LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
TargetRegisterInfo.h
Go to the documentation of this file.
1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes an abstract interface used to get information about a
11 // target machines register file. This information is used for a variety of
12 // purposed, especially register allocation.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
17 #define LLVM_TARGET_TARGETREGISTERINFO_H
18 
19 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/IR/CallingConv.h"
23 #include "llvm/MC/MCRegisterInfo.h"
24 #include <cassert>
25 #include <functional>
26 
27 namespace llvm {
28 
29 class BitVector;
30 class MachineFunction;
31 class RegScavenger;
32 template<class T> class SmallVectorImpl;
33 class VirtRegMap;
34 class raw_ostream;
35 
37 public:
38  typedef const MCPhysReg* iterator;
39  typedef const MCPhysReg* const_iterator;
41  typedef const TargetRegisterClass* const * sc_iterator;
42 
43  // Instance variables filled by tablegen, do not use!
46  const uint32_t *SubClassMask;
47  const uint16_t *SuperRegIndices;
49  ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
50 
51  /// getID() - Return the register class ID number.
52  ///
53  unsigned getID() const { return MC->getID(); }
54 
55  /// getName() - Return the register class name for debugging.
56  ///
57  const char *getName() const { return MC->getName(); }
58 
59  /// begin/end - Return all of the registers in this class.
60  ///
61  iterator begin() const { return MC->begin(); }
62  iterator end() const { return MC->end(); }
63 
64  /// getNumRegs - Return the number of registers in this class.
65  ///
66  unsigned getNumRegs() const { return MC->getNumRegs(); }
67 
68  /// getRegister - Return the specified register in the class.
69  ///
70  unsigned getRegister(unsigned i) const {
71  return MC->getRegister(i);
72  }
73 
74  /// contains - Return true if the specified register is included in this
75  /// register class. This does not include virtual registers.
76  bool contains(unsigned Reg) const {
77  return MC->contains(Reg);
78  }
79 
80  /// contains - Return true if both registers are in this class.
81  bool contains(unsigned Reg1, unsigned Reg2) const {
82  return MC->contains(Reg1, Reg2);
83  }
84 
85  /// getSize - Return the size of the register in bytes, which is also the size
86  /// of a stack slot allocated to hold a spilled copy of this register.
87  unsigned getSize() const { return MC->getSize(); }
88 
89  /// getAlignment - Return the minimum required alignment for a register of
90  /// this class.
91  unsigned getAlignment() const { return MC->getAlignment(); }
92 
93  /// getCopyCost - Return the cost of copying a value between two registers in
94  /// this class. A negative number means the register class is very expensive
95  /// to copy e.g. status flag register classes.
96  int getCopyCost() const { return MC->getCopyCost(); }
97 
98  /// isAllocatable - Return true if this register class may be used to create
99  /// virtual registers.
100  bool isAllocatable() const { return MC->isAllocatable(); }
101 
102  /// hasType - return true if this TargetRegisterClass has the ValueType vt.
103  ///
104  bool hasType(EVT vt) const {
105  for(int i = 0; VTs[i] != MVT::Other; ++i)
106  if (EVT(VTs[i]) == vt)
107  return true;
108  return false;
109  }
110 
111  /// vt_begin / vt_end - Loop over all of the value types that can be
112  /// represented by values in this register class.
114  return VTs;
115  }
116 
117  vt_iterator vt_end() const {
118  vt_iterator I = VTs;
119  while (*I != MVT::Other) ++I;
120  return I;
121  }
122 
123  /// hasSubClass - return true if the specified TargetRegisterClass
124  /// is a proper sub-class of this TargetRegisterClass.
125  bool hasSubClass(const TargetRegisterClass *RC) const {
126  return RC != this && hasSubClassEq(RC);
127  }
128 
129  /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
130  /// class.
131  bool hasSubClassEq(const TargetRegisterClass *RC) const {
132  unsigned ID = RC->getID();
133  return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
134  }
135 
136  /// hasSuperClass - return true if the specified TargetRegisterClass is a
137  /// proper super-class of this TargetRegisterClass.
138  bool hasSuperClass(const TargetRegisterClass *RC) const {
139  return RC->hasSubClass(this);
140  }
141 
142  /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
143  /// class.
144  bool hasSuperClassEq(const TargetRegisterClass *RC) const {
145  return RC->hasSubClassEq(this);
146  }
147 
148  /// getSubClassMask - Returns a bit vector of subclasses, including this one.
149  /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
150  /// use it.
151  const uint32_t *getSubClassMask() const {
152  return SubClassMask;
153  }
154 
155  /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices
156  /// that project some super-register class into this register class. The list
157  /// has an entry for each Idx such that:
158  ///
159  /// There exists SuperRC where:
160  /// For all Reg in SuperRC:
161  /// this->contains(Reg:Idx)
162  ///
163  const uint16_t *getSuperRegIndices() const {
164  return SuperRegIndices;
165  }
166 
167  /// getSuperClasses - Returns a NULL terminated list of super-classes. The
168  /// classes are ordered by ID which is also a topological ordering from large
169  /// to small classes. The list does NOT include the current class.
171  return SuperClasses;
172  }
173 
174  /// isASubClass - return true if this TargetRegisterClass is a subset
175  /// class of at least one other TargetRegisterClass.
176  bool isASubClass() const {
177  return SuperClasses[0] != 0;
178  }
179 
180  /// getRawAllocationOrder - Returns the preferred order for allocating
181  /// registers from this register class in MF. The raw order comes directly
182  /// from the .td file and may include reserved registers that are not
183  /// allocatable. Register allocators should also make sure to allocate
184  /// callee-saved registers only after all the volatiles are used. The
185  /// RegisterClassInfo class provides filtered allocation orders with
186  /// callee-saved registers moved to the end.
187  ///
188  /// The MachineFunction argument can be used to tune the allocatable
189  /// registers based on the characteristics of the function, subtarget, or
190  /// other criteria.
191  ///
192  /// By default, this method returns all registers in the class.
193  ///
195  return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
196  }
197 };
198 
199 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
200 /// registers. These are used by codegen, not by MC.
202  unsigned CostPerUse; // Extra cost of instructions using register.
203  bool inAllocatableClass; // Register belongs to an allocatable regclass.
204 };
205 
206 /// Each TargetRegisterClass has a per register weight, and weight
207 /// limit which must be less than the limits of its pressure sets.
209  unsigned RegWeight;
210  unsigned WeightLimit;
211 };
212 
213 /// TargetRegisterInfo base class - We assume that the target defines a static
214 /// array of TargetRegisterDesc objects that represent all of the machine
215 /// registers that the target has. As such, we simply have to track a pointer
216 /// to this array so that we can turn register number into a register
217 /// descriptor.
218 ///
220 public:
221  typedef const TargetRegisterClass * const * regclass_iterator;
222 private:
223  const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen
224  const char *const *SubRegIndexNames; // Names of subreg indexes.
225  // Pointer to array of lane masks, one per sub-reg index.
226  const unsigned *SubRegIndexLaneMasks;
227 
228  regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
229  unsigned CoveringLanes;
230 
231 protected:
233  regclass_iterator RegClassBegin,
234  regclass_iterator RegClassEnd,
235  const char *const *SRINames,
236  const unsigned *SRILaneMasks,
237  unsigned CoveringLanes);
238  virtual ~TargetRegisterInfo();
239 public:
240 
241  // Register numbers can represent physical registers, virtual registers, and
242  // sometimes stack slots. The unsigned values are divided into these ranges:
243  //
244  // 0 Not a register, can be used as a sentinel.
245  // [1;2^30) Physical registers assigned by TableGen.
246  // [2^30;2^31) Stack slots. (Rarely used.)
247  // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
248  //
249  // Further sentinels can be allocated from the small negative integers.
250  // DenseMapInfo<unsigned> uses -1u and -2u.
251 
252  /// isStackSlot - Sometimes it is useful the be able to store a non-negative
253  /// frame index in a variable that normally holds a register. isStackSlot()
254  /// returns true if Reg is in the range used for stack slots.
255  ///
256  /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
257  /// slots, so if a variable may contains a stack slot, always check
258  /// isStackSlot() first.
259  ///
260  static bool isStackSlot(unsigned Reg) {
261  return int(Reg) >= (1 << 30);
262  }
263 
264  /// stackSlot2Index - Compute the frame index from a register value
265  /// representing a stack slot.
266  static int stackSlot2Index(unsigned Reg) {
267  assert(isStackSlot(Reg) && "Not a stack slot");
268  return int(Reg - (1u << 30));
269  }
270 
271  /// index2StackSlot - Convert a non-negative frame index to a stack slot
272  /// register value.
273  static unsigned index2StackSlot(int FI) {
274  assert(FI >= 0 && "Cannot hold a negative frame index.");
275  return FI + (1u << 30);
276  }
277 
278  /// isPhysicalRegister - Return true if the specified register number is in
279  /// the physical register namespace.
280  static bool isPhysicalRegister(unsigned Reg) {
281  assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
282  return int(Reg) > 0;
283  }
284 
285  /// isVirtualRegister - Return true if the specified register number is in
286  /// the virtual register namespace.
287  static bool isVirtualRegister(unsigned Reg) {
288  assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
289  return int(Reg) < 0;
290  }
291 
292  /// virtReg2Index - Convert a virtual register number to a 0-based index.
293  /// The first virtual register in a function will get the index 0.
294  static unsigned virtReg2Index(unsigned Reg) {
295  assert(isVirtualRegister(Reg) && "Not a virtual register");
296  return Reg & ~(1u << 31);
297  }
298 
299  /// index2VirtReg - Convert a 0-based index to a virtual register number.
300  /// This is the inverse operation of VirtReg2IndexFunctor below.
301  static unsigned index2VirtReg(unsigned Index) {
302  return Index | (1u << 31);
303  }
304 
305  /// getMinimalPhysRegClass - Returns the Register Class of a physical
306  /// register of the given type, picking the most sub register class of
307  /// the right type that contains this physreg.
308  const TargetRegisterClass *
309  getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
310 
311  /// getAllocatableClass - Return the maximal subclass of the given register
312  /// class that is alloctable, or NULL.
313  const TargetRegisterClass *
314  getAllocatableClass(const TargetRegisterClass *RC) const;
315 
316  /// getAllocatableSet - Returns a bitset indexed by register number
317  /// indicating if a register is allocatable or not. If a register class is
318  /// specified, returns the subset for the class.
320  const TargetRegisterClass *RC = NULL) const;
321 
322  /// getCostPerUse - Return the additional cost of using this register instead
323  /// of other registers in its class.
324  unsigned getCostPerUse(unsigned RegNo) const {
325  return InfoDesc[RegNo].CostPerUse;
326  }
327 
328  /// isInAllocatableClass - Return true if the register is in the allocation
329  /// of any register class.
330  bool isInAllocatableClass(unsigned RegNo) const {
331  return InfoDesc[RegNo].inAllocatableClass;
332  }
333 
334  /// getSubRegIndexName - Return the human-readable symbolic target-specific
335  /// name for the specified SubRegIndex.
336  const char *getSubRegIndexName(unsigned SubIdx) const {
337  assert(SubIdx && SubIdx < getNumSubRegIndices() &&
338  "This is not a subregister index");
339  return SubRegIndexNames[SubIdx-1];
340  }
341 
342  /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a
343  /// register that are covered by SubIdx.
344  ///
345  /// Lane masks for sub-register indices are similar to register units for
346  /// physical registers. The individual bits in a lane mask can't be assigned
347  /// any specific meaning. They can be used to check if two sub-register
348  /// indices overlap.
349  ///
350  /// If the target has a register such that:
351  ///
352  /// getSubReg(Reg, A) overlaps getSubReg(Reg, B)
353  ///
354  /// then:
355  ///
356  /// getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0
357  ///
358  /// The converse is not necessarily true. If two lane masks have a common
359  /// bit, the corresponding sub-registers may not overlap, but it can be
360  /// assumed that they usually will.
361  unsigned getSubRegIndexLaneMask(unsigned SubIdx) const {
362  // SubIdx == 0 is allowed, it has the lane mask ~0u.
363  assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
364  return SubRegIndexLaneMasks[SubIdx];
365  }
366 
367  /// The lane masks returned by getSubRegIndexLaneMask() above can only be
368  /// used to determine if sub-registers overlap - they can't be used to
369  /// determine if a set of sub-registers completely cover another
370  /// sub-register.
371  ///
372  /// The X86 general purpose registers have two lanes corresponding to the
373  /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
374  /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
375  /// sub_32bit sub-register.
376  ///
377  /// On the other hand, the ARM NEON lanes fully cover their registers: The
378  /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
379  /// This is related to the CoveredBySubRegs property on register definitions.
380  ///
381  /// This function returns a bit mask of lanes that completely cover their
382  /// sub-registers. More precisely, given:
383  ///
384  /// Covering = getCoveringLanes();
385  /// MaskA = getSubRegIndexLaneMask(SubA);
386  /// MaskB = getSubRegIndexLaneMask(SubB);
387  ///
388  /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
389  /// SubB.
390  unsigned getCoveringLanes() const { return CoveringLanes; }
391 
392  /// regsOverlap - Returns true if the two registers are equal or alias each
393  /// other. The registers may be virtual register.
394  bool regsOverlap(unsigned regA, unsigned regB) const {
395  if (regA == regB) return true;
396  if (isVirtualRegister(regA) || isVirtualRegister(regB))
397  return false;
398 
399  // Regunits are numerically ordered. Find a common unit.
400  MCRegUnitIterator RUA(regA, this);
401  MCRegUnitIterator RUB(regB, this);
402  do {
403  if (*RUA == *RUB) return true;
404  if (*RUA < *RUB) ++RUA;
405  else ++RUB;
406  } while (RUA.isValid() && RUB.isValid());
407  return false;
408  }
409 
410  /// hasRegUnit - Returns true if Reg contains RegUnit.
411  bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
412  for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
413  if (*Units == RegUnit)
414  return true;
415  return false;
416  }
417 
418  /// getCalleeSavedRegs - Return a null-terminated list of all of the
419  /// callee saved registers on this target. The register should be in the
420  /// order of desired callee-save stack frame offset. The first register is
421  /// closest to the incoming stack pointer if stack grows down, and vice versa.
422  ///
423  virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF = 0)
424  const = 0;
425 
426  /// getCallPreservedMask - Return a mask of call-preserved registers for the
427  /// given calling convention on the current sub-target. The mask should
428  /// include all call-preserved aliases. This is used by the register
429  /// allocator to determine which registers can be live across a call.
430  ///
431  /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
432  /// A set bit indicates that all bits of the corresponding register are
433  /// preserved across the function call. The bit mask is expected to be
434  /// sub-register complete, i.e. if A is preserved, so are all its
435  /// sub-registers.
436  ///
437  /// Bits are numbered from the LSB, so the bit for physical register Reg can
438  /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
439  ///
440  /// A NULL pointer means that no register mask will be used, and call
441  /// instructions should use implicit-def operands to indicate call clobbered
442  /// registers.
443  ///
444  virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
445  // The default mask clobbers everything. All targets should override.
446  return 0;
447  }
448 
449  /// getReservedRegs - Returns a bitset indexed by physical register number
450  /// indicating if a register is a special register that has particular uses
451  /// and should be considered unavailable at all times, e.g. SP, RA. This is
452  /// used by register scavenger to determine what registers are free.
453  virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
454 
455  /// getMatchingSuperReg - Return a super-register of the specified register
456  /// Reg so its sub-register of index SubIdx is Reg.
457  unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
458  const TargetRegisterClass *RC) const {
459  return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
460  }
461 
462  /// getMatchingSuperRegClass - Return a subclass of the specified register
463  /// class A so that each register in it has a sub-register of the
464  /// specified sub-register index which is in the specified register class B.
465  ///
466  /// TableGen will synthesize missing A sub-classes.
467  virtual const TargetRegisterClass *
469  const TargetRegisterClass *B, unsigned Idx) const;
470 
471  /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
472  /// supports the sub-register index Idx.
473  /// If no such sub-class exists, return NULL.
474  /// If all registers in RC already have an Idx sub-register, return RC.
475  ///
476  /// TableGen generates a version of this function that is good enough in most
477  /// cases. Targets can override if they have constraints that TableGen
478  /// doesn't understand. For example, the x86 sub_8bit sub-register index is
479  /// supported by the full GR32 register class in 64-bit mode, but only by the
480  /// GR32_ABCD regiister class in 32-bit mode.
481  ///
482  /// TableGen will synthesize missing RC sub-classes.
483  virtual const TargetRegisterClass *
484  getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
485  assert(Idx == 0 && "Target has no sub-registers");
486  return RC;
487  }
488 
489  /// composeSubRegIndices - Return the subregister index you get from composing
490  /// two subregister indices.
491  ///
492  /// The special null sub-register index composes as the identity.
493  ///
494  /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
495  /// returns c. Note that composeSubRegIndices does not tell you about illegal
496  /// compositions. If R does not have a subreg a, or R:a does not have a subreg
497  /// b, composeSubRegIndices doesn't tell you.
498  ///
499  /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
500  /// ssub_0:S0 - ssub_3:S3 subregs.
501  /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
502  ///
503  unsigned composeSubRegIndices(unsigned a, unsigned b) const {
504  if (!a) return b;
505  if (!b) return a;
506  return composeSubRegIndicesImpl(a, b);
507  }
508 
509 protected:
510  /// Overridden by TableGen in targets that have sub-registers.
511  virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
512  llvm_unreachable("Target has no sub-registers");
513  }
514 
515 public:
516  /// getCommonSuperRegClass - Find a common super-register class if it exists.
517  ///
518  /// Find a register class, SuperRC and two sub-register indices, PreA and
519  /// PreB, such that:
520  ///
521  /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and
522  ///
523  /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
524  ///
525  /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
526  ///
527  /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
528  /// requirements, and there is no register class with a smaller spill size
529  /// that satisfies the requirements.
530  ///
531  /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
532  ///
533  /// Either of the PreA and PreB sub-register indices may be returned as 0. In
534  /// that case, the returned register class will be a sub-class of the
535  /// corresponding argument register class.
536  ///
537  /// The function returns NULL if no register class can be found.
538  ///
539  const TargetRegisterClass*
540  getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
541  const TargetRegisterClass *RCB, unsigned SubB,
542  unsigned &PreA, unsigned &PreB) const;
543 
544  //===--------------------------------------------------------------------===//
545  // Register Class Information
546  //
547 
548  /// Register class iterators
549  ///
550  regclass_iterator regclass_begin() const { return RegClassBegin; }
551  regclass_iterator regclass_end() const { return RegClassEnd; }
552 
553  unsigned getNumRegClasses() const {
554  return (unsigned)(regclass_end()-regclass_begin());
555  }
556 
557  /// getRegClass - Returns the register class associated with the enumeration
558  /// value. See class MCOperandInfo.
559  const TargetRegisterClass *getRegClass(unsigned i) const {
560  assert(i < getNumRegClasses() && "Register Class ID out of range");
561  return RegClassBegin[i];
562  }
563 
564  /// getCommonSubClass - find the largest common subclass of A and B. Return
565  /// NULL if there is no common subclass.
566  const TargetRegisterClass *
568  const TargetRegisterClass *B) const;
569 
570  /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
571  /// values. If a target supports multiple different pointer register classes,
572  /// kind specifies which one is indicated.
573  virtual const TargetRegisterClass *
574  getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
575  llvm_unreachable("Target didn't implement getPointerRegClass!");
576  }
577 
578  /// getCrossCopyRegClass - Returns a legal register class to copy a register
579  /// in the specified class to or from. If it is possible to copy the register
580  /// directly without using a cross register class copy, return the specified
581  /// RC. Returns NULL if it is not possible to copy between a two registers of
582  /// the specified class.
583  virtual const TargetRegisterClass *
585  return RC;
586  }
587 
588  /// getLargestLegalSuperClass - Returns the largest super class of RC that is
589  /// legal to use in the current sub-target and has the same spill size.
590  /// The returned register class can be used to create virtual registers which
591  /// means that all its registers can be copied and spilled.
592  virtual const TargetRegisterClass*
594  /// The default implementation is very conservative and doesn't allow the
595  /// register allocator to inflate register classes.
596  return RC;
597  }
598 
599  /// getRegPressureLimit - Return the register pressure "high water mark" for
600  /// the specific register class. The scheduler is in high register pressure
601  /// mode (for the specific register class) if it goes over the limit.
602  ///
603  /// Note: this is the old register pressure model that relies on a manually
604  /// specified representative register class per value type.
605  virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
606  MachineFunction &MF) const {
607  return 0;
608  }
609 
610  /// Get the weight in units of pressure for this register class.
611  virtual const RegClassWeight &getRegClassWeight(
612  const TargetRegisterClass *RC) const = 0;
613 
614  /// Get the weight in units of pressure for this register unit.
615  virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
616 
617  /// Get the number of dimensions of register pressure.
618  virtual unsigned getNumRegPressureSets() const = 0;
619 
620  /// Get the name of this register unit pressure set.
621  virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
622 
623  /// Get the register unit pressure limit for this dimension.
624  /// This limit must be adjusted dynamically for reserved registers.
625  virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
626 
627  /// Get the dimensions of register pressure impacted by this register class.
628  /// Returns a -1 terminated array of pressure set IDs.
629  virtual const int *getRegClassPressureSets(
630  const TargetRegisterClass *RC) const = 0;
631 
632  /// Get the dimensions of register pressure impacted by this register unit.
633  /// Returns a -1 terminated array of pressure set IDs.
634  virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
635 
636  /// Get a list of 'hint' registers that the register allocator should try
637  /// first when allocating a physical register for the virtual register
638  /// VirtReg. These registers are effectively moved to the front of the
639  /// allocation order.
640  ///
641  /// The Order argument is the allocation order for VirtReg's register class
642  /// as returned from RegisterClassInfo::getOrder(). The hint registers must
643  /// come from Order, and they must not be reserved.
644  ///
645  /// The default implementation of this function can resolve
646  /// target-independent hints provided to MRI::setRegAllocationHint with
647  /// HintType == 0. Targets that override this function should defer to the
648  /// default implementation if they have no reason to change the allocation
649  /// order for VirtReg. There may be target-independent hints.
650  virtual void getRegAllocationHints(unsigned VirtReg,
651  ArrayRef<MCPhysReg> Order,
653  const MachineFunction &MF,
654  const VirtRegMap *VRM = 0) const;
655 
656  /// avoidWriteAfterWrite - Return true if the register allocator should avoid
657  /// writing a register from RC in two consecutive instructions.
658  /// This can avoid pipeline stalls on certain architectures.
659  /// It does cause increased register pressure, though.
660  virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
661  return false;
662  }
663 
664  /// UpdateRegAllocHint - A callback to allow target a chance to update
665  /// register allocation hints when a register is "changed" (e.g. coalesced)
666  /// to another register. e.g. On ARM, some virtual registers should target
667  /// register pairs, if one of pair is coalesced to another register, the
668  /// allocation hint of the other half of the pair should be changed to point
669  /// to the new register.
670  virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
671  MachineFunction &MF) const {
672  // Do nothing.
673  }
674 
675  /// requiresRegisterScavenging - returns true if the target requires (and can
676  /// make use of) the register scavenger.
677  virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
678  return false;
679  }
680 
681  /// useFPForScavengingIndex - returns true if the target wants to use
682  /// frame pointer based accesses to spill to the scavenger emergency spill
683  /// slot.
684  virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
685  return true;
686  }
687 
688  /// requiresFrameIndexScavenging - returns true if the target requires post
689  /// PEI scavenging of registers for materializing frame index constants.
690  virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
691  return false;
692  }
693 
694  /// requiresVirtualBaseRegisters - Returns true if the target wants the
695  /// LocalStackAllocation pass to be run and virtual base registers
696  /// used for more efficient stack access.
697  virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
698  return false;
699  }
700 
701  /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
702  /// the stack frame of the given function for the specified register. e.g. On
703  /// x86, if the frame register is required, the first fixed stack object is
704  /// reserved as its spill slot. This tells PEI not to create a new stack frame
705  /// object for the given register. It should be called only after
706  /// processFunctionBeforeCalleeSavedScan().
707  virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
708  int &FrameIdx) const {
709  return false;
710  }
711 
712  /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked
713  /// after register allocation.
714  virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
715  return false;
716  }
717 
718  /// needsStackRealignment - true if storage within the function requires the
719  /// stack pointer to be aligned more than the normal calling convention calls
720  /// for.
721  virtual bool needsStackRealignment(const MachineFunction &MF) const {
722  return false;
723  }
724 
725  /// getFrameIndexInstrOffset - Get the offset from the referenced frame
726  /// index in the instruction, if there is one.
727  virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
728  int Idx) const {
729  return 0;
730  }
731 
732  /// needsFrameBaseReg - Returns true if the instruction's frame index
733  /// reference would be better served by a base register other than FP
734  /// or SP. Used by LocalStackFrameAllocation to determine which frame index
735  /// references it should create new base registers for.
736  virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
737  return false;
738  }
739 
740  /// materializeFrameBaseRegister - Insert defining instruction(s) for
741  /// BaseReg to be a pointer to FrameIdx before insertion point I.
743  unsigned BaseReg, int FrameIdx,
744  int64_t Offset) const {
745  llvm_unreachable("materializeFrameBaseRegister does not exist on this "
746  "target");
747  }
748 
749  /// resolveFrameIndex - Resolve a frame index operand of an instruction
750  /// to reference the indicated base register plus offset instead.
752  unsigned BaseReg, int64_t Offset) const {
753  llvm_unreachable("resolveFrameIndex does not exist on this target");
754  }
755 
756  /// isFrameOffsetLegal - Determine whether a given offset immediate is
757  /// encodable to resolve a frame index.
758  virtual bool isFrameOffsetLegal(const MachineInstr *MI,
759  int64_t Offset) const {
760  llvm_unreachable("isFrameOffsetLegal does not exist on this target");
761  }
762 
763 
764  /// saveScavengerRegister - Spill the register so it can be used by the
765  /// register scavenger. Return true if the register was spilled, false
766  /// otherwise. If this function does not spill the register, the scavenger
767  /// will instead spill it to the emergency spill slot.
768  ///
772  const TargetRegisterClass *RC,
773  unsigned Reg) const {
774  return false;
775  }
776 
777  /// eliminateFrameIndex - This method must be overriden to eliminate abstract
778  /// frame indices from instructions which may use them. The instruction
779  /// referenced by the iterator contains an MO_FrameIndex operand which must be
780  /// eliminated by this method. This method may modify or replace the
781  /// specified instruction, as long as it keeps the iterator pointing at the
782  /// finished product. SPAdj is the SP adjustment due to call frame setup
783  /// instruction. FIOperandNum is the FI operand number.
785  int SPAdj, unsigned FIOperandNum,
786  RegScavenger *RS = NULL) const = 0;
787 
788  //===--------------------------------------------------------------------===//
789  /// Debug information queries.
790 
791  /// getFrameRegister - This method should return the register used as a base
792  /// for values allocated in the current stack frame.
793  virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
794 
795  /// getCompactUnwindRegNum - This function maps the register to the number for
796  /// compact unwind encoding. Return -1 if the register isn't valid.
797  virtual int getCompactUnwindRegNum(unsigned, bool) const {
798  return -1;
799  }
800 };
801 
802 
803 //===----------------------------------------------------------------------===//
804 // SuperRegClassIterator
805 //===----------------------------------------------------------------------===//
806 //
807 // Iterate over the possible super-registers for a given register class. The
808 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
809 // possible classes of super-registers.
810 //
811 // Each bit mask will have at least one set bit, and each set bit in Mask
812 // corresponds to a SuperRC such that:
813 //
814 // For all Reg in SuperRC: Reg:Idx is in RC.
815 //
816 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
817 // also satisfies the above requirement, assuming Reg:0 == Reg.
818 //
820  const unsigned RCMaskWords;
821  unsigned SubReg;
822  const uint16_t *Idx;
823  const uint32_t *Mask;
824 
825 public:
826  /// Create a SuperRegClassIterator that visits all the super-register classes
827  /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
829  const TargetRegisterInfo *TRI,
830  bool IncludeSelf = false)
831  : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
832  SubReg(0),
833  Idx(RC->getSuperRegIndices()),
834  Mask(RC->getSubClassMask()) {
835  if (!IncludeSelf)
836  ++*this;
837  }
838 
839  /// Returns true if this iterator is still pointing at a valid entry.
840  bool isValid() const { return Idx; }
841 
842  /// Returns the current sub-register index.
843  unsigned getSubReg() const { return SubReg; }
844 
845  /// Returns the bit mask if register classes that getSubReg() projects into
846  /// RC.
847  const uint32_t *getMask() const { return Mask; }
848 
849  /// Advance iterator to the next entry.
850  void operator++() {
851  assert(isValid() && "Cannot move iterator past end.");
852  Mask += RCMaskWords;
853  SubReg = *Idx++;
854  if (!SubReg)
855  Idx = 0;
856  }
857 };
858 
859 // This is useful when building IndexedMaps keyed on virtual registers
860 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
861  unsigned operator()(unsigned Reg) const {
863  }
864 };
865 
866 /// PrintReg - Helper class for printing registers on a raw_ostream.
867 /// Prints virtual and physical registers with or without a TRI instance.
868 ///
869 /// The format is:
870 /// %noreg - NoRegister
871 /// %vreg5 - a virtual register.
872 /// %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
873 /// %EAX - a physical register
874 /// %physreg17 - a physical register when no TRI instance given.
875 ///
876 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
877 ///
878 class PrintReg {
879  const TargetRegisterInfo *TRI;
880  unsigned Reg;
881  unsigned SubIdx;
882 public:
883  explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0,
884  unsigned subidx = 0)
885  : TRI(tri), Reg(reg), SubIdx(subidx) {}
886  void print(raw_ostream&) const;
887 };
888 
889 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
890  PR.print(OS);
891  return OS;
892 }
893 
894 /// PrintRegUnit - Helper class for printing register units on a raw_ostream.
895 ///
896 /// Register units are named after their root registers:
897 ///
898 /// AL - Single root.
899 /// FP0~ST7 - Dual roots.
900 ///
901 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
902 ///
904 protected:
906  unsigned Unit;
907 public:
908  PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
909  : TRI(tri), Unit(unit) {}
910  void print(raw_ostream&) const;
911 };
912 
913 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) {
914  PR.print(OS);
915  return OS;
916 }
917 
918 /// PrintVRegOrUnit - It is often convenient to track virtual registers and
919 /// physical register units in the same list.
920 class PrintVRegOrUnit : protected PrintRegUnit {
921 public:
922  PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *tri)
923  : PrintRegUnit(VRegOrUnit, tri) {}
924  void print(raw_ostream&) const;
925 };
926 
927 static inline raw_ostream &operator<<(raw_ostream &OS,
928  const PrintVRegOrUnit &PR) {
929  PR.print(OS);
930  return OS;
931 }
932 
933 } // End llvm namespace
934 
935 #endif
virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg, MachineFunction &MF) const
const MCPhysReg * const_iterator
virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, int &FrameIdx) const
vt_iterator vt_end() const
TargetRegisterInfo(const TargetRegisterInfoDesc *ID, regclass_iterator RegClassBegin, regclass_iterator RegClassEnd, const char *const *SRINames, const unsigned *SRILaneMasks, unsigned CoveringLanes)
virtual unsigned getNumRegPressureSets() const =0
Get the number of dimensions of register pressure.
const TargetRegisterClass * getMinimalPhysRegClass(unsigned Reg, EVT VT=MVT::Other) const
void print(raw_ostream &) const
static unsigned virtReg2Index(unsigned Reg)
virtual bool saveScavengerRegister(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, MachineBasicBlock::iterator &UseMI, const TargetRegisterClass *RC, unsigned Reg) const
bool isValid() const
isValid - returns true if this iterator is not yet at the end.
unsigned getRegister(unsigned i) const
unsigned operator()(unsigned Reg) const
PrintReg(unsigned reg, const TargetRegisterInfo *tri=0, unsigned subidx=0)
static unsigned index2VirtReg(unsigned Index)
const uint16_t * getSuperRegIndices() const
bool hasSubClassEq(const TargetRegisterClass *RC) const
virtual const uint32_t * getCallPreservedMask(CallingConv::ID) const
static bool isVirtualRegister(unsigned Reg)
virtual unsigned getRegPressureSetLimit(unsigned Idx) const =0
void print(raw_ostream &) const
uint16_t MCPhysReg
regclass_iterator regclass_end() const
virtual const int * getRegClassPressureSets(const TargetRegisterClass *RC) const =0
bool hasSuperClassEq(const TargetRegisterClass *RC) const
const TargetRegisterClass * getCommonSubClass(const TargetRegisterClass *A, const TargetRegisterClass *B) const
virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass *RC) const
virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const
virtual unsigned getRegUnitWeight(unsigned RegUnit) const =0
Get the weight in units of pressure for this register unit.
virtual const MCPhysReg * getCalleeSavedRegs(const MachineFunction *MF=0) const =0
static int stackSlot2Index(unsigned Reg)
bool isAllocatable() const
virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const
const uint16_t * SuperRegIndices
unsigned getNumRegClasses() const
unsigned getNumRegs() const
const char * getName() const
ArrayRef< T > makeArrayRef(const T &OneElt)
Construct an ArrayRef from a single element.
Definition: ArrayRef.h:261
unsigned getSubReg() const
Returns the current sub-register index.
#define llvm_unreachable(msg)
virtual const char * getRegPressureSetName(unsigned Idx) const =0
Get the name of this register unit pressure set.
const TargetRegisterClass * getRegClass(unsigned i) const
ArrayRef< MCPhysReg > getRawAllocationOrder(const MachineFunction &MF) const
iterator end() const
virtual unsigned getFrameRegister(const MachineFunction &MF) const =0
Debug information queries.
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
virtual void getRegAllocationHints(unsigned VirtReg, ArrayRef< MCPhysReg > Order, SmallVectorImpl< MCPhysReg > &Hints, const MachineFunction &MF, const VirtRegMap *VRM=0) const
unsigned getNumSubRegIndices() const
Return the number of sub-register indices understood by the target. Index 0 is reserved for the no-op...
unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, const TargetRegisterClass *RC) const
void operator++()
Advance iterator to the next entry.
virtual const TargetRegisterClass * getMatchingSuperRegClass(const TargetRegisterClass *A, const TargetRegisterClass *B, unsigned Idx) const
virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const
virtual bool useFPForScavengingIndex(const MachineFunction &MF) const
unsigned getID() const
virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, unsigned BaseReg, int FrameIdx, int64_t Offset) const
MCRegisterClass - Base class of TargetRegisterClass.
virtual void resolveFrameIndex(MachineBasicBlock::iterator I, unsigned BaseReg, int64_t Offset) const
bool isInAllocatableClass(unsigned RegNo) const
virtual bool requiresRegisterScavenging(const MachineFunction &MF) const
const TargetRegisterClass * getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, const TargetRegisterClass *RCB, unsigned SubB, unsigned &PreA, unsigned &PreB) const
bool hasSuperClass(const TargetRegisterClass *RC) const
bundle_iterator< MachineInstr, instr_iterator > iterator
PrintVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *tri)
virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const
bool regsOverlap(unsigned regA, unsigned regB) const
regclass_iterator regclass_begin() const
bool contains(unsigned Reg1, unsigned Reg2) const
contains - Return true if both registers are in this class.
const sc_iterator SuperClasses
virtual bool needsStackRealignment(const MachineFunction &MF) const
unsigned getAlignment() const
unsigned getSubRegIndexLaneMask(unsigned SubIdx) const
unsigned getCostPerUse(unsigned RegNo) const
BitVector getAllocatableSet(const MachineFunction &MF, const TargetRegisterClass *RC=NULL) const
unsigned getRegister(unsigned i) const
unsigned getSize() const
int getCopyCost() const
const TargetRegisterClass *const * sc_iterator
const TargetRegisterClass * getAllocatableClass(const TargetRegisterClass *RC) const
bool hasSubClass(const TargetRegisterClass *RC) const
void print(raw_ostream &) const
const char * getName() const
unsigned getCoveringLanes() const
unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, const MCRegisterClass *RC) const
Return a super-register of the specified register Reg so its sub-register of index SubIdx is Reg...
static bool isStackSlot(unsigned Reg)
bool contains(unsigned Reg) const
virtual const RegClassWeight & getRegClassWeight(const TargetRegisterClass *RC) const =0
Get the weight in units of pressure for this register class.
bool isValid() const
Returns true if this iterator is still pointing at a valid entry.
virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const
const MVT::SimpleValueType * vt_iterator
ArrayRef< MCPhysReg >(* OrderFunc)(const MachineFunction &)
const MCRegisterClass * MC
virtual BitVector getReservedRegs(const MachineFunction &MF) const =0
unsigned getNumRegs() const
const char * getSubRegIndexName(unsigned SubIdx) const
SuperRegClassIterator(const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, bool IncludeSelf=false)
virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const
Overridden by TableGen in targets that have sub-registers.
static bool isPhysicalRegister(unsigned Reg)
virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const
virtual bool isFrameOffsetLegal(const MachineInstr *MI, int64_t Offset) const
#define I(x, y, z)
Definition: MD5.cpp:54
unsigned getAlignment() const
virtual const int * getRegUnitPressureSets(unsigned RegUnit) const =0
bool hasType(EVT vt) const
raw_ostream & operator<<(raw_ostream &OS, const APInt &I)
Definition: APInt.h:1688
virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, MachineFunction &MF) const
virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, int SPAdj, unsigned FIOperandNum, RegScavenger *RS=NULL) const =0
iterator begin() const
virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const
virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC) const
virtual int getCompactUnwindRegNum(unsigned, bool) const
PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
vt_iterator vt_begin() const
const uint32_t * getMask() const
unsigned composeSubRegIndices(unsigned a, unsigned b) const
const TargetRegisterInfo * TRI
virtual const TargetRegisterClass * getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const
sc_iterator getSuperClasses() const
static unsigned index2StackSlot(int FI)
const uint32_t * getSubClassMask() const
const TargetRegisterClass *const * regclass_iterator
bool hasRegUnit(unsigned Reg, unsigned RegUnit) const
hasRegUnit - Returns true if Reg contains RegUnit.
bool contains(unsigned Reg) const