LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
PromoteMemoryToRegister.cpp
Go to the documentation of this file.
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references. It promotes
11 // alloca instructions which only have loads and stores as uses. An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 // The algorithm used here is based on:
17 //
18 // Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19 // In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20 // Programming Languages
21 // POPL '95. ACM, New York, NY, 62-73.
22 //
23 // It has been modified to not explicitly use the DJ graph data structure and to
24 // directly compute pruned SSA using per-variable liveness information.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #define DEBUG_TYPE "mem2reg"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
40 #include "llvm/DIBuilder.h"
41 #include "llvm/DebugInfo.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Metadata.h"
48 #include "llvm/Support/CFG.h"
50 #include <algorithm>
51 #include <queue>
52 using namespace llvm;
53 
54 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
55 STATISTIC(NumSingleStore, "Number of alloca's promoted with a single store");
56 STATISTIC(NumDeadAlloca, "Number of dead alloca's removed");
57 STATISTIC(NumPHIInsert, "Number of PHI nodes inserted");
58 
60  // FIXME: If the memory unit is of pointer or integer type, we can permit
61  // assignments to subsections of the memory unit.
62 
63  // Only allow direct and non-volatile loads and stores...
64  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
65  UI != UE; ++UI) { // Loop over all of the uses of the alloca
66  const User *U = *UI;
67  if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
68  // Note that atomic loads can be transformed; atomic semantics do
69  // not have any meaning for a local alloca.
70  if (LI->isVolatile())
71  return false;
72  } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
73  if (SI->getOperand(0) == AI)
74  return false; // Don't allow a store OF the AI, only INTO the AI.
75  // Note that atomic stores can be transformed; atomic semantics do
76  // not have any meaning for a local alloca.
77  if (SI->isVolatile())
78  return false;
79  } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80  if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
81  II->getIntrinsicID() != Intrinsic::lifetime_end)
82  return false;
83  } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
84  if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
85  return false;
86  if (!onlyUsedByLifetimeMarkers(BCI))
87  return false;
88  } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
89  if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
90  return false;
91  if (!GEPI->hasAllZeroIndices())
92  return false;
93  if (!onlyUsedByLifetimeMarkers(GEPI))
94  return false;
95  } else {
96  return false;
97  }
98  }
99 
100  return true;
101 }
102 
103 namespace {
104 
105 struct AllocaInfo {
106  SmallVector<BasicBlock *, 32> DefiningBlocks;
107  SmallVector<BasicBlock *, 32> UsingBlocks;
108 
109  StoreInst *OnlyStore;
110  BasicBlock *OnlyBlock;
111  bool OnlyUsedInOneBlock;
112 
113  Value *AllocaPointerVal;
114  DbgDeclareInst *DbgDeclare;
115 
116  void clear() {
117  DefiningBlocks.clear();
118  UsingBlocks.clear();
119  OnlyStore = 0;
120  OnlyBlock = 0;
121  OnlyUsedInOneBlock = true;
122  AllocaPointerVal = 0;
123  DbgDeclare = 0;
124  }
125 
126  /// Scan the uses of the specified alloca, filling in the AllocaInfo used
127  /// by the rest of the pass to reason about the uses of this alloca.
128  void AnalyzeAlloca(AllocaInst *AI) {
129  clear();
130 
131  // As we scan the uses of the alloca instruction, keep track of stores,
132  // and decide whether all of the loads and stores to the alloca are within
133  // the same basic block.
134  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
135  UI != E;) {
136  Instruction *User = cast<Instruction>(*UI++);
137 
138  if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
139  // Remember the basic blocks which define new values for the alloca
140  DefiningBlocks.push_back(SI->getParent());
141  AllocaPointerVal = SI->getOperand(0);
142  OnlyStore = SI;
143  } else {
144  LoadInst *LI = cast<LoadInst>(User);
145  // Otherwise it must be a load instruction, keep track of variable
146  // reads.
147  UsingBlocks.push_back(LI->getParent());
148  AllocaPointerVal = LI;
149  }
150 
151  if (OnlyUsedInOneBlock) {
152  if (OnlyBlock == 0)
153  OnlyBlock = User->getParent();
154  else if (OnlyBlock != User->getParent())
155  OnlyUsedInOneBlock = false;
156  }
157  }
158 
159  DbgDeclare = FindAllocaDbgDeclare(AI);
160  }
161 };
162 
163 // Data package used by RenamePass()
164 class RenamePassData {
165 public:
166  typedef std::vector<Value *> ValVector;
167 
168  RenamePassData() : BB(NULL), Pred(NULL), Values() {}
169  RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
170  : BB(B), Pred(P), Values(V) {}
171  BasicBlock *BB;
172  BasicBlock *Pred;
173  ValVector Values;
174 
175  void swap(RenamePassData &RHS) {
176  std::swap(BB, RHS.BB);
177  std::swap(Pred, RHS.Pred);
178  Values.swap(RHS.Values);
179  }
180 };
181 
182 /// \brief This assigns and keeps a per-bb relative ordering of load/store
183 /// instructions in the block that directly load or store an alloca.
184 ///
185 /// This functionality is important because it avoids scanning large basic
186 /// blocks multiple times when promoting many allocas in the same block.
187 class LargeBlockInfo {
188  /// \brief For each instruction that we track, keep the index of the
189  /// instruction.
190  ///
191  /// The index starts out as the number of the instruction from the start of
192  /// the block.
194 
195 public:
196 
197  /// This code only looks at accesses to allocas.
198  static bool isInterestingInstruction(const Instruction *I) {
199  return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
200  (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
201  }
202 
203  /// Get or calculate the index of the specified instruction.
204  unsigned getInstructionIndex(const Instruction *I) {
205  assert(isInterestingInstruction(I) &&
206  "Not a load/store to/from an alloca?");
207 
208  // If we already have this instruction number, return it.
210  if (It != InstNumbers.end())
211  return It->second;
212 
213  // Scan the whole block to get the instruction. This accumulates
214  // information for every interesting instruction in the block, in order to
215  // avoid gratuitus rescans.
216  const BasicBlock *BB = I->getParent();
217  unsigned InstNo = 0;
218  for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
219  ++BBI)
220  if (isInterestingInstruction(BBI))
221  InstNumbers[BBI] = InstNo++;
222  It = InstNumbers.find(I);
223 
224  assert(It != InstNumbers.end() && "Didn't insert instruction?");
225  return It->second;
226  }
227 
228  void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
229 
230  void clear() { InstNumbers.clear(); }
231 };
232 
233 struct PromoteMem2Reg {
234  /// The alloca instructions being promoted.
235  std::vector<AllocaInst *> Allocas;
236  DominatorTree &DT;
237  DIBuilder DIB;
238 
239  /// An AliasSetTracker object to update. If null, don't update it.
240  AliasSetTracker *AST;
241 
242  /// Reverse mapping of Allocas.
244 
245  /// \brief The PhiNodes we're adding.
246  ///
247  /// That map is used to simplify some Phi nodes as we iterate over it, so
248  /// it should have deterministic iterators. We could use a MapVector, but
249  /// since we already maintain a map from BasicBlock* to a stable numbering
250  /// (BBNumbers), the DenseMap is more efficient (also supports removal).
252 
253  /// For each PHI node, keep track of which entry in Allocas it corresponds
254  /// to.
255  DenseMap<PHINode *, unsigned> PhiToAllocaMap;
256 
257  /// If we are updating an AliasSetTracker, then for each alloca that is of
258  /// pointer type, we keep track of what to copyValue to the inserted PHI
259  /// nodes here.
260  std::vector<Value *> PointerAllocaValues;
261 
262  /// For each alloca, we keep track of the dbg.declare intrinsic that
263  /// describes it, if any, so that we can convert it to a dbg.value
264  /// intrinsic if the alloca gets promoted.
265  SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
266 
267  /// The set of basic blocks the renamer has already visited.
268  ///
270 
271  /// Contains a stable numbering of basic blocks to avoid non-determinstic
272  /// behavior.
274 
275  /// Maps DomTreeNodes to their level in the dominator tree.
277 
278  /// Lazily compute the number of predecessors a block has.
280 
281 public:
282  PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
283  AliasSetTracker *AST)
284  : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
285  DIB(*DT.getRoot()->getParent()->getParent()), AST(AST) {}
286 
287  void run();
288 
289 private:
290  void RemoveFromAllocasList(unsigned &AllocaIdx) {
291  Allocas[AllocaIdx] = Allocas.back();
292  Allocas.pop_back();
293  --AllocaIdx;
294  }
295 
296  unsigned getNumPreds(const BasicBlock *BB) {
297  unsigned &NP = BBNumPreds[BB];
298  if (NP == 0)
299  NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
300  return NP - 1;
301  }
302 
303  void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
304  AllocaInfo &Info);
305  void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
306  const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
307  SmallPtrSet<BasicBlock *, 32> &LiveInBlocks);
308  void RenamePass(BasicBlock *BB, BasicBlock *Pred,
309  RenamePassData::ValVector &IncVals,
310  std::vector<RenamePassData> &Worklist);
311  bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
312 };
313 
314 } // end of anonymous namespace
315 
317  // Knowing that this alloca is promotable, we know that it's safe to kill all
318  // instructions except for load and store.
319 
320  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
321  UI != UE;) {
322  Instruction *I = cast<Instruction>(*UI);
323  ++UI;
324  if (isa<LoadInst>(I) || isa<StoreInst>(I))
325  continue;
326 
327  if (!I->getType()->isVoidTy()) {
328  // The only users of this bitcast/GEP instruction are lifetime intrinsics.
329  // Follow the use/def chain to erase them now instead of leaving it for
330  // dead code elimination later.
331  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
332  UI != UE;) {
333  Instruction *Inst = cast<Instruction>(*UI);
334  ++UI;
335  Inst->eraseFromParent();
336  }
337  }
338  I->eraseFromParent();
339  }
340 }
341 
342 /// \brief Rewrite as many loads as possible given a single store.
343 ///
344 /// When there is only a single store, we can use the domtree to trivially
345 /// replace all of the dominated loads with the stored value. Do so, and return
346 /// true if this has successfully promoted the alloca entirely. If this returns
347 /// false there were some loads which were not dominated by the single store
348 /// and thus must be phi-ed with undef. We fall back to the standard alloca
349 /// promotion algorithm in that case.
350 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
351  LargeBlockInfo &LBI,
352  DominatorTree &DT,
353  AliasSetTracker *AST) {
354  StoreInst *OnlyStore = Info.OnlyStore;
355  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
356  BasicBlock *StoreBB = OnlyStore->getParent();
357  int StoreIndex = -1;
358 
359  // Clear out UsingBlocks. We will reconstruct it here if needed.
360  Info.UsingBlocks.clear();
361 
362  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
363  Instruction *UserInst = cast<Instruction>(*UI++);
364  if (!isa<LoadInst>(UserInst)) {
365  assert(UserInst == OnlyStore && "Should only have load/stores");
366  continue;
367  }
368  LoadInst *LI = cast<LoadInst>(UserInst);
369 
370  // Okay, if we have a load from the alloca, we want to replace it with the
371  // only value stored to the alloca. We can do this if the value is
372  // dominated by the store. If not, we use the rest of the mem2reg machinery
373  // to insert the phi nodes as needed.
374  if (!StoringGlobalVal) { // Non-instructions are always dominated.
375  if (LI->getParent() == StoreBB) {
376  // If we have a use that is in the same block as the store, compare the
377  // indices of the two instructions to see which one came first. If the
378  // load came before the store, we can't handle it.
379  if (StoreIndex == -1)
380  StoreIndex = LBI.getInstructionIndex(OnlyStore);
381 
382  if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
383  // Can't handle this load, bail out.
384  Info.UsingBlocks.push_back(StoreBB);
385  continue;
386  }
387 
388  } else if (LI->getParent() != StoreBB &&
389  !DT.dominates(StoreBB, LI->getParent())) {
390  // If the load and store are in different blocks, use BB dominance to
391  // check their relationships. If the store doesn't dom the use, bail
392  // out.
393  Info.UsingBlocks.push_back(LI->getParent());
394  continue;
395  }
396  }
397 
398  // Otherwise, we *can* safely rewrite this load.
399  Value *ReplVal = OnlyStore->getOperand(0);
400  // If the replacement value is the load, this must occur in unreachable
401  // code.
402  if (ReplVal == LI)
403  ReplVal = UndefValue::get(LI->getType());
404  LI->replaceAllUsesWith(ReplVal);
405  if (AST && LI->getType()->isPointerTy())
406  AST->deleteValue(LI);
407  LI->eraseFromParent();
408  LBI.deleteValue(LI);
409  }
410 
411  // Finally, after the scan, check to see if the store is all that is left.
412  if (!Info.UsingBlocks.empty())
413  return false; // If not, we'll have to fall back for the remainder.
414 
415  // Record debuginfo for the store and remove the declaration's
416  // debuginfo.
417  if (DbgDeclareInst *DDI = Info.DbgDeclare) {
418  DIBuilder DIB(*AI->getParent()->getParent()->getParent());
419  ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
420  DDI->eraseFromParent();
421  LBI.deleteValue(DDI);
422  }
423  // Remove the (now dead) store and alloca.
424  Info.OnlyStore->eraseFromParent();
425  LBI.deleteValue(Info.OnlyStore);
426 
427  if (AST)
428  AST->deleteValue(AI);
429  AI->eraseFromParent();
430  LBI.deleteValue(AI);
431  return true;
432 }
433 
434 /// Many allocas are only used within a single basic block. If this is the
435 /// case, avoid traversing the CFG and inserting a lot of potentially useless
436 /// PHI nodes by just performing a single linear pass over the basic block
437 /// using the Alloca.
438 ///
439 /// If we cannot promote this alloca (because it is read before it is written),
440 /// return true. This is necessary in cases where, due to control flow, the
441 /// alloca is potentially undefined on some control flow paths. e.g. code like
442 /// this is potentially correct:
443 ///
444 /// for (...) { if (c) { A = undef; undef = B; } }
445 ///
446 /// ... so long as A is not used before undef is set.
447 static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
448  LargeBlockInfo &LBI,
449  AliasSetTracker *AST) {
450  // The trickiest case to handle is when we have large blocks. Because of this,
451  // this code is optimized assuming that large blocks happen. This does not
452  // significantly pessimize the small block case. This uses LargeBlockInfo to
453  // make it efficient to get the index of various operations in the block.
454 
455  // Walk the use-def list of the alloca, getting the locations of all stores.
456  typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
457  StoresByIndexTy StoresByIndex;
458 
459  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;
460  ++UI)
461  if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
462  StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
463 
464  // Sort the stores by their index, making it efficient to do a lookup with a
465  // binary search.
466  std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
467 
468  // Walk all of the loads from this alloca, replacing them with the nearest
469  // store above them, if any.
470  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
471  LoadInst *LI = dyn_cast<LoadInst>(*UI++);
472  if (!LI)
473  continue;
474 
475  unsigned LoadIdx = LBI.getInstructionIndex(LI);
476 
477  // Find the nearest store that has a lower index than this load.
478  StoresByIndexTy::iterator I =
479  std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
480  std::make_pair(LoadIdx, static_cast<StoreInst *>(0)),
481  less_first());
482 
483  if (I == StoresByIndex.begin())
484  // If there is no store before this load, the load takes the undef value.
486  else
487  // Otherwise, there was a store before this load, the load takes its value.
488  LI->replaceAllUsesWith(llvm::prior(I)->second->getOperand(0));
489 
490  if (AST && LI->getType()->isPointerTy())
491  AST->deleteValue(LI);
492  LI->eraseFromParent();
493  LBI.deleteValue(LI);
494  }
495 
496  // Remove the (now dead) stores and alloca.
497  while (!AI->use_empty()) {
498  StoreInst *SI = cast<StoreInst>(AI->use_back());
499  // Record debuginfo for the store before removing it.
500  if (DbgDeclareInst *DDI = Info.DbgDeclare) {
501  DIBuilder DIB(*AI->getParent()->getParent()->getParent());
502  ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
503  }
504  SI->eraseFromParent();
505  LBI.deleteValue(SI);
506  }
507 
508  if (AST)
509  AST->deleteValue(AI);
510  AI->eraseFromParent();
511  LBI.deleteValue(AI);
512 
513  // The alloca's debuginfo can be removed as well.
514  if (DbgDeclareInst *DDI = Info.DbgDeclare) {
515  DDI->eraseFromParent();
516  LBI.deleteValue(DDI);
517  }
518 
519  ++NumLocalPromoted;
520 }
521 
522 void PromoteMem2Reg::run() {
523  Function &F = *DT.getRoot()->getParent();
524 
525  if (AST)
526  PointerAllocaValues.resize(Allocas.size());
527  AllocaDbgDeclares.resize(Allocas.size());
528 
529  AllocaInfo Info;
530  LargeBlockInfo LBI;
531 
532  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
533  AllocaInst *AI = Allocas[AllocaNum];
534 
535  assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
536  assert(AI->getParent()->getParent() == &F &&
537  "All allocas should be in the same function, which is same as DF!");
538 
540 
541  if (AI->use_empty()) {
542  // If there are no uses of the alloca, just delete it now.
543  if (AST)
544  AST->deleteValue(AI);
545  AI->eraseFromParent();
546 
547  // Remove the alloca from the Allocas list, since it has been processed
548  RemoveFromAllocasList(AllocaNum);
549  ++NumDeadAlloca;
550  continue;
551  }
552 
553  // Calculate the set of read and write-locations for each alloca. This is
554  // analogous to finding the 'uses' and 'definitions' of each variable.
555  Info.AnalyzeAlloca(AI);
556 
557  // If there is only a single store to this value, replace any loads of
558  // it that are directly dominated by the definition with the value stored.
559  if (Info.DefiningBlocks.size() == 1) {
560  if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
561  // The alloca has been processed, move on.
562  RemoveFromAllocasList(AllocaNum);
563  ++NumSingleStore;
564  continue;
565  }
566  }
567 
568  // If the alloca is only read and written in one basic block, just perform a
569  // linear sweep over the block to eliminate it.
570  if (Info.OnlyUsedInOneBlock) {
571  promoteSingleBlockAlloca(AI, Info, LBI, AST);
572 
573  // The alloca has been processed, move on.
574  RemoveFromAllocasList(AllocaNum);
575  continue;
576  }
577 
578  // If we haven't computed dominator tree levels, do so now.
579  if (DomLevels.empty()) {
581 
582  DomTreeNode *Root = DT.getRootNode();
583  DomLevels[Root] = 0;
584  Worklist.push_back(Root);
585 
586  while (!Worklist.empty()) {
587  DomTreeNode *Node = Worklist.pop_back_val();
588  unsigned ChildLevel = DomLevels[Node] + 1;
589  for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
590  CI != CE; ++CI) {
591  DomLevels[*CI] = ChildLevel;
592  Worklist.push_back(*CI);
593  }
594  }
595  }
596 
597  // If we haven't computed a numbering for the BB's in the function, do so
598  // now.
599  if (BBNumbers.empty()) {
600  unsigned ID = 0;
601  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
602  BBNumbers[I] = ID++;
603  }
604 
605  // If we have an AST to keep updated, remember some pointer value that is
606  // stored into the alloca.
607  if (AST)
608  PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
609 
610  // Remember the dbg.declare intrinsic describing this alloca, if any.
611  if (Info.DbgDeclare)
612  AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
613 
614  // Keep the reverse mapping of the 'Allocas' array for the rename pass.
615  AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
616 
617  // At this point, we're committed to promoting the alloca using IDF's, and
618  // the standard SSA construction algorithm. Determine which blocks need PHI
619  // nodes and see if we can optimize out some work by avoiding insertion of
620  // dead phi nodes.
621  DetermineInsertionPoint(AI, AllocaNum, Info);
622  }
623 
624  if (Allocas.empty())
625  return; // All of the allocas must have been trivial!
626 
627  LBI.clear();
628 
629  // Set the incoming values for the basic block to be null values for all of
630  // the alloca's. We do this in case there is a load of a value that has not
631  // been stored yet. In this case, it will get this null value.
632  //
633  RenamePassData::ValVector Values(Allocas.size());
634  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
635  Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
636 
637  // Walks all basic blocks in the function performing the SSA rename algorithm
638  // and inserting the phi nodes we marked as necessary
639  //
640  std::vector<RenamePassData> RenamePassWorkList;
641  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
642  do {
643  RenamePassData RPD;
644  RPD.swap(RenamePassWorkList.back());
645  RenamePassWorkList.pop_back();
646  // RenamePass may add new worklist entries.
647  RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
648  } while (!RenamePassWorkList.empty());
649 
650  // The renamer uses the Visited set to avoid infinite loops. Clear it now.
651  Visited.clear();
652 
653  // Remove the allocas themselves from the function.
654  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
655  Instruction *A = Allocas[i];
656 
657  // If there are any uses of the alloca instructions left, they must be in
658  // unreachable basic blocks that were not processed by walking the dominator
659  // tree. Just delete the users now.
660  if (!A->use_empty())
662  if (AST)
663  AST->deleteValue(A);
664  A->eraseFromParent();
665  }
666 
667  // Remove alloca's dbg.declare instrinsics from the function.
668  for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
669  if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
670  DDI->eraseFromParent();
671 
672  // Loop over all of the PHI nodes and see if there are any that we can get
673  // rid of because they merge all of the same incoming values. This can
674  // happen due to undef values coming into the PHI nodes. This process is
675  // iterative, because eliminating one PHI node can cause others to be removed.
676  bool EliminatedAPHI = true;
677  while (EliminatedAPHI) {
678  EliminatedAPHI = false;
679 
680  // Iterating over NewPhiNodes is deterministic, so it is safe to try to
681  // simplify and RAUW them as we go. If it was not, we could add uses to
682  // the values we replace with in a non deterministic order, thus creating
683  // non deterministic def->use chains.
684  for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
685  I = NewPhiNodes.begin(),
686  E = NewPhiNodes.end();
687  I != E;) {
688  PHINode *PN = I->second;
689 
690  // If this PHI node merges one value and/or undefs, get the value.
691  if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) {
692  if (AST && PN->getType()->isPointerTy())
693  AST->deleteValue(PN);
694  PN->replaceAllUsesWith(V);
695  PN->eraseFromParent();
696  NewPhiNodes.erase(I++);
697  EliminatedAPHI = true;
698  continue;
699  }
700  ++I;
701  }
702  }
703 
704  // At this point, the renamer has added entries to PHI nodes for all reachable
705  // code. Unfortunately, there may be unreachable blocks which the renamer
706  // hasn't traversed. If this is the case, the PHI nodes may not
707  // have incoming values for all predecessors. Loop over all PHI nodes we have
708  // created, inserting undef values if they are missing any incoming values.
709  //
710  for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
711  I = NewPhiNodes.begin(),
712  E = NewPhiNodes.end();
713  I != E; ++I) {
714  // We want to do this once per basic block. As such, only process a block
715  // when we find the PHI that is the first entry in the block.
716  PHINode *SomePHI = I->second;
717  BasicBlock *BB = SomePHI->getParent();
718  if (&BB->front() != SomePHI)
719  continue;
720 
721  // Only do work here if there the PHI nodes are missing incoming values. We
722  // know that all PHI nodes that were inserted in a block will have the same
723  // number of incoming values, so we can just check any of them.
724  if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
725  continue;
726 
727  // Get the preds for BB.
729 
730  // Ok, now we know that all of the PHI nodes are missing entries for some
731  // basic blocks. Start by sorting the incoming predecessors for efficient
732  // access.
733  std::sort(Preds.begin(), Preds.end());
734 
735  // Now we loop through all BB's which have entries in SomePHI and remove
736  // them from the Preds list.
737  for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
738  // Do a log(n) search of the Preds list for the entry we want.
739  SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
740  Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
741  assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
742  "PHI node has entry for a block which is not a predecessor!");
743 
744  // Remove the entry
745  Preds.erase(EntIt);
746  }
747 
748  // At this point, the blocks left in the preds list must have dummy
749  // entries inserted into every PHI nodes for the block. Update all the phi
750  // nodes in this block that we are inserting (there could be phis before
751  // mem2reg runs).
752  unsigned NumBadPreds = SomePHI->getNumIncomingValues();
753  BasicBlock::iterator BBI = BB->begin();
754  while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
755  SomePHI->getNumIncomingValues() == NumBadPreds) {
756  Value *UndefVal = UndefValue::get(SomePHI->getType());
757  for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
758  SomePHI->addIncoming(UndefVal, Preds[pred]);
759  }
760  }
761 
762  NewPhiNodes.clear();
763 }
764 
765 /// \brief Determine which blocks the value is live in.
766 ///
767 /// These are blocks which lead to uses. Knowing this allows us to avoid
768 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
769 /// inserted phi nodes would be dead).
770 void PromoteMem2Reg::ComputeLiveInBlocks(
771  AllocaInst *AI, AllocaInfo &Info,
772  const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
773  SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) {
774 
775  // To determine liveness, we must iterate through the predecessors of blocks
776  // where the def is live. Blocks are added to the worklist if we need to
777  // check their predecessors. Start with all the using blocks.
778  SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
779  Info.UsingBlocks.end());
780 
781  // If any of the using blocks is also a definition block, check to see if the
782  // definition occurs before or after the use. If it happens before the use,
783  // the value isn't really live-in.
784  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
785  BasicBlock *BB = LiveInBlockWorklist[i];
786  if (!DefBlocks.count(BB))
787  continue;
788 
789  // Okay, this is a block that both uses and defines the value. If the first
790  // reference to the alloca is a def (store), then we know it isn't live-in.
791  for (BasicBlock::iterator I = BB->begin();; ++I) {
792  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
793  if (SI->getOperand(1) != AI)
794  continue;
795 
796  // We found a store to the alloca before a load. The alloca is not
797  // actually live-in here.
798  LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
799  LiveInBlockWorklist.pop_back();
800  --i, --e;
801  break;
802  }
803 
804  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
805  if (LI->getOperand(0) != AI)
806  continue;
807 
808  // Okay, we found a load before a store to the alloca. It is actually
809  // live into this block.
810  break;
811  }
812  }
813  }
814 
815  // Now that we have a set of blocks where the phi is live-in, recursively add
816  // their predecessors until we find the full region the value is live.
817  while (!LiveInBlockWorklist.empty()) {
818  BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
819 
820  // The block really is live in here, insert it into the set. If already in
821  // the set, then it has already been processed.
822  if (!LiveInBlocks.insert(BB))
823  continue;
824 
825  // Since the value is live into BB, it is either defined in a predecessor or
826  // live into it to. Add the preds to the worklist unless they are a
827  // defining block.
828  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
829  BasicBlock *P = *PI;
830 
831  // The value is not live into a predecessor if it defines the value.
832  if (DefBlocks.count(P))
833  continue;
834 
835  // Otherwise it is, add to the worklist.
836  LiveInBlockWorklist.push_back(P);
837  }
838  }
839 }
840 
841 /// At this point, we're committed to promoting the alloca using IDF's, and the
842 /// standard SSA construction algorithm. Determine which blocks need phi nodes
843 /// and see if we can optimize out some work by avoiding insertion of dead phi
844 /// nodes.
845 void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
846  AllocaInfo &Info) {
847  // Unique the set of defining blocks for efficient lookup.
849  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
850 
851  // Determine which blocks the value is live in. These are blocks which lead
852  // to uses.
853  SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
854  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
855 
856  // Use a priority queue keyed on dominator tree level so that inserted nodes
857  // are handled from the bottom of the dominator tree upwards.
858  typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
859  typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
860  less_second> IDFPriorityQueue;
861  IDFPriorityQueue PQ;
862 
864  E = DefBlocks.end();
865  I != E; ++I) {
866  if (DomTreeNode *Node = DT.getNode(*I))
867  PQ.push(std::make_pair(Node, DomLevels[Node]));
868  }
869 
873  while (!PQ.empty()) {
874  DomTreeNodePair RootPair = PQ.top();
875  PQ.pop();
876  DomTreeNode *Root = RootPair.first;
877  unsigned RootLevel = RootPair.second;
878 
879  // Walk all dominator tree children of Root, inspecting their CFG edges with
880  // targets elsewhere on the dominator tree. Only targets whose level is at
881  // most Root's level are added to the iterated dominance frontier of the
882  // definition set.
883 
884  Worklist.clear();
885  Worklist.push_back(Root);
886 
887  while (!Worklist.empty()) {
888  DomTreeNode *Node = Worklist.pop_back_val();
889  BasicBlock *BB = Node->getBlock();
890 
891  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
892  ++SI) {
893  DomTreeNode *SuccNode = DT.getNode(*SI);
894 
895  // Quickly skip all CFG edges that are also dominator tree edges instead
896  // of catching them below.
897  if (SuccNode->getIDom() == Node)
898  continue;
899 
900  unsigned SuccLevel = DomLevels[SuccNode];
901  if (SuccLevel > RootLevel)
902  continue;
903 
904  if (!Visited.insert(SuccNode))
905  continue;
906 
907  BasicBlock *SuccBB = SuccNode->getBlock();
908  if (!LiveInBlocks.count(SuccBB))
909  continue;
910 
911  DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
912  if (!DefBlocks.count(SuccBB))
913  PQ.push(std::make_pair(SuccNode, SuccLevel));
914  }
915 
916  for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
917  ++CI) {
918  if (!Visited.count(*CI))
919  Worklist.push_back(*CI);
920  }
921  }
922  }
923 
924  if (DFBlocks.size() > 1)
925  std::sort(DFBlocks.begin(), DFBlocks.end());
926 
927  unsigned CurrentVersion = 0;
928  for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
929  QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
930 }
931 
932 /// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
933 ///
934 /// Returns true if there wasn't already a phi-node for that variable
935 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
936  unsigned &Version) {
937  // Look up the basic-block in question.
938  PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
939 
940  // If the BB already has a phi node added for the i'th alloca then we're done!
941  if (PN)
942  return false;
943 
944  // Create a PhiNode using the dereferenced type... and add the phi-node to the
945  // BasicBlock.
946  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
947  Allocas[AllocaNo]->getName() + "." + Twine(Version++),
948  BB->begin());
949  ++NumPHIInsert;
950  PhiToAllocaMap[PN] = AllocaNo;
951 
952  if (AST && PN->getType()->isPointerTy())
953  AST->copyValue(PointerAllocaValues[AllocaNo], PN);
954 
955  return true;
956 }
957 
958 /// \brief Recursively traverse the CFG of the function, renaming loads and
959 /// stores to the allocas which we are promoting.
960 ///
961 /// IncomingVals indicates what value each Alloca contains on exit from the
962 /// predecessor block Pred.
963 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
964  RenamePassData::ValVector &IncomingVals,
965  std::vector<RenamePassData> &Worklist) {
966 NextIteration:
967  // If we are inserting any phi nodes into this BB, they will already be in the
968  // block.
969  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
970  // If we have PHI nodes to update, compute the number of edges from Pred to
971  // BB.
972  if (PhiToAllocaMap.count(APN)) {
973  // We want to be able to distinguish between PHI nodes being inserted by
974  // this invocation of mem2reg from those phi nodes that already existed in
975  // the IR before mem2reg was run. We determine that APN is being inserted
976  // because it is missing incoming edges. All other PHI nodes being
977  // inserted by this pass of mem2reg will have the same number of incoming
978  // operands so far. Remember this count.
979  unsigned NewPHINumOperands = APN->getNumOperands();
980 
981  unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
982  assert(NumEdges && "Must be at least one edge from Pred to BB!");
983 
984  // Add entries for all the phis.
985  BasicBlock::iterator PNI = BB->begin();
986  do {
987  unsigned AllocaNo = PhiToAllocaMap[APN];
988 
989  // Add N incoming values to the PHI node.
990  for (unsigned i = 0; i != NumEdges; ++i)
991  APN->addIncoming(IncomingVals[AllocaNo], Pred);
992 
993  // The currently active variable for this block is now the PHI.
994  IncomingVals[AllocaNo] = APN;
995 
996  // Get the next phi node.
997  ++PNI;
998  APN = dyn_cast<PHINode>(PNI);
999  if (APN == 0)
1000  break;
1001 
1002  // Verify that it is missing entries. If not, it is not being inserted
1003  // by this mem2reg invocation so we want to ignore it.
1004  } while (APN->getNumOperands() == NewPHINumOperands);
1005  }
1006  }
1007 
1008  // Don't revisit blocks.
1009  if (!Visited.insert(BB))
1010  return;
1011 
1012  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
1013  Instruction *I = II++; // get the instruction, increment iterator
1014 
1015  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1017  if (!Src)
1018  continue;
1019 
1020  DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1021  if (AI == AllocaLookup.end())
1022  continue;
1023 
1024  Value *V = IncomingVals[AI->second];
1025 
1026  // Anything using the load now uses the current value.
1027  LI->replaceAllUsesWith(V);
1028  if (AST && LI->getType()->isPointerTy())
1029  AST->deleteValue(LI);
1030  BB->getInstList().erase(LI);
1031  } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1032  // Delete this instruction and mark the name as the current holder of the
1033  // value
1034  AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1035  if (!Dest)
1036  continue;
1037 
1038  DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1039  if (ai == AllocaLookup.end())
1040  continue;
1041 
1042  // what value were we writing?
1043  IncomingVals[ai->second] = SI->getOperand(0);
1044  // Record debuginfo for the store before removing it.
1045  if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
1046  ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1047  BB->getInstList().erase(SI);
1048  }
1049  }
1050 
1051  // 'Recurse' to our successors.
1052  succ_iterator I = succ_begin(BB), E = succ_end(BB);
1053  if (I == E)
1054  return;
1055 
1056  // Keep track of the successors so we don't visit the same successor twice
1057  SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1058 
1059  // Handle the first successor without using the worklist.
1060  VisitedSuccs.insert(*I);
1061  Pred = BB;
1062  BB = *I;
1063  ++I;
1064 
1065  for (; I != E; ++I)
1066  if (VisitedSuccs.insert(*I))
1067  Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1068 
1069  goto NextIteration;
1070 }
1071 
1073  AliasSetTracker *AST) {
1074  // If there is nothing to do, bail out...
1075  if (Allocas.empty())
1076  return;
1077 
1078  PromoteMem2Reg(Allocas, DT, AST).run();
1079 }
void push_back(const T &Elt)
Definition: SmallVector.h:236
use_iterator use_end()
Definition: Value.h:152
const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:181
void addIncoming(Value *V, BasicBlock *BB)
const Instruction & back() const
Definition: BasicBlock.h:207
static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info, LargeBlockInfo &LBI, AliasSetTracker *AST)
Function object to check whether the second component of a std::pair compares less than the second co...
Definition: STLExtras.h:230
DbgDeclareInst * FindAllocaDbgDeclare(Value *V)
Definition: Local.cpp:1073
iterator end()
Definition: Function.h:397
static void removeLifetimeIntrinsicUsers(AllocaInst *AI)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
const_iterator begin(StringRef path)
Get begin iterator over path.
Definition: Path.cpp:173
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
const Instruction & front() const
Definition: BasicBlock.h:205
void PromoteMemToReg(ArrayRef< AllocaInst * > Allocas, DominatorTree &DT, AliasSetTracker *AST=0)
Promote the specified list of alloca instructions into scalar registers, inserting PHI nodes as appro...
F(f)
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
bool isAllocaPromotable(const AllocaInst *AI)
Return true if this alloca is legal for promotion.
iterator begin()
Definition: BasicBlock.h:193
void swap(OwningPtr< T > &a, OwningPtr< T > &b)
Definition: OwningPtr.h:85
DomTreeNodeBase< NodeT > * getIDom() const
Definition: Dominators.h:83
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
Interval::succ_iterator succ_begin(Interval *I)
Definition: Interval.h:107
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
This class represents a no-op cast from one type to another.
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
iterator begin()
Definition: Function.h:395
NodeT * getBlock() const
Definition: Dominators.h:82
Interval::succ_iterator succ_end(Interval *I)
Definition: Interval.h:110
unsigned getNumIncomingValues() const
#define P(N)
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool onlyUsedByLifetimeMarkers(const Value *V)
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", Instruction *InsertBefore=0)
BasicBlock * getIncomingBlock(unsigned i) const
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
Value * getOperand(unsigned i) const
Definition: User.h:88
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
Value * getPointerOperand()
Definition: Instructions.h:223
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:104
bool dominates(const DomTreeNode *A, const DomTreeNode *B) const
Definition: Dominators.h:801
bool isPointerTy() const
Definition: Type.h:220
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
static PointerType * getInt8PtrTy(LLVMContext &C, unsigned AS=0)
Definition: Type.cpp:284
iterator erase(iterator where)
Definition: ilist.h:465
SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
Definition: SmallPtrSet.h:174
bool ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI, StoreInst *SI, DIBuilder &Builder)
Definition: Local.cpp:971
Type * getType() const
Definition: Value.h:111
STATISTIC(NumLocalPromoted,"Number of alloca's promoted within one block")
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
Instruction * use_back()
Definition: Instruction.h:49
use_iterator use_begin()
Definition: Value.h:150
std::string getName(ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:400
#define I(x, y, z)
Definition: MD5.cpp:54
iterator end() const
Definition: SmallPtrSet.h:279
static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info, LargeBlockInfo &LBI, DominatorTree &DT, AliasSetTracker *AST)
Rewrite as many loads as possible given a single store.
bool use_empty() const
Definition: Value.h:149
std::vector< DomTreeNodeBase< NodeT > * >::iterator iterator
Definition: Dominators.h:73
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
iterator begin() const
Definition: SmallPtrSet.h:276
static const Function * getParent(const Value *V)
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
iterator find(const KeyT &Val)
Definition: DenseMap.h:108
Function object to check whether the first component of a std::pair compares less than the first comp...
Definition: STLExtras.h:222
const BasicBlock * getParent() const
Definition: Instruction.h:52
void deleteValue(Value *PtrVal)
bool isVoidTy() const
isVoidTy - Return true if this is 'void'.
Definition: Type.h:140