
389 
390  // If there are a ton of values, we don't want to make a ginormous switch.
391  if (Span.getSetSize().ugt(8) || Span.isEmptySet())
392  return 0;
393 
394  for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
395  Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
396  UsedICmps++;
397  return hasAdd ? RHSVal : I->getOperand(0);
398  }
399  return 0;
400  }
401 
402  // Otherwise, we can only handle an | or &, depending on isEQ.
403  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
404  return 0;
405 
406  unsigned NumValsBeforeLHS = Vals.size();
407  unsigned UsedICmpsBeforeLHS = UsedICmps;
408  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
409  isEQ, UsedICmps)) {
410  unsigned NumVals = Vals.size();
411  unsigned UsedICmpsBeforeRHS = UsedICmps;
412  if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
413  isEQ, UsedICmps)) {
414  if (LHS == RHS)
415  return LHS;
416  Vals.resize(NumVals);
417  UsedICmps = UsedICmpsBeforeRHS;
418  }
419 
420  // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
421  // set it and return success.
422  if (Extra == 0 || Extra == I->getOperand(1)) {
423  Extra = I->getOperand(1);
424  return LHS;
425  }
426 
427  Vals.resize(NumValsBeforeLHS);
428  UsedICmps = UsedICmpsBeforeLHS;
429  return 0;
430  }
431 
432  // If the LHS can't be folded in, but Extra is available and RHS can, try to
433  // use LHS as Extra.
434  if (Extra == 0 || Extra == I->getOperand(0)) {
435  Value *OldExtra = Extra;
436  Extra = I->getOperand(0);
437  if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
438  isEQ, UsedICmps))
439  return RHS;
440  assert(Vals.size() == NumValsBeforeLHS);
441  Extra = OldExtra;
442  }
443 
444  return 0;
445 }
446 
448  Instruction *Cond = 0;
449  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
450  Cond = dyn_cast<Instruction>(SI->getCondition());
451  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
452  if (BI->isConditional())
453  Cond = dyn_cast<Instruction>(BI->getCondition());
454  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
455  Cond = dyn_cast<Instruction>(IBI->getAddress());
456  }
457 
458  TI->eraseFromParent();
460 }
461 
462 /// isValueEqualityComparison - Return true if the specified terminator checks
463 /// to see if a value is equal to constant integer value.
464 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
465  Value *CV = 0;
466  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
467  // Do not permit merging of large switch instructions into their
468  // predecessors unless there is only one predecessor.
469  if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
470  pred_end(SI->getParent())) <= 128)
471  CV = SI->getCondition();
472  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
473  if (BI->isConditional() && BI->getCondition()->hasOneUse())
474  if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
475  if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), TD))
476  CV = ICI->getOperand(0);
477 
478  // Unwrap any lossless ptrtoint cast.
479  if (TD && CV) {
480  if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
481  Value *Ptr = PTII->getPointerOperand();
482  if (PTII->getType() == TD->getIntPtrType(Ptr->getType()))
483  CV = Ptr;
484  }
485  }
486  return CV;
487 }
488 
489 /// GetValueEqualityComparisonCases - Given a value comparison instruction,
490 /// decode all of the 'cases' that it represents and return the 'default' block.
491 BasicBlock *SimplifyCFGOpt::
492 GetValueEqualityComparisonCases(TerminatorInst *TI,
493  std::vector<ValueEqualityComparisonCase>
494  &Cases) {
495  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
496  Cases.reserve(SI->getNumCases());
497  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
498  Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
499  i.getCaseSuccessor()));
500  return SI->getDefaultDest();
501  }
502 
503  BranchInst *BI = cast<BranchInst>(TI);
504  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
505  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
506  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
507  TD),
508  Succ));
509  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
510 }
511 
512 
513 /// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
514 /// in the list that match the specified block.
516  std::vector<ValueEqualityComparisonCase> &Cases) {
517  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
518 }
519 
520 /// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
521 /// well.
522 static bool
523 ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
524  std::vector<ValueEqualityComparisonCase > &C2) {
525  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
526 
527  // Make V1 be smaller than V2.
528  if (V1->size() > V2->size())
529  std::swap(V1, V2);
530 
531  if (V1->size() == 0) return false;
532  if (V1->size() == 1) {
533  // Just scan V2.
534  ConstantInt *TheVal = (*V1)[0].Value;
535  for (unsigned i = 0, e = V2->size(); i != e; ++i)
536  if (TheVal == (*V2)[i].Value)
537  return true;
538  }
539 
540  // Otherwise, just sort both lists and compare element by element.
541  array_pod_sort(V1->begin(), V1->end());
542  array_pod_sort(V2->begin(), V2->end());
543  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
544  while (i1 != e1 && i2 != e2) {
545  if ((*V1)[i1].Value == (*V2)[i2].Value)
546  return true;
547  if ((*V1)[i1].Value < (*V2)[i2].Value)
548  ++i1;
549  else
550  ++i2;
551  }
552  return false;
553 }
554 
555 /// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
556 /// terminator instruction and its block is known to only have a single
557 /// predecessor block, check to see if that predecessor is also a value
558 /// comparison with the same value, and if that comparison determines the
559 /// outcome of this comparison. If so, simplify TI. This does a very limited
560 /// form of jump threading.
561 bool SimplifyCFGOpt::
562 SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
563  BasicBlock *Pred,
564  IRBuilder<> &Builder) {
565  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
566  if (!PredVal) return false; // Not a value comparison in predecessor.
567 
568  Value *ThisVal = isValueEqualityComparison(TI);
569  assert(ThisVal && "This isn't a value comparison!!");
570  if (ThisVal != PredVal) return false; // Different predicates.
571 
572  // TODO: Preserve branch weight metadata, similarly to how
573  // FoldValueComparisonIntoPredecessors preserves it.
574 
575  // Find out information about when control will move from Pred to TI's block.
576  std::vector<ValueEqualityComparisonCase> PredCases;
577  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
578  PredCases);
579  EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
580 
581  // Find information about how control leaves this block.
582  std::vector<ValueEqualityComparisonCase> ThisCases;
583  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
584  EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
585 
586  // If TI's block is the default block from Pred's comparison, potentially
587  // simplify TI based on this knowledge.
588  if (PredDef == TI->getParent()) {
589  // If we are here, we know that the value is none of those cases listed in
590  // PredCases. If there are any cases in ThisCases that are in PredCases, we
591  // can simplify TI.
592  if (!ValuesOverlap(PredCases, ThisCases))
593  return false;
594 
595  if (isa<BranchInst>(TI)) {
596  // Okay, one of the successors of this condbr is dead. Convert it to a
597  // uncond br.
598  assert(ThisCases.size() == 1 && "Branch can only have one case!");
599  // Insert the new branch.
600  Instruction *NI = Builder.CreateBr(ThisDef);
601  (void) NI;
602 
603  // Remove PHI node entries for the dead edge.
604  ThisCases[0].Dest->removePredecessor(TI->getParent());
605 
606  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
607  << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
608 
610  return true;
611  }
612 
613  SwitchInst *SI = cast<SwitchInst>(TI);
614  // Okay, TI has cases that are statically dead, prune them away.
615  SmallPtrSet<Constant*, 16> DeadCases;
616  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
617  DeadCases.insert(PredCases[i].Value);
618 
619  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
620  << "Through successor TI: " << *TI);
621 
622  // Collect branch weights into a vector.
623  SmallVector<uint32_t, 8> Weights;
625  bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
626  if (HasWeight)
627  for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
628  ++MD_i) {
629  ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
630  assert(CI);
631  Weights.push_back(CI->getValue().getZExtValue());
632  }
633  for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
634  --i;
635  if (DeadCases.count(i.getCaseValue())) {
636  if (HasWeight) {
637  std::swap(Weights[i.getCaseIndex()+1], Weights.back());
638  Weights.pop_back();
639  }
640  i.getCaseSuccessor()->removePredecessor(TI->getParent());
641  SI->removeCase(i);
642  }
643  }
644  if (HasWeight && Weights.size() >= 2)
646  MDBuilder(SI->getParent()->getContext()).
647  createBranchWeights(Weights));
648 
649  DEBUG(dbgs() << "Leaving: " << *TI << "\n");
650  return true;
651  }
652 
653  // Otherwise, TI's block must correspond to some matched value. Find out
654  // which value (or set of values) this is.
655  ConstantInt *TIV = 0;
656  BasicBlock *TIBB = TI->getParent();
657  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
658  if (PredCases[i].Dest == TIBB) {
659  if (TIV != 0)
660  return false; // Cannot handle multiple values coming to this block.
661  TIV = PredCases[i].Value;
662  }
663  assert(TIV && "No edge from pred to succ?");
664 
665  // Okay, we found the one constant that our value can be if we get into TI's
666  // BB. Find out which successor will unconditionally be branched to.
667  BasicBlock *TheRealDest = 0;
668  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
669  if (ThisCases[i].Value == TIV) {
670  TheRealDest = ThisCases[i].Dest;
671  break;
672  }
673 
674  // If not handled by any explicit cases, it is handled by the default case.
675  if (TheRealDest == 0) TheRealDest = ThisDef;
676 
677  // Remove PHI node entries for dead edges.
678  BasicBlock *CheckEdge = TheRealDest;
679  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
680  if (*SI != CheckEdge)
681  (*SI)->removePredecessor(TIBB);
682  else
683  CheckEdge = 0;
684 
685  // Insert the new branch.
686  Instruction *NI = Builder.CreateBr(TheRealDest);
687  (void) NI;
688 
689  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
690  << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
691 
693  return true;
694 }
695 
696 namespace {
697  /// ConstantIntOrdering - This class implements a stable ordering of constant
698  /// integers that does not depend on their address. This is important for
699  /// applications that sort ConstantInt's to ensure uniqueness.
700  struct ConstantIntOrdering {
701  bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
702  return LHS->getValue().ult(RHS->getValue());
703  }
704  };
705 }
706 
707 static int ConstantIntSortPredicate(ConstantInt *const *P1,
708  ConstantInt *const *P2) {
709  const ConstantInt *LHS = *P1;
710  const ConstantInt *RHS = *P2;
711  if (LHS->getValue().ult(RHS->getValue()))
712  return 1;
713  if (LHS->getValue() == RHS->getValue())
714  return 0;
715  return -1;
716 }
717 
718 static inline bool HasBranchWeights(const Instruction* I) {
720  if (ProfMD && ProfMD->getOperand(0))
721  if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
722  return MDS->getString().equals("branch_weights");
723 
724  return false;
725 }
726 
727 /// Get Weights of a given TerminatorInst, the default weight is at the front
728 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
729 /// metadata.
731  SmallVectorImpl<uint64_t> &Weights) {
733  assert(MD);
734  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
736  assert(CI);
737  Weights.push_back(CI->getValue().getZExtValue());
738  }
739 
740  // If TI is a conditional eq, the default case is the false case,
741  // and the corresponding branch-weight data is at index 2. We swap the
742  // default weight to be the first entry.
743  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
744  assert(Weights.size() == 2);
745  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
746  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
747  std::swap(Weights.front(), Weights.back());
748  }
749 }
750 
751 /// Sees if any of the weights are too big for a uint32_t, and halves all the
752 /// weights if any are.
753 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
754  bool Halve = false;
755  for (unsigned i = 0; i < Weights.size(); ++i)
756  if (Weights[i] > UINT_MAX) {
757  Halve = true;
758  break;
759  }
760 
761  if (! Halve)
762  return;
763 
764  for (unsigned i = 0; i < Weights.size(); ++i)
765  Weights[i] /= 2;
766 }
767 
768 /// FoldValueComparisonIntoPredecessors - The specified terminator is a value
769 /// equality comparison instruction (either a switch or a branch on "X == c").
770 /// See if any of the predecessors of the terminator block are value comparisons
771 /// on the same value. If so, and if safe to do so, fold them together.
772 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
773  IRBuilder<> &Builder) {
774  BasicBlock *BB = TI->getParent();
775  Value *CV = isValueEqualityComparison(TI); // CondVal
776  assert(CV && "Not a comparison?");
777  bool Changed = false;
778 
780  while (!Preds.empty()) {
781  BasicBlock *Pred = Preds.pop_back_val();
782 
783  // See if the predecessor is a comparison with the same value.
784  TerminatorInst *PTI = Pred->getTerminator();
785  Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
786 
787  if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
788  // Figure out which 'cases' to copy from SI to PSI.
789  std::vector<ValueEqualityComparisonCase> BBCases;
790  BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
791 
792  std::vector<ValueEqualityComparisonCase> PredCases;
793  BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
794 
795  // Based on whether the default edge from PTI goes to BB or not, fill in
796  // PredCases and PredDefault with the new switch cases we would like to
797  // build.
798  SmallVector<BasicBlock*, 8> NewSuccessors;
799 
800  // Update the branch weight metadata along the way
801  SmallVector<uint64_t, 8> Weights;
802  bool PredHasWeights = HasBranchWeights(PTI);
803  bool SuccHasWeights = HasBranchWeights(TI);
804 
805  if (PredHasWeights) {
806  GetBranchWeights(PTI, Weights);
807  // branch-weight metadata is inconsistent here.
808  if (Weights.size() != 1 + PredCases.size())
809  PredHasWeights = SuccHasWeights = false;
810  } else if (SuccHasWeights)
811  // If there are no predecessor weights but there are successor weights,
812  // populate Weights with 1, which will later be scaled to the sum of
813  // successor's weights
814  Weights.assign(1 + PredCases.size(), 1);
815 
816  SmallVector<uint64_t, 8> SuccWeights;
817  if (SuccHasWeights) {
818  GetBranchWeights(TI, SuccWeights);
819  // branch-weight metadata is inconsistent here.
820  if (SuccWeights.size() != 1 + BBCases.size())
821  PredHasWeights = SuccHasWeights = false;
822  } else if (PredHasWeights)
823  SuccWeights.assign(1 + BBCases.size(), 1);
824 
825  if (PredDefault == BB) {
826  // If this is the default destination from PTI, only the edges in TI
827  // that don't occur in PTI, or that branch to BB will be activated.
828  std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
829  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
830  if (PredCases[i].Dest != BB)
831  PTIHandled.insert(PredCases[i].Value);
832  else {
833  // The default destination is BB, we don't need explicit targets.
834  std::swap(PredCases[i], PredCases.back());
835 
836  if (PredHasWeights || SuccHasWeights) {
837  // Increase weight for the default case.
838  Weights[0] += Weights[i+1];
839  std::swap(Weights[i+1], Weights.back());
840  Weights.pop_back();
841  }
842 
843  PredCases.pop_back();
844  --i; --e;
845  }
846 
847  // Reconstruct the new switch statement we will be building.
848  if (PredDefault != BBDefault) {
849  PredDefault->removePredecessor(Pred);
850  PredDefault = BBDefault;
851  NewSuccessors.push_back(BBDefault);
852  }
853 
854  unsigned CasesFromPred = Weights.size();
855  uint64_t ValidTotalSuccWeight = 0;
856  for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
857  if (!PTIHandled.count(BBCases[i].Value) &&
858  BBCases[i].Dest != BBDefault) {
859  PredCases.push_back(BBCases[i]);
860  NewSuccessors.push_back(BBCases[i].Dest);
861  if (SuccHasWeights || PredHasWeights) {
862  // The default weight is at index 0, so weight for the ith case
863  // should be at index i+1. Scale the cases from successor by
864  // PredDefaultWeight (Weights[0]).
865  Weights.push_back(Weights[0] * SuccWeights[i+1]);
866  ValidTotalSuccWeight += SuccWeights[i+1];
867  }
868  }
869 
870  if (SuccHasWeights || PredHasWeights) {
871  ValidTotalSuccWeight += SuccWeights[0];
872  // Scale the cases from predecessor by ValidTotalSuccWeight.
873  for (unsigned i = 1; i < CasesFromPred; ++i)
874  Weights[i] *= ValidTotalSuccWeight;
875  // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
876  Weights[0] *= SuccWeights[0];
877  }
878  } else {
879  // If this is not the default destination from PSI, only the edges
880  // in SI that occur in PSI with a destination of BB will be
881  // activated.
882  std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
883  std::map<ConstantInt*, uint64_t> WeightsForHandled;
884  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
885  if (PredCases[i].Dest == BB) {
886  PTIHandled.insert(PredCases[i].Value);
887 
888  if (PredHasWeights || SuccHasWeights) {
889  WeightsForHandled[PredCases[i].Value] = Weights[i+1];
890  std::swap(Weights[i+1], Weights.back());
891  Weights.pop_back();
892  }
893 
894  std::swap(PredCases[i], PredCases.back());
895  PredCases.pop_back();
896  --i; --e;
897  }
898 
899  // Okay, now we know which constants were sent to BB from the
900  // predecessor. Figure out where they will all go now.
901  for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
902  if (PTIHandled.count(BBCases[i].Value)) {
903  // If this is one we are capable of getting...
904  if (PredHasWeights || SuccHasWeights)
905  Weights.push_back(WeightsForHandled[BBCases[i].Value]);
906  PredCases.push_back(BBCases[i]);
907  NewSuccessors.push_back(BBCases[i].Dest);
908  PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
909  }
910 
911  // If there are any constants vectored to BB that TI doesn't handle,
912  // they must go to the default destination of TI.
913  for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
914  PTIHandled.begin(),
915  E = PTIHandled.end(); I != E; ++I) {
916  if (PredHasWeights || SuccHasWeights)
917  Weights.push_back(WeightsForHandled[*I]);
918  PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
919  NewSuccessors.push_back(BBDefault);
920  }
921  }
922 
923  // Okay, at this point, we know which new successor Pred will get. Make
924  // sure we update the number of entries in the PHI nodes for these
925  // successors.
926  for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
927  AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
928 
929  Builder.SetInsertPoint(PTI);
930  // Convert pointer to int before we switch.
931  if (CV->getType()->isPointerTy()) {
932  assert(TD && "Cannot switch on pointer without DataLayout");
933  CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getType()),
934  "magicptr");
935  }
936 
937  // Now that the successors are updated, create the new Switch instruction.
938  SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
939  PredCases.size());
940  NewSI->setDebugLoc(PTI->getDebugLoc());
941  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
942  NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
943 
944  if (PredHasWeights || SuccHasWeights) {
945  // Halve the weights if any of them cannot fit in an uint32_t
946  FitWeights(Weights);
947 
948  SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
949 
951  MDBuilder(BB->getContext()).
952  createBranchWeights(MDWeights));
953  }
954 
956 
957  // Okay, last check. If BB is still a successor of PSI, then we must
958  // have an infinite loop case. If so, add an infinitely looping block
959  // to handle the case to preserve the behavior of the code.
960  BasicBlock *InfLoopBlock = 0;
961  for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
962  if (NewSI->getSuccessor(i) == BB) {
963  if (InfLoopBlock == 0) {
964  // Insert it at the end of the function, because it's either code,
965  // or it won't matter if it's hot. :)
966  InfLoopBlock = BasicBlock::Create(BB->getContext(),
967  "infloop", BB->getParent());
968  BranchInst::Create(InfLoopBlock, InfLoopBlock);
969  }
970  NewSI->setSuccessor(i, InfLoopBlock);
971  }
972 
973  Changed = true;
974  }
975  }
976  return Changed;
977 }
978 
979 // isSafeToHoistInvoke - If we would need to insert a select that uses the
980 // value of this invoke (comments in HoistThenElseCodeToIf explain why we
981 // would need to do this), we can't hoist the invoke, as there is nowhere
982 // to put the select in this case.
984  Instruction *I1, Instruction *I2) {
985  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
986  PHINode *PN;
987  for (BasicBlock::iterator BBI = SI->begin();
988  (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
989  Value *BB1V = PN->getIncomingValueForBlock(BB1);
990  Value *BB2V = PN->getIncomingValueForBlock(BB2);
991  if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
992  return false;
993  }
994  }
995  }
996  return true;
997 }
998 
999 /// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1000 /// BB2, hoist any common code in the two blocks up into the branch block. The
1001 /// caller of this function guarantees that BI's block dominates BB1 and BB2.
1003  // This does very trivial matching, with limited scanning, to find identical
1004  // instructions in the two blocks. In particular, we don't want to get into
1005  // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1006  // such, we currently just scan for obviously identical instructions in an
1007  // identical order.
1008  BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1009  BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1010 
1011  BasicBlock::iterator BB1_Itr = BB1->begin();
1012  BasicBlock::iterator BB2_Itr = BB2->begin();
1013 
1014  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1015  // Skip debug info if it is not identical.
1018  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1019  while (isa<DbgInfoIntrinsic>(I1))
1020  I1 = BB1_Itr++;
1021  while (isa<DbgInfoIntrinsic>(I2))
1022  I2 = BB2_Itr++;
1023  }
1024  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1025  (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1026  return false;
1027 
1028  BasicBlock *BIParent = BI->getParent();
1029 
1030  bool Changed = false;
1031  do {
1032  // If we are hoisting the terminator instruction, don't move one (making a
1033  // broken BB), instead clone it, and remove BI.
1034  if (isa<TerminatorInst>(I1))
1035  goto HoistTerminator;
1036 
1037  // For a normal instruction, we just move one to right before the branch,
1038  // then replace all uses of the other with the first. Finally, we remove
1039  // the now redundant second instruction.
1040  BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1041  if (!I2->use_empty())
1042  I2->replaceAllUsesWith(I1);
1043  I1->intersectOptionalDataWith(I2);
1044  I2->eraseFromParent();
1045  Changed = true;
1046 
1047  I1 = BB1_Itr++;
1048  I2 = BB2_Itr++;
1049  // Skip debug info if it is not identical.
1052  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1053  while (isa<DbgInfoIntrinsic>(I1))
1054  I1 = BB1_Itr++;
1055  while (isa<DbgInfoIntrinsic>(I2))
1056  I2 = BB2_Itr++;
1057  }
1058  } while (I1->isIdenticalToWhenDefined(I2));
1059 
1060  return true;
1061 
1062 HoistTerminator:
1063  // It may not be possible to hoist an invoke.
1064  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1065  return Changed;
1066 
1067  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1068  PHINode *PN;
1069  for (BasicBlock::iterator BBI = SI->begin();
1070  (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1071  Value *BB1V = PN->getIncomingValueForBlock(BB1);
1072  Value *BB2V = PN->getIncomingValueForBlock(BB2);
1073  if (BB1V == BB2V)
1074  continue;
1075 
1076  if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1077  return Changed;
1078  if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1079  return Changed;
1080  }
1081  }
1082 
1083  // Okay, it is safe to hoist the terminator.
1084  Instruction *NT = I1->clone();
1085  BIParent->getInstList().insert(BI, NT);
1086  if (!NT->getType()->isVoidTy()) {
1087  I1->replaceAllUsesWith(NT);
1088  I2->replaceAllUsesWith(NT);
1089  NT->takeName(I1);
1090  }
1091 
1092  IRBuilder<true, NoFolder> Builder(NT);
1093  // Hoisting one of the terminators from our successor is a great thing.
1094  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1095  // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1096  // nodes, so we insert select instruction to compute the final result.
1097  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1098  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1099  PHINode *PN;
1100  for (BasicBlock::iterator BBI = SI->begin();
1101  (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1102  Value *BB1V = PN->getIncomingValueForBlock(BB1);
1103  Value *BB2V = PN->getIncomingValueForBlock(BB2);
1104  if (BB1V == BB2V) continue;
1105 
1106  // These values do not agree. Insert a select instruction before NT
1107  // that determines the right value.
1108  SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1109  if (SI == 0)
1110  SI = cast<SelectInst>
1111  (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1112  BB1V->getName()+"."+BB2V->getName()));
1113 
1114  // Make the PHI node use the select for all incoming values for BB1/BB2
1115  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1116  if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1117  PN->setIncomingValue(i, SI);
1118  }
1119  }
1120 
1121  // Update any PHI nodes in our new successors.
1122  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1123  AddPredecessorToBlock(*SI, BIParent, BB1);
1124 
1126  return true;
1127 }
1128 
1129 /// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1130 /// check whether BBEnd has only two predecessors and the other predecessor
1131 /// ends with an unconditional branch. If it is true, sink any common code
1132 /// in the two predecessors to BBEnd.
1134  assert(BI1->isUnconditional());
1135  BasicBlock *BB1 = BI1->getParent();
1136  BasicBlock *BBEnd = BI1->getSuccessor(0);
1137 
1138  // Check that BBEnd has two predecessors and the other predecessor ends with
1139  // an unconditional branch.
1140  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1141  BasicBlock *Pred0 = *PI++;
1142  if (PI == PE) // Only one predecessor.
1143  return false;
1144  BasicBlock *Pred1 = *PI++;
1145  if (PI != PE) // More than two predecessors.
1146  return false;
1147  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1148  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1149  if (!BI2 || !BI2->isUnconditional())
1150  return false;
1151 
1152  // Gather the PHI nodes in BBEnd.
1153  std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1154  Instruction *FirstNonPhiInBBEnd = 0;
1155  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1156  I != E; ++I) {
1157  if (PHINode *PN = dyn_cast<PHINode>(I)) {
1158  Value *BB1V = PN->getIncomingValueForBlock(BB1);
1159  Value *BB2V = PN->getIncomingValueForBlock(BB2);
1160  MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1161  } else {
1162  FirstNonPhiInBBEnd = &*I;
1163  break;
1164  }
1165  }
1166  if (!FirstNonPhiInBBEnd)
1167  return false;
1168 
1169 
1170  // This does very trivial matching, with limited scanning, to find identical
1171  // instructions in the two blocks. We scan backward for obviously identical
1172  // instructions in an identical order.
1173  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1174  RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1175  RE2 = BB2->getInstList().rend();
1176  // Skip debug info.
1177  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1178  if (RI1 == RE1)
1179  return false;
1180  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1181  if (RI2 == RE2)
1182  return false;
1183  // Skip the unconditional branches.
1184  ++RI1;
1185  ++RI2;
1186 
1187  bool Changed = false;
1188  while (RI1 != RE1 && RI2 != RE2) {
1189  // Skip debug info.
1190  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1191  if (RI1 == RE1)
1192  return Changed;
1193  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1194  if (RI2 == RE2)
1195  return Changed;
1196 
1197  Instruction *I1 = &*RI1, *I2 = &*RI2;
1198  // I1 and I2 should have a single use in the same PHI node, and they
1199  // perform the same operation.
1200  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1201  if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1202  isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1203  isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1204  isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1205  I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1206  I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1207  !I1->hasOneUse() || !I2->hasOneUse() ||
1208  MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1209  MapValueFromBB1ToBB2[I1].first != I2)
1210  return Changed;
1211 
1212  // Check whether we should swap the operands of ICmpInst.
1213  ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1214  bool SwapOpnds = false;
1215  if (ICmp1 && ICmp2 &&
1216  ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1217  ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1218  (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1219  ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1220  ICmp2->swapOperands();
1221  SwapOpnds = true;
1222  }
1223  if (!I1->isSameOperationAs(I2)) {
1224  if (SwapOpnds)
1225  ICmp2->swapOperands();
1226  return Changed;
1227  }
1228 
1229  // The operands should be either the same or they need to be generated
1230  // with a PHI node after sinking. We only handle the case where there is
1231  // a single pair of different operands.
1232  Value *DifferentOp1 = 0, *DifferentOp2 = 0;
1233  unsigned Op1Idx = 0;
1234  for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1235  if (I1->getOperand(I) == I2->getOperand(I))
1236  continue;
1237  // Early exit if we have more-than one pair of different operands or
1238  // the different operand is already in MapValueFromBB1ToBB2.
1239  // Early exit if we need a PHI node to replace a constant.
1240  if (DifferentOp1 ||
1241  MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1242  MapValueFromBB1ToBB2.end() ||
1243  isa<Constant>(I1->getOperand(I)) ||
1244  isa<Constant>(I2->getOperand(I))) {
1245  // If we can't sink the instructions, undo the swapping.
1246  if (SwapOpnds)
1247  ICmp2->swapOperands();
1248  return Changed;
1249  }
1250  DifferentOp1 = I1->getOperand(I);
1251  Op1Idx = I;
1252  DifferentOp2 = I2->getOperand(I);
1253  }
1254 
1255  // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1256  // remove (I1, I2) from MapValueFromBB1ToBB2.
1257  if (DifferentOp1) {
1258  PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1259  DifferentOp1->getName() + ".sink",
1260  BBEnd->begin());
1261  MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1262  // I1 should use NewPN instead of DifferentOp1.
1263  I1->setOperand(Op1Idx, NewPN);
1264  NewPN->addIncoming(DifferentOp1, BB1);
1265  NewPN->addIncoming(DifferentOp2, BB2);
1266  DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1267  }
1268  PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1269  MapValueFromBB1ToBB2.erase(I1);
1270 
1271  DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1272  DEBUG(dbgs() << " " << *I2 << "\n";);
1273  // We need to update RE1 and RE2 if we are going to sink the first
1274  // instruction in the basic block down.
1275  bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1276  // Sink the instruction.
1277  BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1278  if (!OldPN->use_empty())
1279  OldPN->replaceAllUsesWith(I1);
1280  OldPN->eraseFromParent();
1281 
1282  if (!I2->use_empty())
1283  I2->replaceAllUsesWith(I1);
1284  I1->intersectOptionalDataWith(I2);
1285  I2->eraseFromParent();
1286 
1287  if (UpdateRE1)
1288  RE1 = BB1->getInstList().rend();
1289  if (UpdateRE2)
1290  RE2 = BB2->getInstList().rend();
1291  FirstNonPhiInBBEnd = I1;
1292  NumSinkCommons++;
1293  Changed = true;
1294  }
1295  return Changed;
1296 }
1297 
1298 /// \brief Determine if we can hoist sink a sole store instruction out of a
1299 /// conditional block.
1300 ///
1301 /// We are looking for code like the following:
1302 /// BrBB:
1303 /// store i32 %add, i32* %arrayidx2
1304 /// ... // No other stores or function calls (we could be calling a memory
1305 /// ... // function).
1306 /// %cmp = icmp ult %x, %y
1307 /// br i1 %cmp, label %EndBB, label %ThenBB
1308 /// ThenBB:
1309 /// store i32 %add5, i32* %arrayidx2
1310 /// br label EndBB
1311 /// EndBB:
1312 /// ...
1313 /// We are going to transform this into:
1314 /// BrBB:
1315 /// store i32 %add, i32* %arrayidx2
1316 /// ... //
1317 /// %cmp = icmp ult %x, %y
1318 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1319 /// store i32 %add.add5, i32* %arrayidx2
1320 /// ...
1321 ///
1322 /// \return The pointer to the value of the previous store if the store can be
1323 /// hoisted into the predecessor block. 0 otherwise.
1325  BasicBlock *StoreBB, BasicBlock *EndBB) {
1326  StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1327  if (!StoreToHoist)
1328  return 0;
1329 
1330  // Volatile or atomic.
1331  if (!StoreToHoist->isSimple())
1332  return 0;
1333 
1334  Value *StorePtr = StoreToHoist->getPointerOperand();
1335 
1336  // Look for a store to the same pointer in BrBB.
1337  unsigned MaxNumInstToLookAt = 10;
1338  for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1339  RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1340  Instruction *CurI = &*RI;
1341 
1342  // Could be calling an instruction that effects memory like free().
1343  if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1344  return 0;
1345 
1346  StoreInst *SI = dyn_cast<StoreInst>(CurI);
1347  // Found the previous store make sure it stores to the same location.
1348  if (SI && SI->getPointerOperand() == StorePtr)
1349  // Found the previous store, return its value operand.
1350  return SI->getValueOperand();
1351  else if (SI)
1352  return 0; // Unknown store.
1353  }
1354 
1355  return 0;
1356 }
1357 
1358 /// \brief Speculate a conditional basic block flattening the CFG.
1359 ///
1360 /// Note that this is a very risky transform currently. Speculating
1361 /// instructions like this is most often not desirable. Instead, there is an MI
1362 /// pass which can do it with full awareness of the resource constraints.
1363 /// However, some cases are "obvious" and we should do directly. An example of
1364 /// this is speculating a single, reasonably cheap instruction.
1365 ///
1366 /// There is only one distinct advantage to flattening the CFG at the IR level:
1367 /// it makes very common but simplistic optimizations such as are common in
1368 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1369 /// modeling their effects with easier to reason about SSA value graphs.
1370 ///
1371 ///
1372 /// An illustration of this transform is turning this IR:
1373 /// \code
1374 /// BB:
1375 /// %cmp = icmp ult %x, %y
1376 /// br i1 %cmp, label %EndBB, label %ThenBB
1377 /// ThenBB:
1378 /// %sub = sub %x, %y
1379 /// br label BB2
1380 /// EndBB:
1381 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1382 /// ...
1383 /// \endcode
1384 ///
1385 /// Into this IR:
1386 /// \code
1387 /// BB:
1388 /// %cmp = icmp ult %x, %y
1389 /// %sub = sub %x, %y
1390 /// %cond = select i1 %cmp, 0, %sub
1391 /// ...
1392 /// \endcode
1393 ///
1394 /// \returns true if the conditional block is removed.
1395 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB) {
1396  // Be conservative for now. FP select instruction can often be expensive.
1397  Value *BrCond = BI->getCondition();
1398  if (isa<FCmpInst>(BrCond))
1399  return false;
1400 
1401  BasicBlock *BB = BI->getParent();
1402  BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1403 
1404  // If ThenBB is actually on the false edge of the conditional branch, remember
1405  // to swap the select operands later.
1406  bool Invert = false;
1407  if (ThenBB != BI->getSuccessor(0)) {
1408  assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1409  Invert = true;
1410  }
1411  assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1412 
1413  // Keep a count of how many times instructions are used within CondBB when
1414  // they are candidates for sinking into CondBB. Specifically:
1415  // - They are defined in BB, and
1416  // - They have no side effects, and
1417  // - All of their uses are in CondBB.
1418  SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1419 
1420  unsigned SpeculationCost = 0;
1421  Value *SpeculatedStoreValue = 0;
1422  StoreInst *SpeculatedStore = 0;
1423  for (BasicBlock::iterator BBI = ThenBB->begin(),
1424  BBE = llvm::prior(ThenBB->end());
1425  BBI != BBE; ++BBI) {
1426  Instruction *I = BBI;
1427  // Skip debug info.
1428  if (isa<DbgInfoIntrinsic>(I))
1429  continue;
1430 
1431  // Only speculatively execution a single instruction (not counting the
1432  // terminator) for now.
1433  ++SpeculationCost;
1434  if (SpeculationCost > 1)
1435  return false;
1436 
1437  // Don't hoist the instruction if it's unsafe or expensive.
1438  if (!isSafeToSpeculativelyExecute(I) &&
1439  !(HoistCondStores &&
1440  (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
1441  EndBB))))
1442  return false;
1443  if (!SpeculatedStoreValue &&
1445  return false;
1446 
1447  // Store the store speculation candidate.
1448  if (SpeculatedStoreValue)
1449  SpeculatedStore = cast<StoreInst>(I);
1450 
1451  // Do not hoist the instruction if any of its operands are defined but not
1452  // used in BB. The transformation will prevent the operand from
1453  // being sunk into the use block.
1454  for (User::op_iterator i = I->op_begin(), e = I->op_end();
1455  i != e; ++i) {
1456  Instruction *OpI = dyn_cast<Instruction>(*i);
1457  if (!OpI || OpI->getParent() != BB ||
1458  OpI->mayHaveSideEffects())
1459  continue; // Not a candidate for sinking.
1460 
1461  ++SinkCandidateUseCounts[OpI];
1462  }
1463  }
1464 
1465  // Consider any sink candidates which are only used in CondBB as costs for
1466  // speculation. Note, while we iterate over a DenseMap here, we are summing
1467  // and so iteration order isn't significant.
1469  SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1470  I != E; ++I)
1471  if (I->first->getNumUses() == I->second) {
1472  ++SpeculationCost;
1473  if (SpeculationCost > 1)
1474  return false;
1475  }
1476 
1477  // Check that the PHI nodes can be converted to selects.
1478  bool HaveRewritablePHIs = false;
1479  for (BasicBlock::iterator I = EndBB->begin();
1480  PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1481  Value *OrigV = PN->getIncomingValueForBlock(BB);
1482  Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1483 
1484  // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1485  // Skip PHIs which are trivial.
1486  if (ThenV == OrigV)
1487  continue;
1488 
1489  HaveRewritablePHIs = true;
1490  ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1491  ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1492  if (!OrigCE && !ThenCE)
1493  continue; // Known safe and cheap.
1494 
1495  if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
1496  (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
1497  return false;
1498  unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE) : 0;
1499  unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE) : 0;
1500  if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
1501  return false;
1502 
1503  // Account for the cost of an unfolded ConstantExpr which could end up
1504  // getting expanded into Instructions.
1505  // FIXME: This doesn't account for how many operations are combined in the
1506  // constant expression.
1507  ++SpeculationCost;
1508  if (SpeculationCost > 1)
1509  return false;
1510  }
1511 
1512  // If there are no PHIs to process, bail early. This helps ensure idempotence
1513  // as well.
1514  if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1515  return false;
1516 
1517  // If we get here, we can hoist the instruction and if-convert.
1518  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1519 
1520  // Insert a select of the value of the speculated store.
1521  if (SpeculatedStoreValue) {
1522  IRBuilder<true, NoFolder> Builder(BI);
1523  Value *TrueV = SpeculatedStore->getValueOperand();
1524  Value *FalseV = SpeculatedStoreValue;
1525  if (Invert)
1526  std::swap(TrueV, FalseV);
1527  Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1528  "." + FalseV->getName());
1529  SpeculatedStore->setOperand(0, S);
1530  }
1531 
1532  // Hoist the instructions.
1533  BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1534  llvm::prior(ThenBB->end()));
1535 
1536  // Insert selects and rewrite the PHI operands.
1537  IRBuilder<true, NoFolder> Builder(BI);
1538  for (BasicBlock::iterator I = EndBB->begin();
1539  PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1540  unsigned OrigI = PN->getBasicBlockIndex(BB);
1541  unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1542  Value *OrigV = PN->getIncomingValue(OrigI);
1543  Value *ThenV = PN->getIncomingValue(ThenI);
1544 
1545  // Skip PHIs which are trivial.
1546  if (OrigV == ThenV)
1547  continue;
1548 
1549  // Create a select whose true value is the speculatively executed value and
1550  // false value is the preexisting value. Swap them if the branch
1551  // destinations were inverted.
1552  Value *TrueV = ThenV, *FalseV = OrigV;
1553  if (Invert)
1554  std::swap(TrueV, FalseV);
1555  Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1556  TrueV->getName() + "." + FalseV->getName());
1557  PN->setIncomingValue(OrigI, V);
1558  PN->setIncomingValue(ThenI, V);
1559  }
1560 
1561  ++NumSpeculations;
1562  return true;
1563 }
1564 
1565 /// \returns True if this block contains a CallInst with the NoDuplicate
1566 /// attribute.
1567 static bool HasNoDuplicateCall(const BasicBlock *BB) {
1568  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1569  const CallInst *CI = dyn_cast<CallInst>(I);
1570  if (!CI)
1571  continue;
1572  if (CI->cannotDuplicate())
1573  return true;
1574  }
1575  return false;
1576 }
1577 
1578 /// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1579 /// across this block.
1581  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1582  unsigned Size = 0;
1583 
1584  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1585  if (isa<DbgInfoIntrinsic>(BBI))
1586  continue;
1587  if (Size > 10) return false; // Don't clone large BB's.
1588  ++Size;
1589 
1590  // We can only support instructions that do not define values that are
1591  // live outside of the current basic block.
1592  for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1593  UI != E; ++UI) {
1594  Instruction *U = cast<Instruction>(*UI);
1595  if (U->getParent() != BB || isa<PHINode>(U)) return false;
1596  }
1597 
1598  // Looks ok, continue checking.
1599  }
1600 
1601  return true;
1602 }
1603 
1604 /// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1605 /// that is defined in the same block as the branch and if any PHI entries are
1606 /// constants, thread edges corresponding to that entry to be branches to their
1607 /// ultimate destination.
1608 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD) {
1609  BasicBlock *BB = BI->getParent();
1610  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1611  // NOTE: we currently cannot transform this case if the PHI node is used
1612  // outside of the block.
1613  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1614  return false;
1615 
1616  // Degenerate case of a single entry PHI.
1617  if (PN->getNumIncomingValues() == 1) {
1619  return true;
1620  }
1621 
1622  // Now we know that this block has multiple preds and two succs.
1623  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1624 
1625  if (HasNoDuplicateCall(BB)) return false;
1626 
1627  // Okay, this is a simple enough basic block. See if any phi values are
1628  // constants.
1629  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1631  if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1632 
1633  // Okay, we now know that all edges from PredBB should be revectored to
1634  // branch to RealDest.
1635  BasicBlock *PredBB = PN->getIncomingBlock(i);
1636  BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1637 
1638  if (RealDest == BB) continue; // Skip self loops.
1639  // Skip if the predecessor's terminator is an indirect branch.
1640  if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1641 
1642  // The dest block might have PHI nodes, other predecessors and other
1643  // difficult cases. Instead of being smart about this, just insert a new
1644  // block that jumps to the destination block, effectively splitting
1645  // the edge we are about to create.
1646  BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1647  RealDest->getName()+".critedge",
1648  RealDest->getParent(), RealDest);
1649  BranchInst::Create(RealDest, EdgeBB);
1650 
1651  // Update PHI nodes.
1652  AddPredecessorToBlock(RealDest, EdgeBB, BB);
1653 
1654  // BB may have instructions that are being threaded over. Clone these
1655  // instructions into EdgeBB. We know that there will be no uses of the
1656  // cloned instructions outside of EdgeBB.
1657  BasicBlock::iterator InsertPt = EdgeBB->begin();
1658  DenseMap<Value*, Value*> TranslateMap; // Track translated values.
1659  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1660  if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1661  TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1662  continue;
1663  }
1664  // Clone the instruction.
1665  Instruction *N = BBI->clone();
1666  if (BBI->hasName()) N->setName(BBI->getName()+".c");
1667 
1668  // Update operands due to translation.
1669  for (User::op_iterator i = N->op_begin(), e = N->op_end();
1670  i != e; ++i) {
1671  DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1672  if (PI != TranslateMap.end())
1673  *i = PI->second;
1674  }
1675 
1676  // Check for trivial simplification.
1677  if (Value *V = SimplifyInstruction(N, TD)) {
1678  TranslateMap[BBI] = V;
1679  delete N; // Instruction folded away, don't need actual inst
1680  } else {
1681  // Insert the new instruction into its new home.
1682  EdgeBB->getInstList().insert(InsertPt, N);
1683  if (!BBI->use_empty())
1684  TranslateMap[BBI] = N;
1685  }
1686  }
1687 
1688  // Loop over all of the edges from PredBB to BB, changing them to branch
1689  // to EdgeBB instead.
1690  TerminatorInst *PredBBTI = PredBB->getTerminator();
1691  for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1692  if (PredBBTI->getSuccessor(i) == BB) {
1693  BB->removePredecessor(PredBB);
1694  PredBBTI->setSuccessor(i, EdgeBB);
1695  }
1696 
1697  // Recurse, simplifying any other constants.
1698  return FoldCondBranchOnPHI(BI, TD) | true;
1699  }
1700 
1701  return false;
1702 }
1703 
1704 /// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1705 /// PHI node, see if we can eliminate it.
1706 static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD) {
1707  // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1708  // statement", which has a very simple dominance structure. Basically, we
1709  // are trying to find the condition that is being branched on, which
1710  // subsequently causes this merge to happen. We really want control
1711  // dependence information for this check, but simplifycfg can't keep it up
1712  // to date, and this catches most of the cases we care about anyway.
1713  BasicBlock *BB = PN->getParent();
1714  BasicBlock *IfTrue, *IfFalse;
1715  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1716  if (!IfCond ||
1717  // Don't bother if the branch will be constant folded trivially.
1718  isa<ConstantInt>(IfCond))
1719  return false;
1720 
1721  // Okay, we found that we can merge this two-entry phi node into a select.
1722  // Doing so would require us to fold *all* two entry phi nodes in this block.
1723  // At some point this becomes non-profitable (particularly if the target
1724  // doesn't support cmov's). Only do this transformation if there are two or
1725  // fewer PHI nodes in this block.
1726  unsigned NumPhis = 0;
1727  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1728  if (NumPhis > 2)
1729  return false;
1730 
1731  // Loop over the PHI's seeing if we can promote them all to select
1732  // instructions. While we are at it, keep track of the instructions
1733  // that need to be moved to the dominating block.
1734  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1735  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1736  MaxCostVal1 = PHINodeFoldingThreshold;
1737 
1738  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1739  PHINode *PN = cast<PHINode>(II++);
1740  if (Value *V = SimplifyInstruction(PN, TD)) {
1741  PN->replaceAllUsesWith(V);
1742  PN->eraseFromParent();
1743  continue;
1744  }
1745 
1746  if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1747  MaxCostVal0) ||
1748  !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1749  MaxCostVal1))
1750  return false;
1751  }
1752 
1753  // If we folded the first phi, PN dangles at this point. Refresh it. If
1754  // we ran out of PHIs then we simplified them all.
1755  PN = dyn_cast<PHINode>(BB->begin());
1756  if (PN == 0) return true;
1757 
1758  // Don't fold i1 branches on PHIs which contain binary operators. These can
1759  // often be turned into switches and other things.
1760  if (PN->getType()->isIntegerTy(1) &&
1761  (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1762  isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1763  isa<BinaryOperator>(IfCond)))
1764  return false;
1765 
1766  // If we all PHI nodes are promotable, check to make sure that all
1767  // instructions in the predecessor blocks can be promoted as well. If
1768  // not, we won't be able to get rid of the control flow, so it's not
1769  // worth promoting to select instructions.
1770  BasicBlock *DomBlock = 0;
1771  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1772  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1773  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1774  IfBlock1 = 0;
1775  } else {
1776  DomBlock = *pred_begin(IfBlock1);
1777  for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1778  if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1779  // This is not an aggressive instruction that we can promote.
1780  // Because of this, we won't be able to get rid of the control
1781  // flow, so the xform is not worth it.
1782  return false;
1783  }
1784  }
1785 
1786  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1787  IfBlock2 = 0;
1788  } else {
1789  DomBlock = *pred_begin(IfBlock2);
1790  for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1791  if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1792  // This is not an aggressive instruction that we can promote.
1793  // Because of this, we won't be able to get rid of the control
1794  // flow, so the xform is not worth it.
1795  return false;
1796  }
1797  }
1798 
1799  DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond << " T: "
1800  << IfTrue->getName() << " F: " << IfFalse->getName() << "\n");
1801 
1802  // If we can still promote the PHI nodes after this gauntlet of tests,
1803  // do all of the PHI's now.
1804  Instruction *InsertPt = DomBlock->getTerminator();
1805  IRBuilder<true, NoFolder> Builder(InsertPt);
1806 
1807  // Move all 'aggressive' instructions, which are defined in the
1808  // conditional parts of the if's up to the dominating block.
1809  if (IfBlock1)
1810  DomBlock->getInstList().splice(InsertPt,
1811  IfBlock1->getInstList(), IfBlock1->begin(),
1812  IfBlock1->getTerminator());
1813  if (IfBlock2)
1814  DomBlock->getInstList().splice(InsertPt,
1815  IfBlock2->getInstList(), IfBlock2->begin(),
1816  IfBlock2->getTerminator());
1817 
1818  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1819  // Change the PHI node into a select instruction.
1820  Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1821  Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1822 
1823  SelectInst *NV =
1824  cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1825  PN->replaceAllUsesWith(NV);
1826  NV->takeName(PN);
1827  PN->eraseFromParent();
1828  }
1829 
1830  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1831  // has been flattened. Change DomBlock to jump directly to our new block to
1832  // avoid other simplifycfg's kicking in on the diamond.
1833  TerminatorInst *OldTI = DomBlock->getTerminator();
1834  Builder.SetInsertPoint(OldTI);
1835  Builder.CreateBr(BB);
1836  OldTI->eraseFromParent();
1837  return true;
1838 }
1839 
1840 /// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1841 /// to two returning blocks, try to merge them together into one return,
1842 /// introducing a select if the return values disagree.
1844  IRBuilder<> &Builder) {
1845  assert(BI->isConditional() && "Must be a conditional branch");
1846  BasicBlock *TrueSucc = BI->getSuccessor(0);
1847  BasicBlock *FalseSucc = BI->getSuccessor(1);
1848  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1849  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1850 
1851  // Check to ensure both blocks are empty (just a return) or optionally empty
1852  // with PHI nodes. If there are other instructions, merging would cause extra
1853  // computation on one path or the other.
1854  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1855  return false;
1856  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1857  return false;
1858 
1859  Builder.SetInsertPoint(BI);
1860  // Okay, we found a branch that is going to two return nodes. If
1861  // there is no return value for this function, just change the
1862  // branch into a return.
1863  if (FalseRet->getNumOperands() == 0) {
1864  TrueSucc->removePredecessor(BI->getParent());
1865  FalseSucc->removePredecessor(BI->getParent());
1866  Builder.CreateRetVoid();
1868  return true;
1869  }
1870 
1871  // Otherwise, figure out what the true and false return values are
1872  // so we can insert a new select instruction.
1873  Value *TrueValue = TrueRet->getReturnValue();
1874  Value *FalseValue = FalseRet->getReturnValue();
1875 
1876  // Unwrap any PHI nodes in the return blocks.
1877  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1878  if (TVPN->getParent() == TrueSucc)
1879  TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1880  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1881  if (FVPN->getParent() == FalseSucc)
1882  FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1883 
1884  // In order for this transformation to be safe, we must be able to
1885  // unconditionally execute both operands to the return. This is
1886  // normally the case, but we could have a potentially-trapping
1887  // constant expression that prevents this transformation from being
1888  // safe.
1889  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1890  if (TCV->canTrap())
1891  return false;
1892  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1893  if (FCV->canTrap())
1894  return false;
1895 
1896  // Okay, we collected all the mapped values and checked them for sanity, and
1897  // defined to really do this transformation. First, update the CFG.
1898  TrueSucc->removePredecessor(BI->getParent());
1899  FalseSucc->removePredecessor(BI->getParent());
1900 
1901  // Insert select instructions where needed.
1902  Value *BrCond = BI->getCondition();
1903  if (TrueValue) {
1904  // Insert a select if the results differ.
1905  if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1906  } else if (isa<UndefValue>(TrueValue)) {
1907  TrueValue = FalseValue;
1908  } else {
1909  TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1910  FalseValue, "retval");
1911  }
1912  }
1913 
1914  Value *RI = !TrueValue ?
1915  Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1916 
1917  (void) RI;
1918 
1919  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1920  << "\n " << *BI << "NewRet = " << *RI
1921  << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1922 
1924 
1925  return true;
1926 }
1927 
1928 /// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1929 /// probabilities of the branch taking each edge. Fills in the two APInt
1930 /// parameters and return true, or returns false if no or invalid metadata was
1931 /// found.
1933  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1934  assert(BI->isConditional() &&
1935  "Looking for probabilities on unconditional branch?");
1936  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1937  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1938  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1939  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1940  if (!CITrue || !CIFalse) return false;
1941  ProbTrue = CITrue->getValue().getZExtValue();
1942  ProbFalse = CIFalse->getValue().getZExtValue();
1943  return true;
1944 }
1945 
1946 /// checkCSEInPredecessor - Return true if the given instruction is available
1947 /// in its predecessor block. If yes, the instruction will be removed.
1948 ///
1950  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1951  return false;
1952  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1953  Instruction *PBI = &*I;
1954  // Check whether Inst and PBI generate the same value.
1955  if (Inst->isIdenticalTo(PBI)) {
1956  Inst->replaceAllUsesWith(PBI);
1957  Inst->eraseFromParent();
1958  return true;
1959  }
1960  }
1961  return false;
1962 }
1963 
1964 /// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1965 /// predecessor branches to us and one of our successors, fold the block into
1966 /// the predecessor and use logical operations to pick the right destination.
1968  BasicBlock *BB = BI->getParent();
1969 
1970  Instruction *Cond = 0;
1971  if (BI->isConditional())
1972  Cond = dyn_cast<Instruction>(BI->getCondition());
1973  else {
1974  // For unconditional branch, check for a simple CFG pattern, where
1975  // BB has a single predecessor and BB's successor is also its predecessor's
1976  // successor. If such pattern exisits, check for CSE between BB and its
1977  // predecessor.
1978  if (BasicBlock *PB = BB->getSinglePredecessor())
1979  if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1980  if (PBI->isConditional() &&
1981  (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1982  BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1983  for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1984  I != E; ) {
1985  Instruction *Curr = I++;
1986  if (isa<CmpInst>(Curr)) {
1987  Cond = Curr;
1988  break;
1989  }
1990  // Quit if we can't remove this instruction.
1991  if (!checkCSEInPredecessor(Curr, PB))
1992  return false;
1993  }
1994  }
1995 
1996  if (Cond == 0)
1997  return false;
1998  }
1999 
2000  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2001  Cond->getParent() != BB || !Cond->hasOneUse())
2002  return false;
2003 
2004  // Only allow this if the condition is a simple instruction that can be
2005  // executed unconditionally. It must be in the same block as the branch, and
2006  // must be at the front of the block.
2007  BasicBlock::iterator FrontIt = BB->front();
2008 
2009  // Ignore dbg intrinsics.
2010  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2011 
2012  // Allow a single instruction to be hoisted in addition to the compare
2013  // that feeds the branch. We later ensure that any values that _it_ uses
2014  // were also live in the predecessor, so that we don't unnecessarily create
2015  // register pressure or inhibit out-of-order execution.
2016  Instruction *BonusInst = 0;
2017  if (&*FrontIt != Cond &&
2018  FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
2019  isSafeToSpeculativelyExecute(FrontIt)) {
2020  BonusInst = &*FrontIt;
2021  ++FrontIt;
2022 
2023  // Ignore dbg intrinsics.
2024  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2025  }
2026 
2027  // Only a single bonus inst is allowed.
2028  if (&*FrontIt != Cond)
2029  return false;
2030 
2031  // Make sure the instruction after the condition is the cond branch.
2032  BasicBlock::iterator CondIt = Cond; ++CondIt;
2033 
2034  // Ingore dbg intrinsics.
2035  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2036 
2037  if (&*CondIt != BI)
2038  return false;
2039 
2040  // Cond is known to be a compare or binary operator. Check to make sure that
2041  // neither operand is a potentially-trapping constant expression.
2042  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2043  if (CE->canTrap())
2044  return false;
2045  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2046  if (CE->canTrap())
2047  return false;
2048 
2049  // Finally, don't infinitely unroll conditional loops.
2050  BasicBlock *TrueDest = BI->getSuccessor(0);
2051  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
2052  if (TrueDest == BB || FalseDest == BB)
2053  return false;
2054 
2055  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2056  BasicBlock *PredBlock = *PI;
2057  BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2058 
2059  // Check that we have two conditional branches. If there is a PHI node in
2060  // the common successor, verify that the same value flows in from both
2061  // blocks.
2063  if (PBI == 0 || PBI->isUnconditional() ||
2064  (BI->isConditional() &&
2065  !SafeToMergeTerminators(BI, PBI)) ||
2066  (!BI->isConditional() &&
2067  !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2068  continue;
2069 
2070  // Determine if the two branches share a common destination.
2071  Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2072  bool InvertPredCond = false;
2073 
2074  if (BI->isConditional()) {
2075  if (PBI->getSuccessor(0) == TrueDest)
2076  Opc = Instruction::Or;
2077  else if (PBI->getSuccessor(1) == FalseDest)
2078  Opc = Instruction::And;
2079  else if (PBI->getSuccessor(0) == FalseDest)
2080  Opc = Instruction::And, InvertPredCond = true;
2081  else if (PBI->getSuccessor(1) == TrueDest)
2082  Opc = Instruction::Or, InvertPredCond = true;
2083  else
2084  continue;
2085  } else {
2086  if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2087  continue;
2088  }
2089 
2090  // Ensure that any values used in the bonus instruction are also used
2091  // by the terminator of the predecessor. This means that those values
2092  // must already have been resolved, so we won't be inhibiting the
2093  // out-of-order core by speculating them earlier. We also allow
2094  // instructions that are used by the terminator's condition because it
2095  // exposes more merging opportunities.
2096  bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() &&
2097  *BonusInst->use_begin() == Cond);
2098 
2099  if (BonusInst && !UsedByBranch) {
2100  // Collect the values used by the bonus inst
2101  SmallPtrSet<Value*, 4> UsedValues;
2102  for (Instruction::op_iterator OI = BonusInst->op_begin(),
2103  OE = BonusInst->op_end(); OI != OE; ++OI) {
2104  Value *V = *OI;
2105  if (!isa<Constant>(V) && !isa<Argument>(V))
2106  UsedValues.insert(V);
2107  }
2108 
2110  Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2111 
2112  // Walk up to four levels back up the use-def chain of the predecessor's
2113  // terminator to see if all those values were used. The choice of four
2114  // levels is arbitrary, to provide a compile-time-cost bound.
2115  while (!Worklist.empty()) {
2116  std::pair<Value*, unsigned> Pair = Worklist.back();
2117  Worklist.pop_back();
2118 
2119  if (Pair.second >= 4) continue;
2120  UsedValues.erase(Pair.first);
2121  if (UsedValues.empty()) break;
2122 
2123  if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2124  for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2125  OI != OE; ++OI)
2126  Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2127  }
2128  }
2129 
2130  if (!UsedValues.empty()) return false;
2131  }
2132 
2133  DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2134  IRBuilder<> Builder(PBI);
2135 
2136  // If we need to invert the condition in the pred block to match, do so now.
2137  if (InvertPredCond) {
2138  Value *NewCond = PBI->getCondition();
2139 
2140  if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2141  CmpInst *CI = cast<CmpInst>(NewCond);
2142  CI->setPredicate(CI->getInversePredicate());
2143  } else {
2144  NewCond = Builder.CreateNot(NewCond,
2145  PBI->getCondition()->getName()+".not");
2146  }
2147 
2148  PBI->setCondition(NewCond);
2149  PBI->swapSuccessors();
2150  }
2151 
2152  // If we have a bonus inst, clone it into the predecessor block.
2153  Instruction *NewBonus = 0;
2154  if (BonusInst) {
2155  NewBonus = BonusInst->clone();
2156  PredBlock->getInstList().insert(PBI, NewBonus);
2157  NewBonus->takeName(BonusInst);
2158  BonusInst->setName(BonusInst->getName()+".old");
2159  }
2160 
2161  // Clone Cond into the predecessor basic block, and or/and the
2162  // two conditions together.
2163  Instruction *New = Cond->clone();
2164  if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2165  PredBlock->getInstList().insert(PBI, New);
2166  New->takeName(Cond);
2167  Cond->setName(New->getName()+".old");
2168 
2169  if (BI->isConditional()) {
2170  Instruction *NewCond =
2171  cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2172  New, "or.cond"));
2173  PBI->setCondition(NewCond);
2174 
2175  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2176  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2177  PredFalseWeight);
2178  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2179  SuccFalseWeight);
2180  SmallVector<uint64_t, 8> NewWeights;
2181 
2182  if (PBI->getSuccessor(0) == BB) {
2183  if (PredHasWeights && SuccHasWeights) {
2184  // PBI: br i1 %x, BB, FalseDest
2185  // BI: br i1 %y, TrueDest, FalseDest
2186  //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2187  NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2188  //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2189  // TrueWeight for PBI * FalseWeight for BI.
2190  // We assume that total weights of a BranchInst can fit into 32 bits.
2191  // Therefore, we will not have overflow using 64-bit arithmetic.
2192  NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2193  SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2194  }
2195  AddPredecessorToBlock(TrueDest, PredBlock, BB);
2196  PBI->setSuccessor(0, TrueDest);
2197  }
2198  if (PBI->getSuccessor(1) == BB) {
2199  if (PredHasWeights && SuccHasWeights) {
2200  // PBI: br i1 %x, TrueDest, BB
2201  // BI: br i1 %y, TrueDest, FalseDest
2202  //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2203  // FalseWeight for PBI * TrueWeight for BI.
2204  NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2205  SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2206  //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2207  NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2208  }
2209  AddPredecessorToBlock(FalseDest, PredBlock, BB);
2210  PBI->setSuccessor(1, FalseDest);
2211  }
2212  if (NewWeights.size() == 2) {
2213  // Halve the weights if any of them cannot fit in an uint32_t
2214  FitWeights(NewWeights);
2215 
2216  SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2218  MDBuilder(BI->getContext()).
2219  createBranchWeights(MDWeights));
2220  } else
2221  PBI->setMetadata(LLVMContext::MD_prof, NULL);
2222  } else {
2223  // Update PHI nodes in the common successors.
2224  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2225  ConstantInt *PBI_C = cast<ConstantInt>(
2226  PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2227  assert(PBI_C->getType()->isIntegerTy(1));
2228  Instruction *MergedCond = 0;
2229  if (PBI->getSuccessor(0) == TrueDest) {
2230  // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2231  // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2232  // is false: !PBI_Cond and BI_Value
2233  Instruction *NotCond =
2234  cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2235  "not.cond"));
2236  MergedCond =
2237  cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2238  NotCond, New,
2239  "and.cond"));
2240  if (PBI_C->isOne())
2241  MergedCond =
2242  cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2243  PBI->getCondition(), MergedCond,
2244  "or.cond"));
2245  } else {
2246  // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2247  // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2248  // is false: PBI_Cond and BI_Value
2249  MergedCond =
2250  cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2251  PBI->getCondition(), New,
2252  "and.cond"));
2253  if (PBI_C->isOne()) {
2254  Instruction *NotCond =
2255  cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2256  "not.cond"));
2257  MergedCond =
2258  cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2259  NotCond, MergedCond,
2260  "or.cond"));
2261  }
2262  }
2263  // Update PHI Node.
2264  PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2265  MergedCond);
2266  }
2267  // Change PBI from Conditional to Unconditional.
2268  BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2270  PBI = New_PBI;
2271  }
2272 
2273  // TODO: If BB is reachable from all paths through PredBlock, then we
2274  // could replace PBI's branch probabilities with BI's.
2275 
2276  // Copy any debug value intrinsics into the end of PredBlock.
2277  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2278  if (isa<DbgInfoIntrinsic>(*I))
2279  I->clone()->insertBefore(PBI);
2280 
2281  return true;
2282  }
2283  return false;
2284 }
2285 
2286 /// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2287 /// predecessor of another block, this function tries to simplify it. We know
2288 /// that PBI and BI are both conditional branches, and BI is in one of the
2289 /// successor blocks of PBI - PBI branches to BI.
2291  assert(PBI->isConditional() && BI->isConditional());
2292  BasicBlock *BB = BI->getParent();
2293 
2294  // If this block ends with a branch instruction, and if there is a
2295  // predecessor that ends on a branch of the same condition, make
2296  // this conditional branch redundant.
2297  if (PBI->getCondition() == BI->getCondition() &&
2298  PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2299  // Okay, the outcome of this conditional branch is statically
2300  // knowable. If this block had a single pred, handle specially.
2301  if (BB->getSinglePredecessor()) {
2302  // Turn this into a branch on constant.
2303  bool CondIsTrue = PBI->getSuccessor(0) == BB;
2304  BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2305  CondIsTrue));
2306  return true; // Nuke the branch on constant.
2307  }
2308 
2309  // Otherwise, if there are multiple predecessors, insert a PHI that merges
2310  // in the constant and simplify the block result. Subsequent passes of
2311  // simplifycfg will thread the block.
2313  pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2314  PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2315  std::distance(PB, PE),
2316  BI->getCondition()->getName() + ".pr",
2317  BB->begin());
2318  // Okay, we're going to insert the PHI node. Since PBI is not the only
2319  // predecessor, compute the PHI'd conditional value for all of the preds.
2320  // Any predecessor where the condition is not computable we keep symbolic.
2321  for (pred_iterator PI = PB; PI != PE; ++PI) {
2322  BasicBlock *P = *PI;
2323  if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2324  PBI != BI && PBI->isConditional() &&
2325  PBI->getCondition() == BI->getCondition() &&
2326  PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2327  bool CondIsTrue = PBI->getSuccessor(0) == BB;
2328  NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2329  CondIsTrue), P);
2330  } else {
2331  NewPN->addIncoming(BI->getCondition(), P);
2332  }
2333  }
2334 
2335  BI->setCondition(NewPN);
2336  return true;
2337  }
2338  }
2339 
2340  // If this is a conditional branch in an empty block, and if any
2341  // predecessors is a conditional branch to one of our destinations,
2342  // fold the conditions into logical ops and one cond br.
2343  BasicBlock::iterator BBI = BB->begin();
2344  // Ignore dbg intrinsics.
2345  while (isa<DbgInfoIntrinsic>(BBI))
2346  ++BBI;
2347  if (&*BBI != BI)
2348  return false;
2349 
2350 
2351  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2352  if (CE->canTrap())
2353  return false;
2354 
2355  int PBIOp, BIOp;
2356  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2357  PBIOp = BIOp = 0;
2358  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2359  PBIOp = 0, BIOp = 1;
2360  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2361  PBIOp = 1, BIOp = 0;
2362  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2363  PBIOp = BIOp = 1;
2364  else
2365  return false;
2366 
2367  // Check to make sure that the other destination of this branch
2368  // isn't BB itself. If so, this is an infinite loop that will
2369  // keep getting unwound.
2370  if (PBI->getSuccessor(PBIOp) == BB)
2371  return false;
2372 
2373  // Do not perform this transformation if it would require
2374  // insertion of a large number of select instructions. For targets
2375  // without predication/cmovs, this is a big pessimization.
2376  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2377 
2378  unsigned NumPhis = 0;
2379  for (BasicBlock::iterator II = CommonDest->begin();
2380  isa<PHINode>(II); ++II, ++NumPhis)
2381  if (NumPhis > 2) // Disable this xform.
2382  return false;
2383 
2384  // Finally, if everything is ok, fold the branches to logical ops.
2385  BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2386 
2387  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2388  << "AND: " << *BI->getParent());
2389 
2390 
2391  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2392  // branch in it, where one edge (OtherDest) goes back to itself but the other
2393  // exits. We don't *know* that the program avoids the infinite loop
2394  // (even though that seems likely). If we do this xform naively, we'll end up
2395  // recursively unpeeling the loop. Since we know that (after the xform is
2396  // done) that the block *is* infinite if reached, we just make it an obviously
2397  // infinite loop with no cond branch.
2398  if (OtherDest == BB) {
2399  // Insert it at the end of the function, because it's either code,
2400  // or it won't matter if it's hot. :)
2401  BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2402  "infloop", BB->getParent());
2403  BranchInst::Create(InfLoopBlock, InfLoopBlock);
2404  OtherDest = InfLoopBlock;
2405  }
2406 
2407  DEBUG(dbgs() << *PBI->getParent()->getParent());
2408 
2409  // BI may have other predecessors. Because of this, we leave
2410  // it alone, but modify PBI.
2411 
2412  // Make sure we get to CommonDest on True&True directions.
2413  Value *PBICond = PBI->getCondition();
2414  IRBuilder<true, NoFolder> Builder(PBI);
2415  if (PBIOp)
2416  PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2417 
2418  Value *BICond = BI->getCondition();
2419  if (BIOp)
2420  BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2421 
2422  // Merge the conditions.
2423  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2424 
2425  // Modify PBI to branch on the new condition to the new dests.
2426  PBI->setCondition(Cond);
2427  PBI->setSuccessor(0, CommonDest);
2428  PBI->setSuccessor(1, OtherDest);
2429 
2430  // Update branch weight for PBI.
2431  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2432  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2433  PredFalseWeight);
2434  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2435  SuccFalseWeight);
2436  if (PredHasWeights && SuccHasWeights) {
2437  uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2438  uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2439  uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2440  uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2441  // The weight to CommonDest should be PredCommon * SuccTotal +
2442  // PredOther * SuccCommon.
2443  // The weight to OtherDest should be PredOther * SuccOther.
2444  SmallVector<uint64_t, 2> NewWeights;
2445  NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2446  PredOther * SuccCommon);
2447  NewWeights.push_back(PredOther * SuccOther);
2448  // Halve the weights if any of them cannot fit in an uint32_t
2449  FitWeights(NewWeights);
2450 
2451  SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2453  MDBuilder(BI->getContext()).
2454  createBranchWeights(MDWeights));
2455  }
2456 
2457  // OtherDest may have phi nodes. If so, add an entry from PBI's
2458  // block that are identical to the entries for BI's block.
2459  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2460 
2461  // We know that the CommonDest already had an edge from PBI to
2462  // it. If it has PHIs though, the PHIs may have different
2463  // entries for BB and PBI's BB. If so, insert a select to make
2464  // them agree.
2465  PHINode *PN;
2466  for (BasicBlock::iterator II = CommonDest->begin();
2467  (PN = dyn_cast<PHINode>(II)); ++II) {
2468  Value *BIV = PN->getIncomingValueForBlock(BB);
2469  unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2470  Value *PBIV = PN->getIncomingValue(PBBIdx);
2471  if (BIV != PBIV) {
2472  // Insert a select in PBI to pick the right value.
2473  Value *NV = cast<SelectInst>
2474  (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2475  PN->setIncomingValue(PBBIdx, NV);
2476  }
2477  }
2478 
2479  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2480  DEBUG(dbgs() << *PBI->getParent()->getParent());
2481 
2482  // This basic block is probably dead. We know it has at least
2483  // one fewer predecessor.
2484  return true;
2485 }
2486 
2487 // SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2488 // branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2489 // Takes care of updating the successors and removing the old terminator.
2490 // Also makes sure not to introduce new successors by assuming that edges to
2491 // non-successor TrueBBs and FalseBBs aren't reachable.
2492 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2493  BasicBlock *TrueBB, BasicBlock *FalseBB,
2494  uint32_t TrueWeight,
2495  uint32_t FalseWeight){
2496  // Remove any superfluous successor edges from the CFG.
2497  // First, figure out which successors to preserve.
2498  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2499  // successor.
2500  BasicBlock *KeepEdge1 = TrueBB;
2501  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2502 
2503  // Then remove the rest.
2504  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2505  BasicBlock *Succ = OldTerm->getSuccessor(I);
2506  // Make sure only to keep exactly one copy of each edge.
2507  if (Succ == KeepEdge1)
2508  KeepEdge1 = 0;
2509  else if (Succ == KeepEdge2)
2510  KeepEdge2 = 0;
2511  else
2512  Succ->removePredecessor(OldTerm->getParent());
2513  }
2514 
2515  IRBuilder<> Builder(OldTerm);
2516  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2517 
2518  // Insert an appropriate new terminator.
2519  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2520  if (TrueBB == FalseBB)
2521  // We were only looking for one successor, and it was present.
2522  // Create an unconditional branch to it.
2523  Builder.CreateBr(TrueBB);
2524  else {
2525  // We found both of the successors we were looking for.
2526  // Create a conditional branch sharing the condition of the select.
2527  BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2528  if (TrueWeight != FalseWeight)
2530  MDBuilder(OldTerm->getContext()).
2531  createBranchWeights(TrueWeight, FalseWeight));
2532  }
2533  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2534  // Neither of the selected blocks were successors, so this
2535  // terminator must be unreachable.
2536  new UnreachableInst(OldTerm->getContext(), OldTerm);
2537  } else {
2538  // One of the selected values was a successor, but the other wasn't.
2539  // Insert an unconditional branch to the one that was found;
2540  // the edge to the one that wasn't must be unreachable.
2541  if (KeepEdge1 == 0)
2542  // Only TrueBB was found.
2543  Builder.CreateBr(TrueBB);
2544  else
2545  // Only FalseBB was found.
2546  Builder.CreateBr(FalseBB);
2547  }
2548 
2550  return true;
2551 }
2552 
2553 // SimplifySwitchOnSelect - Replaces
2554 // (switch (select cond, X, Y)) on constant X, Y
2555 // with a branch - conditional if X and Y lead to distinct BBs,
2556 // unconditional otherwise.
2558  // Check for constant integer values in the select.
2559  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2560  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2561  if (!TrueVal || !FalseVal)
2562  return false;
2563 
2564  // Find the relevant condition and destinations.
2565  Value *Condition = Select->getCondition();
2566  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2567  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2568 
2569  // Get weight for TrueBB and FalseBB.
2570  uint32_t TrueWeight = 0, FalseWeight = 0;
2571  SmallVector<uint64_t, 8> Weights;
2572  bool HasWeights = HasBranchWeights(SI);
2573  if (HasWeights) {
2574  GetBranchWeights(SI, Weights);
2575  if (Weights.size() == 1 + SI->getNumCases()) {
2576  TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2577  getSuccessorIndex()];
2578  FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2579  getSuccessorIndex()];
2580  }
2581  }
2582 
2583  // Perform the actual simplification.
2584  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2585  TrueWeight, FalseWeight);
2586 }
2587 
2588 // SimplifyIndirectBrOnSelect - Replaces
2589 // (indirectbr (select cond, blockaddress(@fn, BlockA),
2590 // blockaddress(@fn, BlockB)))
2591 // with
2592 // (br cond, BlockA, BlockB).
2594  // Check that both operands of the select are block addresses.
2597  if (!TBA || !FBA)
2598  return false;
2599 
2600  // Extract the actual blocks.
2601  BasicBlock *TrueBB = TBA->getBasicBlock();
2602  BasicBlock *FalseBB = FBA->getBasicBlock();
2603 
2604  // Perform the actual simplification.
2605  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2606  0, 0);
2607 }
2608 
2609 /// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2610 /// instruction (a seteq/setne with a constant) as the only instruction in a
2611 /// block that ends with an uncond branch. We are looking for a very specific
2612 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
2613 /// this case, we merge the first two "or's of icmp" into a switch, but then the
2614 /// default value goes to an uncond block with a seteq in it, we get something
2615 /// like:
2616 ///
2617 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
2618 /// DEFAULT:
2619 /// %tmp = icmp eq i8 %A, 92
2620 /// br label %end
2621 /// end:
2622 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2623 ///
2624 /// We prefer to split the edge to 'end' so that there is a true/false entry to
2625 /// the PHI, merging the third icmp into the switch.
2627  ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2628  const DataLayout *TD) {
2629  BasicBlock *BB = ICI->getParent();
2630 
2631  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2632  // complex.
2633  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2634 
2635  Value *V = ICI->getOperand(0);
2636  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2637 
2638  // The pattern we're looking for is where our only predecessor is a switch on
2639  // 'V' and this block is the default case for the switch. In this case we can
2640  // fold the compared value into the switch to simplify things.
2641  BasicBlock *Pred = BB->getSinglePredecessor();
2642  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2643 
2644  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2645  if (SI->getCondition() != V)
2646  return false;
2647 
2648  // If BB is reachable on a non-default case, then we simply know the value of
2649  // V in this block. Substitute it and constant fold the icmp instruction
2650  // away.
2651  if (SI->getDefaultDest() != BB) {
2652  ConstantInt *VVal = SI->findCaseDest(BB);
2653  assert(VVal && "Should have a unique destination value");
2654  ICI->setOperand(0, VVal);
2655 
2656  if (Value *V = SimplifyInstruction(ICI, TD)) {
2657  ICI->replaceAllUsesWith(V);
2658  ICI->eraseFromParent();
2659  }
2660  // BB is now empty, so it is likely to simplify away.
2661  return SimplifyCFG(BB, TTI, TD) | true;
2662  }
2663 
2664  // Ok, the block is reachable from the default dest. If the constant we're
2665  // comparing exists in one of the other edges, then we can constant fold ICI
2666  // and zap it.
2667  if (SI->findCaseValue(Cst) != SI->case_default()) {
2668  Value *V;
2669  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2670  V = ConstantInt::getFalse(BB->getContext());
2671  else
2672  V = ConstantInt::getTrue(BB->getContext());
2673 
2674  ICI->replaceAllUsesWith(V);
2675  ICI->eraseFromParent();
2676  // BB is now empty, so it is likely to simplify away.
2677  return SimplifyCFG(BB, TTI, TD) | true;
2678  }
2679 
2680  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2681  // the block.
2682  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2683  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2684  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2685  isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2686  return false;
2687 
2688  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2689  // true in the PHI.
2690  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2691  Constant *NewCst = ConstantInt::getFalse(BB->getContext());
2692 
2693  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2694  std::swap(DefaultCst, NewCst);
2695 
2696  // Replace ICI (which is used by the PHI for the default value) with true or
2697  // false depending on if it is EQ or NE.
2698  ICI->replaceAllUsesWith(DefaultCst);
2699  ICI->eraseFromParent();
2700 
2701  // Okay, the switch goes to this block on a default value. Add an edge from
2702  // the switch to the merge point on the compared value.
2703  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2704  BB->getParent(), BB);
2705  SmallVector<uint64_t, 8> Weights;
2706  bool HasWeights = HasBranchWeights(SI);
2707  if (HasWeights) {
2708  GetBranchWeights(SI, Weights);
2709  if (Weights.size() == 1 + SI->getNumCases()) {
2710  // Split weight for default case to case for "Cst".
2711  Weights[0] = (Weights[0]+1) >> 1;
2712  Weights.push_back(Weights[0]);
2713 
2714  SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2716  MDBuilder(SI->getContext()).
2717  createBranchWeights(MDWeights));
2718  }
2719  }
2720  SI->addCase(Cst, NewBB);
2721 
2722  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2723  Builder.SetInsertPoint(NewBB);
2724  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2725  Builder.CreateBr(SuccBlock);
2726  PHIUse->addIncoming(NewCst, NewBB);
2727  return true;
2728 }
2729 
2730 /// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2731 /// Check to see if it is branching on an or/and chain of icmp instructions, and
2732 /// fold it into a switch instruction if so.
2734  IRBuilder<> &Builder) {
2735  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2736  if (Cond == 0) return false;
2737 
2738 
2739  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2740  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2741  // 'setne's and'ed together, collect them.
2742  Value *CompVal = 0;
2743  std::vector<ConstantInt*> Values;
2744  bool TrueWhenEqual = true;
2745  Value *ExtraCase = 0;
2746  unsigned UsedICmps = 0;
2747 
2748  if (Cond->getOpcode() == Instruction::Or) {
2749  CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2750  UsedICmps);
2751  } else if (Cond->getOpcode() == Instruction::And) {
2752  CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2753  UsedICmps);
2754  TrueWhenEqual = false;
2755  }
2756 
2757  // If we didn't have a multiply compared value, fail.
2758  if (CompVal == 0) return false;
2759 
2760  // Avoid turning single icmps into a switch.
2761  if (UsedICmps <= 1)
2762  return false;
2763 
2764  // There might be duplicate constants in the list, which the switch
2765  // instruction can't handle, remove them now.
2766  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2767  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2768 
2769  // If Extra was used, we require at least two switch values to do the
2770  // transformation. A switch with one value is just an cond branch.
2771  if (ExtraCase && Values.size() < 2) return false;
2772 
2773  // TODO: Preserve branch weight metadata, similarly to how
2774  // FoldValueComparisonIntoPredecessors preserves it.
2775 
2776  // Figure out which block is which destination.
2777  BasicBlock *DefaultBB = BI->getSuccessor(1);
2778  BasicBlock *EdgeBB = BI->getSuccessor(0);
2779  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2780 
2781  BasicBlock *BB = BI->getParent();
2782 
2783  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2784  << " cases into SWITCH. BB is:\n" << *BB);
2785 
2786  // If there are any extra values that couldn't be folded into the switch
2787  // then we evaluate them with an explicit branch first. Split the block
2788  // right before the condbr to handle it.
2789  if (ExtraCase) {
2790  BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2791  // Remove the uncond branch added to the old block.
2792  TerminatorInst *OldTI = BB->getTerminator();
2793  Builder.SetInsertPoint(OldTI);
2794 
2795  if (TrueWhenEqual)
2796  Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2797  else
2798  Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2799 
2800  OldTI->eraseFromParent();
2801 
2802  // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2803  // for the edge we just added.
2804  AddPredecessorToBlock(EdgeBB, BB, NewBB);
2805 
2806  DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
2807  << "\nEXTRABB = " << *BB);
2808  BB = NewBB;
2809  }
2810 
2811  Builder.SetInsertPoint(BI);
2812  // Convert pointer to int before we switch.
2813  if (CompVal->getType()->isPointerTy()) {
2814  assert(TD && "Cannot switch on pointer without DataLayout");
2815  CompVal = Builder.CreatePtrToInt(CompVal,
2816  TD->getIntPtrType(CompVal->getType()),
2817  "magicptr");
2818  }
2819 
2820  // Create the new switch instruction now.
2821  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2822 
2823  // Add all of the 'cases' to the switch instruction.
2824  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2825  New->addCase(Values[i], EdgeBB);
2826 
2827  // We added edges from PI to the EdgeBB. As such, if there were any
2828  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2829  // the number of edges added.
2830  for (BasicBlock::iterator BBI = EdgeBB->begin();
2831  isa<PHINode>(BBI); ++BBI) {
2832  PHINode *PN = cast<PHINode>(BBI);
2833  Value *InVal = PN->getIncomingValueForBlock(BB);
2834  for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2835  PN->addIncoming(InVal, BB);
2836  }
2837 
2838  // Erase the old branch instruction.
2840 
2841  DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
2842  return true;
2843 }
2844 
2845 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2846  // If this is a trivial landing pad that just continues unwinding the caught
2847  // exception then zap the landing pad, turning its invokes into calls.
2848  BasicBlock *BB = RI->getParent();
2850  if (RI->getValue() != LPInst)
2851  // Not a landing pad, or the resume is not unwinding the exception that
2852  // caused control to branch here.
2853  return false;
2854 
2855  // Check that there are no other instructions except for debug intrinsics.
2856  BasicBlock::iterator I = LPInst, E = RI;
2857  while (++I != E)
2858  if (!isa<DbgInfoIntrinsic>(I))
2859  return false;
2860 
2861  // Turn all invokes that unwind here into calls and delete the basic block.
2862  bool InvokeRequiresTableEntry = false;
2863  bool Changed = false;
2864  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2865  InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2866 
2867  if (II->hasFnAttr(Attribute::UWTable)) {
2868  // Don't remove an `invoke' instruction if the ABI requires an entry into
2869  // the table.
2870  InvokeRequiresTableEntry = true;
2871  continue;
2872  }
2873 
2874  SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2875 
2876  // Insert a call instruction before the invoke.
2877  CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2878  Call->takeName(II);
2879  Call->setCallingConv(II->getCallingConv());
2880  Call->setAttributes(II->getAttributes());
2881  Call->setDebugLoc(II->getDebugLoc());
2882 
2883  // Anything that used the value produced by the invoke instruction now uses
2884  // the value produced by the call instruction. Note that we do this even
2885  // for void functions and calls with no uses so that the callgraph edge is
2886  // updated.
2887  II->replaceAllUsesWith(Call);
2888  BB->removePredecessor(II->getParent());
2889 
2890  // Insert a branch to the normal destination right before the invoke.
2891  BranchInst::Create(II->getNormalDest(), II);
2892 
2893  // Finally, delete the invoke instruction!
2894  II->eraseFromParent();
2895  Changed = true;
2896  }
2897 
2898  if (!InvokeRequiresTableEntry)
2899  // The landingpad is now unreachable. Zap it.
2900  BB->eraseFromParent();
2901 
2902  return Changed;
2903 }
2904 
2905 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2906  BasicBlock *BB = RI->getParent();
2907  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2908 
2909  // Find predecessors that end with branches.
2910  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2911  SmallVector<BranchInst*, 8> CondBranchPreds;
2912  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2913  BasicBlock *P = *PI;
2914  TerminatorInst *PTI = P->getTerminator();
2915  if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2916  if (BI->isUnconditional())
2917  UncondBranchPreds.push_back(P);
2918  else
2919  CondBranchPreds.push_back(BI);
2920  }
2921  }
2922 
2923  // If we found some, do the transformation!
2924  if (!UncondBranchPreds.empty() && DupRet) {
2925  while (!UncondBranchPreds.empty()) {
2926  BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2927  DEBUG(dbgs() << "FOLDING: " << *BB
2928  << "INTO UNCOND BRANCH PRED: " << *Pred);
2929  (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2930  }
2931 
2932  // If we eliminated all predecessors of the block, delete the block now.
2933  if (pred_begin(BB) == pred_end(BB))
2934  // We know there are no successors, so just nuke the block.
2935  BB->eraseFromParent();
2936 
2937  return true;
2938  }
2939 
2940  // Check out all of the conditional branches going to this return
2941  // instruction. If any of them just select between returns, change the
2942  // branch itself into a select/return pair.
2943  while (!CondBranchPreds.empty()) {
2944  BranchInst *BI = CondBranchPreds.pop_back_val();
2945 
2946  // Check to see if the non-BB successor is also a return block.
2947  if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2948  isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2949  SimplifyCondBranchToTwoReturns(BI, Builder))
2950  return true;
2951  }
2952  return false;
2953 }
2954 
2955 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2956  BasicBlock *BB = UI->getParent();
2957 
2958  bool Changed = false;
2959 
2960  // If there are any instructions immediately before the unreachable that can
2961  // be removed, do so.
2962  while (UI != BB->begin()) {
2963  BasicBlock::iterator BBI = UI;
2964  --BBI;
2965  // Do not delete instructions that can have side effects which might cause
2966  // the unreachable to not be reachable; specifically, calls and volatile
2967  // operations may have this effect.
2968  if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2969 
2970  if (BBI->mayHaveSideEffects()) {
2971  if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2972  if (SI->isVolatile())
2973  break;
2974  } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2975  if (LI->isVolatile())
2976  break;
2977  } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2978  if (RMWI->isVolatile())
2979  break;
2980  } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2981  if (CXI->isVolatile())
2982  break;
2983  } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2984  !isa<LandingPadInst>(BBI)) {
2985  break;
2986  }
2987  // Note that deleting LandingPad's here is in fact okay, although it
2988  // involves a bit of subtle reasoning. If this inst is a LandingPad,
2989  // all the predecessors of this block will be the unwind edges of Invokes,
2990  // and we can therefore guarantee this block will be erased.
2991  }
2992 
2993  // Delete this instruction (any uses are guaranteed to be dead)
2994  if (!BBI->use_empty())
2995  BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2996  BBI->eraseFromParent();
2997  Changed = true;
2998  }
2999 
3000  // If the unreachable instruction is the first in the block, take a gander
3001  // at all of the predecessors of this instruction, and simplify them.
3002  if (&BB->front() != UI) return Changed;
3003 
3005  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3006  TerminatorInst *TI = Preds[i]->getTerminator();
3007  IRBuilder<> Builder(TI);
3008  if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3009  if (BI->isUnconditional()) {
3010  if (BI->getSuccessor(0) == BB) {
3011  new UnreachableInst(TI->getContext(), TI);
3012  TI->eraseFromParent();
3013  Changed = true;
3014  }
3015  } else {
3016  if (BI->getSuccessor(0) == BB) {
3017  Builder.CreateBr(BI->getSuccessor(1));
3019  } else if (BI->getSuccessor(1) == BB) {
3020  Builder.CreateBr(BI->getSuccessor(0));
3022  Changed = true;
3023  }
3024  }
3025  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3026  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3027  i != e; ++i)
3028  if (i.getCaseSuccessor() == BB) {
3029  BB->removePredecessor(SI->getParent());
3030  SI->removeCase(i);
3031  --i; --e;
3032  Changed = true;
3033  }
3034  // If the default value is unreachable, figure out the most popular
3035  // destination and make it the default.
3036  if (SI->getDefaultDest() == BB) {
3037  std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
3038  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3039  i != e; ++i) {
3040  std::pair<unsigned, unsigned> &entry =
3041  Popularity[i.getCaseSuccessor()];
3042  if (entry.first == 0) {
3043  entry.first = 1;
3044  entry.second = i.getCaseIndex();
3045  } else {
3046  entry.first++;
3047  }
3048  }
3049 
3050  // Find the most popular block.
3051  unsigned MaxPop = 0;
3052  unsigned MaxIndex = 0;
3053  BasicBlock *MaxBlock = 0;
3054  for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
3055  I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
3056  if (I->second.first > MaxPop ||
3057  (I->second.first == MaxPop && MaxIndex > I->second.second)) {
3058  MaxPop = I->second.first;
3059  MaxIndex = I->second.second;
3060  MaxBlock = I->first;
3061  }
3062  }
3063  if (MaxBlock) {
3064  // Make this the new default, allowing us to delete any explicit
3065  // edges to it.
3066  SI->setDefaultDest(MaxBlock);
3067  Changed = true;
3068 
3069  // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
3070  // it.
3071  if (isa<PHINode>(MaxBlock->begin()))
3072  for (unsigned i = 0; i != MaxPop-1; ++i)
3073  MaxBlock->removePredecessor(SI->getParent());
3074 
3075  for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3076  i != e; ++i)
3077  if (i.getCaseSuccessor() == MaxBlock) {
3078  SI->removeCase(i);
3079  --i; --e;
3080  }
3081  }
3082  }
3083  } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3084  if (II->getUnwindDest() == BB) {
3085  // Convert the invoke to a call instruction. This would be a good
3086  // place to note that the call does not throw though.
3087  BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3088  II->removeFromParent(); // Take out of symbol table
3089 
3090  // Insert the call now...
3091  SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3092  Builder.SetInsertPoint(BI);
3093  CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3094  Args, II->getName());
3095  CI->setCallingConv(II->getCallingConv());
3096  CI->setAttributes(II->getAttributes());
3097  // If the invoke produced a value, the call does now instead.
3098  II->replaceAllUsesWith(CI);
3099  delete II;
3100  Changed = true;
3101  }
3102  }
3103  }
3104 
3105  // If this block is now dead, remove it.
3106  if (pred_begin(BB) == pred_end(BB) &&
3107  BB != &BB->getParent()->getEntryBlock()) {
3108  // We know there are no successors, so just nuke the block.
3109  BB->eraseFromParent();
3110  return true;
3111  }
3112 
3113  return Changed;
3114 }
3115 
3116 /// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3117 /// integer range comparison into a sub, an icmp and a branch.
3118 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3119  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3120 
3121  // Make sure all cases point to the same destination and gather the values.
3123  SwitchInst::CaseIt I = SI->case_begin();
3124  Cases.push_back(I.getCaseValue());
3125  SwitchInst::CaseIt PrevI = I++;
3126  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3127  if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3128  return false;
3129  Cases.push_back(I.getCaseValue());
3130  }
3131  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3132 
3133  // Sort the case values, then check if they form a range we can transform.
3134  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3135  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3136  if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3137  return false;
3138  }
3139 
3140  Constant *Offset = ConstantExpr::getNeg(Cases.back());
3141  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3142 
3143  Value *Sub = SI->getCondition();
3144  if (!Offset->isNullValue())
3145  Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3146  Value *Cmp;
3147  // If NumCases overflowed, then all possible values jump to the successor.
3148  if (NumCases->isNullValue() && SI->getNumCases() != 0)
3149  Cmp = ConstantInt::getTrue(SI->getContext());
3150  else
3151  Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3152  BranchInst *NewBI = Builder.CreateCondBr(
3153  Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3154 
3155  // Update weight for the newly-created conditional branch.
3156  SmallVector<uint64_t, 8> Weights;
3157  bool HasWeights = HasBranchWeights(SI);
3158  if (HasWeights) {
3159  GetBranchWeights(SI, Weights);
3160  if (Weights.size() == 1 + SI->getNumCases()) {
3161  // Combine all weights for the cases to be the true weight of NewBI.
3162  // We assume that the sum of all weights for a Terminator can fit into 32
3163  // bits.
3164  uint32_t NewTrueWeight = 0;
3165  for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3166  NewTrueWeight += (uint32_t)Weights[I];
3168  MDBuilder(SI->getContext()).
3169  createBranchWeights(NewTrueWeight,
3170  (uint32_t)Weights[0]));
3171  }
3172  }
3173 
3174  // Prune obsolete incoming values off the successor's PHI nodes.
3175  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3176  isa<PHINode>(BBI); ++BBI) {
3177  for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3178  cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3179  }
3180  SI->eraseFromParent();
3181 
3182  return true;
3183 }
3184 
3185 /// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3186 /// and use it to remove dead cases.
3188  Value *Cond = SI->getCondition();
3189  unsigned Bits = Cond->getType()->getIntegerBitWidth();
3190  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3191  ComputeMaskedBits(Cond, KnownZero, KnownOne);
3192 
3193  // Gather dead cases.
3194  SmallVector<ConstantInt*, 8> DeadCases;
3195  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3196  if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3197  (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3198  DeadCases.push_back(I.getCaseValue());
3199  DEBUG(dbgs() << "SimplifyCFG: switch case '"
3200  << I.getCaseValue() << "' is dead.\n");
3201  }
3202  }
3203 
3204  SmallVector<uint64_t, 8> Weights;
3205  bool HasWeight = HasBranchWeights(SI);
3206  if (HasWeight) {
3207  GetBranchWeights(SI, Weights);
3208  HasWeight = (Weights.size() == 1 + SI->getNumCases());
3209  }
3210 
3211  // Remove dead cases from the switch.
3212  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3213  SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3214  assert(Case != SI->case_default() &&
3215  "Case was not found. Probably mistake in DeadCases forming.");
3216  if (HasWeight) {
3217  std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3218  Weights.pop_back();
3219  }
3220 
3221  // Prune unused values from PHI nodes.
3223  SI->removeCase(Case);
3224  }
3225  if (HasWeight) {
3226  SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3228  MDBuilder(SI->getParent()->getContext()).
3229  createBranchWeights(MDWeights));
3230  }
3231 
3232  return !DeadCases.empty();
3233 }
3234 
3235 /// FindPHIForConditionForwarding - If BB would be eligible for simplification
3236 /// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3237 /// by an unconditional branch), look at the phi node for BB in the successor
3238 /// block and see if the incoming value is equal to CaseValue. If so, return
3239 /// the phi node, and set PhiIndex to BB's index in the phi node.
3241  BasicBlock *BB,
3242  int *PhiIndex) {
3243  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3244  return NULL; // BB must be empty to be a candidate for simplification.
3245  if (!BB->getSinglePredecessor())
3246  return NULL; // BB must be dominated by the switch.
3247 
3249  if (!Branch || !Branch->isUnconditional())
3250  return NULL; // Terminator must be unconditional branch.
3251 
3252  BasicBlock *Succ = Branch->getSuccessor(0);
3253 
3254  BasicBlock::iterator I = Succ->begin();
3255  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3256  int Idx = PHI->getBasicBlockIndex(BB);
3257  assert(Idx >= 0 && "PHI has no entry for predecessor?");
3258 
3259  Value *InValue = PHI->getIncomingValue(Idx);
3260  if (InValue != CaseValue) continue;
3261 
3262  *PhiIndex = Idx;
3263  return PHI;
3264  }
3265 
3266  return NULL;
3267 }
3268 
3269 /// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3270 /// instruction to a phi node dominated by the switch, if that would mean that
3271 /// some of the destination blocks of the switch can be folded away.
3272 /// Returns true if a change is made.
3274  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3275  ForwardingNodesMap ForwardingNodes;
3276 
3277  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3278  ConstantInt *CaseValue = I.getCaseValue();
3279  BasicBlock *CaseDest = I.getCaseSuccessor();
3280 
3281  int PhiIndex;
3282  PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3283  &PhiIndex);
3284  if (!PHI) continue;
3285 
3286  ForwardingNodes[PHI].push_back(PhiIndex);
3287  }
3288 
3289  bool Changed = false;
3290 
3291  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3292  E = ForwardingNodes.end(); I != E; ++I) {
3293  PHINode *Phi = I->first;
3294  SmallVectorImpl<int> &Indexes = I->second;
3295 
3296  if (Indexes.size() < 2) continue;
3297 
3298  for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3299  Phi->setIncomingValue(Indexes[I], SI->getCondition());
3300  Changed = true;
3301  }
3302 
3303  return Changed;
3304 }
3305 
3306 /// ValidLookupTableConstant - Return true if the backend will be able to handle
3307 /// initializing an array of constants like C.
3309  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3310  return CE->isGEPWithNoNotionalOverIndexing();
3311 
3312  return isa<ConstantFP>(C) ||
3313  isa<ConstantInt>(C) ||
3314  isa<ConstantPointerNull>(C) ||
3315  isa<GlobalValue>(C) ||
3316  isa<UndefValue>(C);
3317 }
3318 
3319 /// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3320 /// its constant value in ConstantPool, returning 0 if it's not there.
3321 static Constant *LookupConstant(Value *V,
3323  if (Constant *C = dyn_cast<Constant>(V))
3324  return C;
3325  return ConstantPool.lookup(V);
3326 }
3327 
3328 /// ConstantFold - Try to fold instruction I into a constant. This works for
3329 /// simple instructions such as binary operations where both operands are
3330 /// constant or can be replaced by constants from the ConstantPool. Returns the
3331 /// resulting constant on success, 0 otherwise.
3332 static Constant *
3335  const DataLayout *DL) {
3336  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3337  Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3338  if (!A)
3339  return 0;
3340  if (A->isAllOnesValue())
3341  return LookupConstant(Select->getTrueValue(), ConstantPool);
3342  if (A->isNullValue())
3343  return LookupConstant(Select->getFalseValue(), ConstantPool);
3344  return 0;
3345  }
3346 
3348  for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3350  COps.push_back(A);
3351  else
3352  return 0;
3353  }
3354 
3355  if (CmpInst *Cmp = dyn_cast<CmpInst>(I))
3356  return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3357  COps[1], DL);
3358 
3359  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3360 }
3361 
3362 /// GetCaseResults - Try to determine the resulting constant values in phi nodes
3363 /// at the common destination basic block, *CommonDest, for one of the case
3364 /// destionations CaseDest corresponding to value CaseVal (0 for the default
3365 /// case), of a switch instruction SI.
3366 static bool
3368  ConstantInt *CaseVal,
3369  BasicBlock *CaseDest,
3370  BasicBlock **CommonDest,
3371  SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
3372  const DataLayout *DL) {
3373  // The block from which we enter the common destination.
3374  BasicBlock *Pred = SI->getParent();
3375 
3376  // If CaseDest is empty except for some side-effect free instructions through
3377  // which we can constant-propagate the CaseVal, continue to its successor.
3379  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3380  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3381  ++I) {
3382  if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3383  // If the terminator is a simple branch, continue to the next block.
3384  if (T->getNumSuccessors() != 1)
3385  return false;
3386  Pred = CaseDest;
3387  CaseDest = T->getSuccessor(0);
3388  } else if (isa<DbgInfoIntrinsic>(I)) {
3389  // Skip debug intrinsic.
3390  continue;
3391  } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
3392  // Instruction is side-effect free and constant.
3393  ConstantPool.insert(std::make_pair(I, C));
3394  } else {
3395  break;
3396  }
3397  }
3398 
3399  // If we did not have a CommonDest before, use the current one.
3400  if (!*CommonDest)
3401  *CommonDest = CaseDest;
3402  // If the destination isn't the common one, abort.
3403  if (CaseDest != *CommonDest)
3404  return false;
3405 
3406  // Get the values for this case from phi nodes in the destination block.
3407  BasicBlock::iterator I = (*CommonDest)->begin();
3408  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3409  int Idx = PHI->getBasicBlockIndex(Pred);
3410  if (Idx == -1)
3411  continue;
3412 
3413  Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3414  ConstantPool);
3415  if (!ConstVal)
3416  return false;
3417 
3418  // Note: If the constant comes from constant-propagating the case value
3419  // through the CaseDest basic block, it will be safe to remove the
3420  // instructions in that block. They cannot be used (except in the phi nodes
3421  // we visit) outside CaseDest, because that block does not dominate its
3422  // successor. If it did, we would not be in this phi node.
3423 
3424  // Be conservative about which kinds of constants we support.
3425  if (!ValidLookupTableConstant(ConstVal))
3426  return false;
3427 
3428  Res.push_back(std::make_pair(PHI, ConstVal));
3429  }
3430 
3431  return true;
3432 }
3433 
3434 namespace {
3435  /// SwitchLookupTable - This class represents a lookup table that can be used
3436  /// to replace a switch.
3437  class SwitchLookupTable {
3438  public:
3439  /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3440  /// with the contents of Values, using DefaultValue to fill any holes in the
3441  /// table.
3442  SwitchLookupTable(Module &M,
3443  uint64_t TableSize,
3444  ConstantInt *Offset,
3445  const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3446  Constant *DefaultValue,
3447  const DataLayout *TD);
3448 
3449  /// BuildLookup - Build instructions with Builder to retrieve the value at
3450  /// the position given by Index in the lookup table.
3451  Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3452 
3453  /// WouldFitInRegister - Return true if a table with TableSize elements of
3454  /// type ElementType would fit in a target-legal register.
3455  static bool WouldFitInRegister(const DataLayout *TD,
3456  uint64_t TableSize,
3457  const Type *ElementType);
3458 
3459  private:
3460  // Depending on the contents of the table, it can be represented in
3461  // different ways.
3462  enum {
3463  // For tables where each element contains the same value, we just have to
3464  // store that single value and return it for each lookup.
3465  SingleValueKind,
3466 
3467  // For small tables with integer elements, we can pack them into a bitmap
3468  // that fits into a target-legal register. Values are retrieved by
3469  // shift and mask operations.
3470  BitMapKind,
3471 
3472  // The table is stored as an array of values. Values are retrieved by load
3473  // instructions from the table.
3474  ArrayKind
3475  } Kind;
3476 
3477  // For SingleValueKind, this is the single value.
3478  Constant *SingleValue;
3479 
3480  // For BitMapKind, this is the bitmap.
3481  ConstantInt *BitMap;
3482  IntegerType *BitMapElementTy;
3483 
3484  // For ArrayKind, this is the array.
3485  GlobalVariable *Array;
3486  };
3487 }
3488 
3489 SwitchLookupTable::SwitchLookupTable(Module &M,
3490  uint64_t TableSize,
3491  ConstantInt *Offset,
3492  const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3493  Constant *DefaultValue,
3494  const DataLayout *TD)
3495  : SingleValue(0), BitMap(0), BitMapElementTy(0), Array(0) {
3496  assert(Values.size() && "Can't build lookup table without values!");
3497  assert(TableSize >= Values.size() && "Can't fit values in table!");
3498 
3499  // If all values in the table are equal, this is that value.
3500  SingleValue = Values.begin()->second;
3501 
3502  // Build up the table contents.
3503  SmallVector<Constant*, 64> TableContents(TableSize);
3504  for (size_t I = 0, E = Values.size(); I != E; ++I) {
3505  ConstantInt *CaseVal = Values[I].first;
3506  Constant *CaseRes = Values[I].second;
3507  assert(CaseRes->getType() == DefaultValue->getType());
3508 
3509  uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3510  .getLimitedValue();
3511  TableContents[Idx] = CaseRes;
3512 
3513  if (CaseRes != SingleValue)
3514  SingleValue = 0;
3515  }
3516 
3517  // Fill in any holes in the table with the default result.
3518  if (Values.size() < TableSize) {
3519  for (uint64_t I = 0; I < TableSize; ++I) {
3520  if (!TableContents[I])
3521  TableContents[I] = DefaultValue;
3522  }
3523 
3524  if (DefaultValue != SingleValue)
3525  SingleValue = 0;
3526  }
3527 
3528  // If each element in the table contains the same value, we only need to store
3529  // that single value.
3530  if (SingleValue) {
3531  Kind = SingleValueKind;
3532  return;
3533  }
3534 
3535  // If the type is integer and the table fits in a register, build a bitmap.
3536  if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
3537  IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
3538  APInt TableInt(TableSize * IT->getBitWidth(), 0);
3539  for (uint64_t I = TableSize; I > 0; --I) {
3540  TableInt <<= IT->getBitWidth();
3541  // Insert values into the bitmap. Undef values are set to zero.
3542  if (!isa<UndefValue>(TableContents[I - 1])) {
3543  ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3544  TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3545  }
3546  }
3547  BitMap = ConstantInt::get(M.getContext(), TableInt);
3548  BitMapElementTy = IT;
3549  Kind = BitMapKind;
3550  ++NumBitMaps;
3551  return;
3552  }
3553 
3554  // Store the table in an array.
3555  ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
3556  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3557 
3558  Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3559  GlobalVariable::PrivateLinkage,
3560  Initializer,
3561  "switch.table");
3562  Array->setUnnamedAddr(true);
3563  Kind = ArrayKind;
3564 }
3565 
3566 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3567  switch (Kind) {
3568  case SingleValueKind:
3569  return SingleValue;
3570  case BitMapKind: {
3571  // Type of the bitmap (e.g. i59).
3572  IntegerType *MapTy = BitMap->getType();
3573 
3574  // Cast Index to the same type as the bitmap.
3575  // Note: The Index is <= the number of elements in the table, so
3576  // truncating it to the width of the bitmask is safe.
3577  Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3578 
3579  // Multiply the shift amount by the element width.
3580  ShiftAmt = Builder.CreateMul(ShiftAmt,
3581  ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3582  "switch.shiftamt");
3583 
3584  // Shift down.
3585  Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3586  "switch.downshift");
3587  // Mask off.
3588  return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3589  "switch.masked");
3590  }
3591  case ArrayKind: {
3592  Value *GEPIndices[] = { Builder.getInt32(0), Index };
3593  Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3594  "switch.gep");
3595  return Builder.CreateLoad(GEP, "switch.load");
3596  }
3597  }
3598  llvm_unreachable("Unknown lookup table kind!");
3599 }
3600 
3601 bool SwitchLookupTable::WouldFitInRegister(const DataLayout *TD,
3602  uint64_t TableSize,
3603  const Type *ElementType) {
3604  if (!TD)
3605  return false;
3606  const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3607  if (!IT)
3608  return false;
3609  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3610  // are <= 15, we could try to narrow the type.
3611 
3612  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3613  if (TableSize >= UINT_MAX/IT->getBitWidth())
3614  return false;
3615  return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
3616 }
3617 
3618 /// ShouldBuildLookupTable - Determine whether a lookup table should be built
3619 /// for this switch, based on the number of cases, size of the table and the
3620 /// types of the results.
3622  uint64_t TableSize,
3623  const TargetTransformInfo &TTI,
3624  const DataLayout *TD,
3625  const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3626  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3627  return false; // TableSize overflowed, or mul below might overflow.
3628 
3629  bool AllTablesFitInRegister = true;
3630  bool HasIllegalType = false;
3632  E = ResultTypes.end(); I != E; ++I) {
3633  Type *Ty = I->second;
3634 
3635  // Saturate this flag to true.
3636  HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3637 
3638  // Saturate this flag to false.
3639  AllTablesFitInRegister = AllTablesFitInRegister &&
3640  SwitchLookupTable::WouldFitInRegister(TD, TableSize, Ty);
3641 
3642  // If both flags saturate, we're done. NOTE: This *only* works with
3643  // saturating flags, and all flags have to saturate first due to the
3644  // non-deterministic behavior of iterating over a dense map.
3645  if (HasIllegalType && !AllTablesFitInRegister)
3646  break;
3647  }
3648 
3649  // If each table would fit in a register, we should build it anyway.
3650  if (AllTablesFitInRegister)
3651  return true;
3652 
3653  // Don't build a table that doesn't fit in-register if it has illegal types.
3654  if (HasIllegalType)
3655  return false;
3656 
3657  // The table density should be at least 40%. This is the same criterion as for
3658  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3659  // FIXME: Find the best cut-off.
3660  return SI->getNumCases() * 10 >= TableSize * 4;
3661 }
3662 
3663 /// SwitchToLookupTable - If the switch is only used to initialize one or more
3664 /// phi nodes in a common successor block with different constant values,
3665 /// replace the switch with lookup tables.
3667  IRBuilder<> &Builder,
3668  const TargetTransformInfo &TTI,
3669  const DataLayout* TD) {
3670  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3671 
3672  // Only build lookup table when we have a target that supports it.
3673  if (!TTI.shouldBuildLookupTables())
3674  return false;
3675 
3676  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3677  // split off a dense part and build a lookup table for that.
3678 
3679  // FIXME: This creates arrays of GEPs to constant strings, which means each
3680  // GEP needs a runtime relocation in PIC code. We should just build one big
3681  // string and lookup indices into that.
3682 
3683  // Ignore the switch if the number of cases is too small.
3684  // This is similar to the check when building jump tables in
3685  // SelectionDAGBuilder::handleJTSwitchCase.
3686  // FIXME: Determine the best cut-off.
3687  if (SI->getNumCases() < 4)
3688  return false;
3689 
3690  // Figure out the corresponding result for each case value and phi node in the
3691  // common destination, as well as the the min and max case values.
3692  assert(SI->case_begin() != SI->case_end());
3693  SwitchInst::CaseIt CI = SI->case_begin();
3694  ConstantInt *MinCaseVal = CI.getCaseValue();
3695  ConstantInt *MaxCaseVal = CI.getCaseValue();
3696 
3697  BasicBlock *CommonDest = 0;
3698  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3700  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3701  SmallDenseMap<PHINode*, Type*> ResultTypes;
3703 
3704  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3705  ConstantInt *CaseVal = CI.getCaseValue();
3706  if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3707  MinCaseVal = CaseVal;
3708  if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3709  MaxCaseVal = CaseVal;
3710 
3711  // Resulting value at phi nodes for this case value.
3712  typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3713  ResultsTy Results;
3714  if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
3715  Results, TD))
3716  return false;
3717 
3718  // Append the result from this case to the list for each phi.
3719  for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3720  if (!ResultLists.count(I->first))
3721  PHIs.push_back(I->first);
3722  ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3723  }
3724  }
3725 
3726  // Get the resulting values for the default case.
3727  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3728  if (!GetCaseResults(SI, 0, SI->getDefaultDest(), &CommonDest,
3729  DefaultResultsList, TD))
3730  return false;
3731  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3732  PHINode *PHI = DefaultResultsList[I].first;
3733  Constant *Result = DefaultResultsList[I].second;
3734  DefaultResults[PHI] = Result;
3735  ResultTypes[PHI] = Result->getType();
3736  }
3737 
3738  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3739  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3740  if (!ShouldBuildLookupTable(SI, TableSize, TTI, TD, ResultTypes))
3741  return false;
3742 
3743  // Create the BB that does the lookups.
3744  Module &Mod = *CommonDest->getParent()->getParent();
3745  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3746  "switch.lookup",
3747  CommonDest->getParent(),
3748  CommonDest);
3749 
3750  // Compute the table index value.
3751  Builder.SetInsertPoint(SI);
3752  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3753  "switch.tableidx");
3754 
3755  // Compute the maximum table size representable by the integer type we are
3756  // switching upon.
3757  unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
3758  uint64_t MaxTableSize = CaseSize > 63? UINT64_MAX : 1ULL << CaseSize;
3759  assert(MaxTableSize >= TableSize &&
3760  "It is impossible for a switch to have more entries than the max "
3761  "representable value of its input integer type's size.");
3762 
3763  // If we have a fully covered lookup table, unconditionally branch to the
3764  // lookup table BB. Otherwise, check if the condition value is within the case
3765  // range. If it is so, branch to the new BB. Otherwise branch to SI's default
3766  // destination.
3767  const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize;
3768  if (GeneratingCoveredLookupTable) {
3769  Builder.CreateBr(LookupBB);
3771  } else {
3772  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3773  MinCaseVal->getType(), TableSize));
3774  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3775  }
3776 
3777  // Populate the BB that does the lookups.
3778  Builder.SetInsertPoint(LookupBB);
3779  bool ReturnedEarly = false;
3780  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3781  PHINode *PHI = PHIs[I];
3782 
3783  SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3784  DefaultResults[PHI], TD);
3785 
3786  Value *Result = Table.BuildLookup(TableIndex, Builder);
3787 
3788  // If the result is used to return immediately from the function, we want to
3789  // do that right here.
3790  if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
3791  *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
3792  Builder.CreateRet(Result);
3793  ReturnedEarly = true;
3794  break;
3795  }
3796 
3797  PHI->addIncoming(Result, LookupBB);
3798  }
3799 
3800  if (!ReturnedEarly)
3801  Builder.CreateBr(CommonDest);
3802 
3803  // Remove the switch.
3804  for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
3805  BasicBlock *Succ = SI->getSuccessor(i);
3806 
3807  if (Succ == SI->getDefaultDest())
3808  continue;
3809  Succ->removePredecessor(SI->getParent());
3810  }
3811  SI->eraseFromParent();
3812 
3813  ++NumLookupTables;
3814  return true;
3815 }
3816 
3817 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3818  BasicBlock *BB = SI->getParent();
3819 
3820  if (isValueEqualityComparison(SI)) {
3821  // If we only have one predecessor, and if it is a branch on this value,
3822  // see if that predecessor totally determines the outcome of this switch.
3823  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3824  if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3825  return SimplifyCFG(BB, TTI, TD) | true;
3826 
3827  Value *Cond = SI->getCondition();
3828  if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3829  if (SimplifySwitchOnSelect(SI, Select))
3830  return SimplifyCFG(BB, TTI, TD) | true;
3831 
3832  // If the block only contains the switch, see if we can fold the block
3833  // away into any preds.
3834  BasicBlock::iterator BBI = BB->begin();
3835  // Ignore dbg intrinsics.
3836  while (isa<DbgInfoIntrinsic>(BBI))
3837  ++BBI;
3838  if (SI == &*BBI)
3839  if (FoldValueComparisonIntoPredecessors(SI, Builder))
3840  return SimplifyCFG(BB, TTI, TD) | true;
3841  }
3842 
3843  // Try to transform the switch into an icmp and a branch.
3844  if (TurnSwitchRangeIntoICmp(SI, Builder))
3845  return SimplifyCFG(BB, TTI, TD) | true;
3846 
3847  // Remove unreachable cases.
3848  if (EliminateDeadSwitchCases(SI))
3849  return SimplifyCFG(BB, TTI, TD) | true;
3850 
3852  return SimplifyCFG(BB, TTI, TD) | true;
3853 
3854  if (SwitchToLookupTable(SI, Builder, TTI, TD))
3855  return SimplifyCFG(BB, TTI, TD) | true;
3856 
3857  return false;
3858 }
3859 
3860 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3861  BasicBlock *BB = IBI->getParent();
3862  bool Changed = false;
3863 
3864  // Eliminate redundant destinations.
3866  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3867  BasicBlock *Dest = IBI->getDestination(i);
3868  if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3869  Dest->removePredecessor(BB);
3870  IBI->removeDestination(i);
3871  --i; --e;
3872  Changed = true;
3873  }
3874  }
3875 
3876  if (IBI->getNumDestinations() == 0) {
3877  // If the indirectbr has no successors, change it to unreachable.
3878  new UnreachableInst(IBI->getContext(), IBI);
3880  return true;
3881  }
3882 
3883  if (IBI->getNumDestinations() == 1) {
3884  // If the indirectbr has one successor, change it to a direct branch.
3885  BranchInst::Create(IBI->getDestination(0), IBI);
3887  return true;
3888  }
3889 
3890  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3891  if (SimplifyIndirectBrOnSelect(IBI, SI))
3892  return SimplifyCFG(BB, TTI, TD) | true;
3893  }
3894  return Changed;
3895 }
3896 
3897 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3898  BasicBlock *BB = BI->getParent();
3899 
3900  if (SinkCommon && SinkThenElseCodeToEnd(BI))
3901  return true;
3902 
3903  // If the Terminator is the only non-phi instruction, simplify the block.
3905  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3907  return true;
3908 
3909  // If the only instruction in the block is a seteq/setne comparison
3910  // against a constant, try to simplify the block.
3911  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3912  if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3913  for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3914  ;
3915  if (I->isTerminator() &&
3916  TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, TD))
3917  return true;
3918  }
3919 
3920  // If this basic block is ONLY a compare and a branch, and if a predecessor
3921  // branches to us and our successor, fold the comparison into the
3922  // predecessor and use logical operations to update the incoming value
3923  // for PHI nodes in common successor.
3924  if (FoldBranchToCommonDest(BI))
3925  return SimplifyCFG(BB, TTI, TD) | true;
3926  return false;
3927 }
3928 
3929 
3930 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3931  BasicBlock *BB = BI->getParent();
3932 
3933  // Conditional branch
3934  if (isValueEqualityComparison(BI)) {
3935  // If we only have one predecessor, and if it is a branch on this value,
3936  // see if that predecessor totally determines the outcome of this
3937  // switch.
3938  if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3939  if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3940  return SimplifyCFG(BB, TTI, TD) | true;
3941 
3942  // This block must be empty, except for the setcond inst, if it exists.
3943  // Ignore dbg intrinsics.
3944  BasicBlock::iterator I = BB->begin();
3945  // Ignore dbg intrinsics.
3946  while (isa<DbgInfoIntrinsic>(I))
3947  ++I;
3948  if (&*I == BI) {
3949  if (FoldValueComparisonIntoPredecessors(BI, Builder))
3950  return SimplifyCFG(BB, TTI, TD) | true;
3951  } else if (&*I == cast<Instruction>(BI->getCondition())){
3952  ++I;
3953  // Ignore dbg intrinsics.
3954  while (isa<DbgInfoIntrinsic>(I))
3955  ++I;
3956  if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3957  return SimplifyCFG(BB, TTI, TD) | true;
3958  }
3959  }
3960 
3961  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3962  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3963  return true;
3964 
3965  // If this basic block is ONLY a compare and a branch, and if a predecessor
3966  // branches to us and one of our successors, fold the comparison into the
3967  // predecessor and use logical operations to pick the right destination.
3968  if (FoldBranchToCommonDest(BI))
3969  return SimplifyCFG(BB, TTI, TD) | true;
3970 
3971  // We have a conditional branch to two blocks that are only reachable
3972  // from BI. We know that the condbr dominates the two blocks, so see if
3973  // there is any identical code in the "then" and "else" blocks. If so, we
3974  // can hoist it up to the branching block.
3975  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3976  if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3977  if (HoistThenElseCodeToIf(BI))
3978  return SimplifyCFG(BB, TTI, TD) | true;
3979  } else {
3980  // If Successor #1 has multiple preds, we may be able to conditionally
3981  // execute Successor #0 if it branches to successor #1.
3982  TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3983  if (Succ0TI->getNumSuccessors() == 1 &&
3984  Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3985  if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3986  return SimplifyCFG(BB, TTI, TD) | true;
3987  }
3988  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3989  // If Successor #0 has multiple preds, we may be able to conditionally
3990  // execute Successor #1 if it branches to successor #0.
3991  TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3992  if (Succ1TI->getNumSuccessors() == 1 &&
3993  Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3994  if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3995  return SimplifyCFG(BB, TTI, TD) | true;
3996  }
3997 
3998  // If this is a branch on a phi node in the current block, thread control
3999  // through this block if any PHI node entries are constants.
4000  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4001  if (PN->getParent() == BI->getParent())
4002  if (FoldCondBranchOnPHI(BI, TD))
4003  return SimplifyCFG(BB, TTI, TD) | true;
4004 
4005  // Scan predecessor blocks for conditional branches.
4006  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4007  if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4008  if (PBI != BI && PBI->isConditional())
4009  if (SimplifyCondBranchToCondBranch(PBI, BI))
4010  return SimplifyCFG(BB, TTI, TD) | true;
4011 
4012  return false;
4013 }
4014 
4015 /// Check if passing a value to an instruction will cause undefined behavior.
4016 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4017  Constant *C = dyn_cast<Constant>(V);
4018  if (!C)
4019  return false;
4020 
4021  if (I->use_empty())
4022  return false;
4023 
4024  if (C->isNullValue()) {
4025  // Only look at the first use, avoid hurting compile time with long uselists
4026  User *Use = *I->use_begin();
4027 
4028  // Now make sure that there are no instructions in between that can alter
4029  // control flow (eg. calls)
4030  for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4031  if (i == I->getParent()->end() || i->mayHaveSideEffects())
4032  return false;
4033 
4034  // Look through GEPs. A load from a GEP derived from NULL is still undefined
4035  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4036  if (GEP->getPointerOperand() == I)
4037  return passingValueIsAlwaysUndefined(V, GEP);
4038 
4039  // Look through bitcasts.
4040  if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4041  return passingValueIsAlwaysUndefined(V, BC);
4042 
4043  // Load from null is undefined.
4044  if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4045  if (!LI->isVolatile())
4046  return LI->getPointerAddressSpace() == 0;
4047 
4048  // Store to null is undefined.
4049  if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4050  if (!SI->isVolatile())
4051  return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4052  }
4053  return false;
4054 }
4055 
4056 /// If BB has an incoming value that will always trigger undefined behavior
4057 /// (eg. null pointer dereference), remove the branch leading here.
4059  for (BasicBlock::iterator i = BB->begin();
4060  PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4061  for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4064  IRBuilder<> Builder(T);
4065  if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4066  BB->removePredecessor(PHI->getIncomingBlock(i));
4067  // Turn uncoditional branches into unreachables and remove the dead
4068  // destination from conditional branches.
4069  if (BI->isUnconditional())
4070  Builder.CreateUnreachable();
4071  else
4072  Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4073  BI->getSuccessor(0));
4074  BI->eraseFromParent();
4075  return true;
4076  }
4077  // TODO: SwitchInst.
4078  }
4079 
4080  return false;
4081 }
4082 
4083 bool SimplifyCFGOpt::run(BasicBlock *BB) {
4084  bool Changed = false;
4085 
4086  assert(BB && BB->getParent() && "Block not embedded in function!");
4087  assert(BB->getTerminator() && "Degenerate basic block encountered!");
4088 
4089  // Remove basic blocks that have no predecessors (except the entry block)...
4090  // or that just have themself as a predecessor. These are unreachable.
4091  if ((pred_begin(BB) == pred_end(BB) &&
4092  BB != &BB->getParent()->getEntryBlock()) ||
4093  BB->getSinglePredecessor() == BB) {
4094  DEBUG(dbgs() << "Removing BB: \n" << *BB);
4095  DeleteDeadBlock(BB);
4096  return true;
4097  }
4098 
4099  // Check to see if we can constant propagate this terminator instruction
4100  // away...
4101  Changed |= ConstantFoldTerminator(BB, true);
4102 
4103  // Check for and eliminate duplicate PHI nodes in this block.
4104  Changed |= EliminateDuplicatePHINodes(BB);
4105 
4106  // Check for and remove branches that will always cause undefined behavior.
4107  Changed |= removeUndefIntroducingPredecessor(BB);
4108 
4109  // Merge basic blocks into their predecessor if there is only one distinct
4110  // pred, and if there is only one distinct successor of the predecessor, and
4111  // if there are no PHI nodes.
4112  //
4113  if (MergeBlockIntoPredecessor(BB))
4114  return true;
4115 
4116  IRBuilder<> Builder(BB);
4117 
4118  // If there is a trivial two-entry PHI node in this basic block, and we can
4119  // eliminate it, do so now.
4120  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4121  if (PN->getNumIncomingValues() == 2)
4122  Changed |= FoldTwoEntryPHINode(PN, TD);
4123 
4124  Builder.SetInsertPoint(BB->getTerminator());
4125  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4126  if (BI->isUnconditional()) {
4127  if (SimplifyUncondBranch(BI, Builder)) return true;
4128  } else {
4129  if (SimplifyCondBranch(BI, Builder)) return true;
4130  }
4131  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4132  if (SimplifyReturn(RI, Builder)) return true;
4133  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4134  if (SimplifyResume(RI, Builder)) return true;
4135  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4136  if (SimplifySwitch(SI, Builder)) return true;
4137  } else if (UnreachableInst *UI =
4138  dyn_cast<UnreachableInst>(BB->getTerminator())) {
4139  if (SimplifyUnreachable(UI)) return true;
4140  } else if (IndirectBrInst *IBI =
4141  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4142  if (SimplifyIndirectBr(IBI)) return true;
4143  }
4144 
4145  return Changed;
4146 }
4147 
4148 /// SimplifyCFG - This function is used to do simplification of a CFG. For
4149 /// example, it adjusts branches to branches to eliminate the extra hop, it
4150 /// eliminates unreachable basic blocks, and does other "peephole" optimization
4151 /// of the CFG. It returns true if a modification was made.
4152 ///
4154  const DataLayout *TD) {
4155  return SimplifyCFGOpt(TTI, TD).run(BB);
4156 }
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:753
static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *TD)
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:467
Value * getValueOperand()
Definition: Instructions.h:343
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:445
void FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P=0)
SwitchInst * CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases=10, MDNode *BranchWeights=0)
Create a switch instruction with the specified value, default dest, and with a hint for the number of...
Definition: IRBuilder.h:541
IntegerType * getType() const
Definition: Constants.h:139
class_match< Value > m_Value()
m_Value() - Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
static bool HasNoDuplicateCall(const BasicBlock *BB)
ConstantIntTy * getCaseValue()
Resolves case value for current case.
void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs=false)
Notify the BasicBlock that the predecessor Pred is no longer able to reach it.
Definition: BasicBlock.cpp:216
static IntegerType * getInt1Ty(LLVMContext &C)
Definition: Type.cpp:238
LoadInst * CreateLoad(Value *Ptr, const char *Name)
Definition: IRBuilder.h:879
void addIncoming(Value *V, BasicBlock *BB)
static cl::opt< unsigned > PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1), cl::desc("Control the amount of phi node folding to perform (default = 1)"))
int remove(const char *path);
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
void SetCurrentDebugLocation(const DebugLoc &L)
Set location information used by debugging information.
Definition: IRBuilder.h:118
void swapSuccessors()
Swap the successors of this branch instruction.
STATISTIC(NumBitMaps,"Number of switch instructions turned into bitmaps")
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
reverse_iterator rend()
Definition: ilist.h:379
static unsigned ComputeSpeculationCost(const User *I)
bool hasFnAttr(Attribute::AttrKind A) const
Determine whether this call has the given attribute.
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
static bool removeUndefIntroducingPredecessor(BasicBlock *BB)
unsigned getNumOperands() const
Definition: User.h:108
unsigned getNumOperands() const
getNumOperands - Return number of MDNode operands.
Definition: Metadata.h:142
void DeleteDeadBlock(BasicBlock *BB)
void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Value * getValue() const
Convenience accessor.
bool isSimple() const
Definition: Instructions.h:338
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:316
Predicate getInversePredicate() const
Return the inverse of the instruction's predicate.
Definition: InstrTypes.h:737
static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, Instruction *I1, Instruction *I2)
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
bool mayHaveSideEffects() const
Definition: Instruction.h:324
static Constant * ConstantFold(Instruction *I, const SmallDenseMap< Value *, Constant * > &ConstantPool, const DataLayout *DL)
void operator<(const Optional< T > &X, const Optional< U > &Y)
Poison comparison between two Optional objects. Clients needs to explicitly compare the underlying va...
static void GetBranchWeights(TerminatorInst *TI, SmallVectorImpl< uint64_t > &Weights)
iterator insert(iterator I, const T &Elt)
Definition: SmallVector.h:537
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:1218
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
Definition: APInt.h:408
static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select)
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
const Instruction & front() const
Definition: BasicBlock.h:205
MDNode - a tuple of other values.
Definition: Metadata.h:69
reverse_iterator rend()
Definition: BasicBlock.h:200
reverse_iterator rbegin()
Definition: BasicBlock.h:198
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:61
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
op_iterator op_begin()
Definition: User.h:116
ConstantInt * findCaseDest(BasicBlock *BB)
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:637
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
StringRef getName() const
Definition: Value.cpp:167
static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I)
Check if passing a value to an instruction will cause undefined behavior.
iterator begin()
Definition: BasicBlock.h:193
reverse_iterator rbegin()
Definition: ilist.h:377
void setCallingConv(CallingConv::ID CC)
Value * getOperand(unsigned i) const LLVM_READONLY
getOperand - Return specified operand.
Definition: Metadata.cpp:307
APInt Not(const APInt &APIVal)
Bitwise complement function.
Definition: APInt.h:1855
Instruction * getFirstNonPHIOrDbg()
Returns a pointer to the first instruction in this block that is not a PHINode or a debug intrinsic...
Definition: BasicBlock.cpp:140
static bool isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, Instruction *Cond, SmallVectorImpl< PHINode * > &PhiNodes)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:42
static bool DominatesMergePoint(Value *V, BasicBlock *BB, SmallPtrSet< Instruction *, 4 > *AggressiveInsts, unsigned &CostRemaining)
bool isUnconditional() const
static Constant * getIntegerCast(Constant *C, Type *Ty, bool isSigned)
Create a ZExt, Bitcast or Trunc for integer -> integer casts.
Definition: Constants.cpp:1502
static bool SinkThenElseCodeToEnd(BranchInst *BI1)
bool isIdenticalTo(const Instruction *I) const
static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI)
Value * getReturnValue() const
Convenience accessor. Returns null if there is no return value.
static cl::opt< ITMode > IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT), cl::ZeroOrMore, cl::values(clEnumValN(DefaultIT,"arm-default-it","Generate IT block based on arch"), clEnumValN(RestrictedIT,"arm-restrict-it","Disallow deprecated IT based on ARMv8"), clEnumValN(NoRestrictedIT,"arm-no-restrict-it","Allow IT blocks based on ARMv7"), clEnumValEnd))
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
#define llvm_unreachable(msg)
Definition: Use.h:60
static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond, BasicBlock *TrueBB, BasicBlock *FalseBB, uint32_t TrueWeight, uint32_t FalseWeight)
static int ConstantIntSortPredicate(ConstantInt *const *P1, ConstantInt *const *P2)
Instruction * getFirstNonPHI()
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:130
BranchInst * CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights=0)
Create a conditional 'br Cond, TrueDest, FalseDest' instruction.
Definition: IRBuilder.h:532
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
const Value * getCalledValue() const
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc. to it.
Definition: BasicBlock.h:268
void assign(unsigned NumElts, const T &Elt)
Definition: SmallVector.h:470
static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI)
bool MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P=0)
Function must be in a unwind table.
Definition: Attributes.h:109
void setName(const Twine &Name)
Definition: Value.cpp:175
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB)
Instruction * clone() const
static Value * isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, BasicBlock *StoreBB, BasicBlock *EndBB)
Determine if we can hoist sink a sole store instruction out of a conditional block.
BasicBlock * getDestination(unsigned i)
getDestination - Return the specified destination.
static bool HoistThenElseCodeToIf(BranchInst *BI)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:395
This class represents a cast from a pointer to an integer.
Interval::succ_iterator succ_begin(Interval *I)
Definition: Interval.h:107
uint64_t getZExtValue() const
Return the zero extended value.
Definition: Constants.h:116
static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB)
Speculate a conditional basic block flattening the CFG.
static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, const DataLayout *TD)
static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, IRBuilder<> &Builder)
static Value * GatherConstantCompares(Value *V, std::vector< ConstantInt * > &Vals, Value *&Extra, const DataLayout *TD, bool isEQ, unsigned &UsedICmps)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:805
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
virtual bool isTypeLegal(Type *Ty) const
Is this type legal.
UnreachableInst * CreateUnreachable()
Definition: IRBuilder.h:586
bool sgt(const APInt &RHS) const
Signed greather than comparison.
Definition: APInt.h:1100
BasicBlock * getSuccessor(unsigned i) const
This class represents a no-op cast from one type to another.
static cl::opt< bool > SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), cl::desc("Sink common instructions down to the end block"))
class_match< ConstantInt > m_ConstantInt()
m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:72
void setSuccessor(unsigned idx, BasicBlock *B)
Definition: InstrTypes.h:71
static void EliminateBlockCases(BasicBlock *BB, std::vector< ValueEqualityComparisonCase > &Cases)
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
bool EliminateDuplicatePHINodes(BasicBlock *BB)
Definition: Local.cpp:808
ConstantRange subtract(const APInt &CI) const
void takeName(Value *V)
Definition: Value.cpp:239
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:109
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block...
Definition: IRBuilder.h:83
BasicBlock * getNormalDest() const
void ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, const DataLayout *TD=0, unsigned Depth=0)
bool mayReadOrWriteMemory() const
Definition: Instruction.h:304
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.cpp:515
unsigned getNumIncomingValues() const
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:110
void replaceUsesOfWith(Value *From, Value *To)
Definition: User.cpp:26
iterator begin() const
Definition: StringRef.h:97
InstListType::reverse_iterator reverse_iterator
Definition: BasicBlock.h:101
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
#define P(N)
void intersectOptionalDataWith(const Value *V)
Definition: Value.h:258
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
void array_pod_sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:289
bool SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, const DataLayout *TD=0)
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:834
unsigned getCaseIndex() const
Returns number of current case.
bool isIdenticalToWhenDefined(const Instruction *I) const
static bool HasBranchWeights(const Instruction *I)
void insertBefore(Instruction *InsertPos)
Definition: Instruction.cpp:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB)
Definition: Local.cpp:725
Value * CreateNot(Value *V, const Twine &Name="")
Definition: IRBuilder.h:863
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:615
static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder)
Value * CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1124
LLVM Constant Representation.
Definition: Constant.h:41
const Value * getCondition() const
ReturnInst * CreateRet(Value *V)
Create a 'ret <val>' instruction.
Definition: IRBuilder.h:507
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
op_iterator op_end()
Definition: User.h:118
BasicBlock * getIncomingBlock(unsigned i) const
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
Represent an integer comparison operator.
Definition: Instructions.h:911
iterator insert(iterator where, NodeTy *New)
Definition: ilist.h:412
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
Integer representation type.
Definition: DerivedTypes.h:37
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
bool count(const KeyT &Val) const
count - Return true if the specified key is in the map.
Definition: DenseMap.h:103
static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB)
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallPtrSet.h:74
bool isEmptySet() const
bool isPointerTy() const
Definition: Type.h:220
Value * CreateInBoundsGEP(Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Definition: IRBuilder.h:944
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
Value(Type *Ty, unsigned scid)
Definition: Value.cpp:44
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
Instruction * getFirstNonPHIOrDbgOrLifetime()
Returns a pointer to the first instruction in this block that is not a PHINode, a debug intrinsic...
Definition: BasicBlock.cpp:150
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
const Value * getTrueValue() const
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:390
void setMetadata(unsigned KindID, MDNode *Node)
Definition: Metadata.cpp:589
CallingConv::ID getCallingConv() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
bool FoldBranchToCommonDest(BranchInst *BI)
bool isTerminator() const
Definition: Instruction.h:86
static CallInst * Create(Value *Func, ArrayRef< Value * > Args, const Twine &NameStr="", Instruction *InsertBefore=0)
bool isConditional() const
bool isSafeToSpeculativelyExecute(const Value *V, const DataLayout *TD=0)
bool ugt(const APInt &RHS) const
Unsigned greather than comparison.
Definition: APInt.h:1084
IntegerType * getIntPtrType(LLVMContext &C, unsigned AddressSpace=0) const
Definition: DataLayout.cpp:610
static bool ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, const TargetTransformInfo &TTI, const DataLayout *TD, const SmallDenseMap< PHINode *, Type * > &ResultTypes)
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:153
BasicBlock * getUnwindDest() const
bool erase(PtrType Ptr)
Definition: SmallPtrSet.h:259
unsigned getIntegerBitWidth() const
Definition: Type.cpp:178
bool fitsInLegalInteger(unsigned Width) const
Definition: DataLayout.h:230
Class for constant integers.
Definition: Constants.h:51
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.cpp:547
Value * getIncomingValue(unsigned i) const
bool cannotDuplicate() const
Determine if the call cannot be duplicated.
iterator end()
Definition: BasicBlock.h:195
unsigned getNumSuccessors() const
APInt getSetSize() const
ConstantRange inverse() const
Type * getType() const
Definition: Value.h:111
void eraseFromParent()
Unlink 'this' from the containing function and delete it.
Definition: BasicBlock.cpp:100
MDNode * getMetadata(unsigned KindID) const
Definition: Instruction.h:140
static bool ExtractBranchMetadata(BranchInst *BI, uint64_t &ProbTrue, uint64_t &ProbFalse)
Value * GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, BasicBlock *&IfFalse)
const APInt & getLower() const
Definition: ConstantRange.h:79
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:276
BasicBlockTy * getCaseSuccessor()
Resolves successor for current case.
BasicBlock * getBasicBlock() const
Definition: Constants.h:764
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:659
std::reverse_iterator< iterator > reverse_iterator
Definition: ilist.h:349
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:59
bool isNullValue() const
Definition: Constants.cpp:75
CaseIt findCaseValue(const ConstantInt *C)
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:438
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:719
void splice(iterator where, iplist &L2)
Definition: ilist.h:570
static void EraseTerminatorInstAndDCECond(TerminatorInst *TI)
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
bool isAllOnesValue() const
Definition: Constants.cpp:88
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
Class for arbitrary precision integers.
Definition: APInt.h:75
static cl::opt< bool > DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false), cl::desc("Duplicate return instructions into unconditional branches"))
Value * getIncomingValueForBlock(const BasicBlock *BB) const
bool isIntegerTy() const
Definition: Type.h:196
Instruction * use_back()
Definition: Instruction.h:49
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="")
Definition: IRBuilder.h:1336
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
iterator begin()
Definition: DenseMap.h:53
Value * getCondition() const
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
unsigned getOpcode() const
Definition: Operator.h:51
static Constant * getNeg(Constant *C, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2010
use_iterator use_begin()
Definition: Value.h:150
static cl::opt< bool > HoistCondStores("simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), cl::desc("Hoist conditional stores if an unconditional store preceeds"))
BasicBlock * getSuccessor(unsigned idx) const
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy. Return the value untouched if the type of ...
Definition: IRBuilder.h:1079
Value * getCondition() const
const AttributeSet & getAttributes() const
virtual bool shouldBuildLookupTables() const
BasicBlock * getDefaultDest() const
static ConstantRange makeICmpRegion(unsigned Pred, const ConstantRange &Other)
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool hasOneUse() const
Definition: Value.h:161
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=0, BasicBlock *InsertBefore=0)
Creates a new BasicBlock.
Definition: BasicBlock.h:109
ReturnInst * FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, BasicBlock *Pred)
static bool ValuesOverlap(std::vector< ValueEqualityComparisonCase > &C1, std::vector< ValueEqualityComparisonCase > &C2)
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="")
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:298
void removeCase(CaseIt i)
size_t size() const
Definition: BasicBlock.h:203
CaseIt case_default()
unsigned getNumCases() const
void setCondition(Value *V)
bool use_empty() const
Definition: Value.h:149
const APInt & getUpper() const
Definition: ConstantRange.h:83
void setAttributes(const AttributeSet &Attrs)
static Constant * LookupConstant(Value *V, const SmallDenseMap< Value *, Constant * > &ConstantPool)
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:33
static bool ForwardSwitchConditionToPHI(SwitchInst *SI)
Module * getParent()
Definition: GlobalValue.h:286
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:1068
LLVM Value Representation.
Definition: Value.h:66
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
void setDefaultDest(BasicBlock *DefaultCase)
CallInst * CreateCall(Value *Callee, const Twine &Name="")
Definition: IRBuilder.h:1304
ReturnInst * CreateRetVoid()
Create a 'ret void' instruction.
Definition: IRBuilder.h:502
static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2)
Constant * ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, ArrayRef< Constant * > Ops, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI, const DataLayout *TD)
BranchInst * CreateBr(BasicBlock *Dest)
Create an unconditional 'br label X' instruction.
Definition: IRBuilder.h:526
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
#define DEBUG(X)
Definition: Debug.h:97
static bool ValidLookupTableConstant(Constant *C)
static bool GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, BasicBlock **CommonDest, SmallVectorImpl< std::pair< PHINode *, Constant * > > &Res, const DataLayout *DL)
static PHINode * FindPHIForConditionForwarding(ConstantInt *CaseValue, BasicBlock *BB, int *PhiIndex)
const Value * getFalseValue() const
APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const
Zero extend to a new width.
Definition: APInt.cpp:983
static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *TD, IRBuilder<> &Builder)
bool isSameOperationAs(const Instruction *I, unsigned flags=0) const
Determine if one instruction is the same operation as another.
bool operator==(uint64_t V1, const APInt &V2)
Definition: APInt.h:1684
static void FitWeights(MutableArrayRef< uint64_t > Weights)
void setIncomingValue(unsigned i, Value *V)
static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *TD)
Value * getPointerOperand()
Definition: Instructions.h:346
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, BasicBlock *ExistPred)
int getBasicBlockIndex(const BasicBlock *BB) const
unsigned getNumDestinations() const
void removeDestination(unsigned i)
const BasicBlock * getParent() const
Definition: Instruction.h:52
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:99
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
static ConstantInt * GetConstantInt(Value *V, const DataLayout *TD)
bool isOne() const
Determine if the value is one.
Definition: Constants.h:168
static bool EliminateDeadSwitchCases(SwitchInst *SI)
LLVMContext & getContext() const
Definition: Module.h:249
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140