LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
TypeBasedAliasAnalysis.cpp
Go to the documentation of this file.
1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TypeBasedAliasAnalysis pass, which implements
11 // metadata-based TBAA.
12 //
13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
15 // a type system of a higher level language. This can be used to implement
16 // typical C/C++ TBAA, but it can also be used to implement custom alias
17 // analysis behavior for other languages.
18 //
19 // We now support two types of metadata format: scalar TBAA and struct-path
20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
22 // can be dropped.
23 //
24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
25 // three fields, e.g.:
26 // !0 = metadata !{ metadata !"an example type tree" }
27 // !1 = metadata !{ metadata !"int", metadata !0 }
28 // !2 = metadata !{ metadata !"float", metadata !0 }
29 // !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
30 //
31 // The first field is an identity field. It can be any value, usually
32 // an MDString, which uniquely identifies the type. The most important
33 // name in the tree is the name of the root node. Two trees with
34 // different root node names are entirely disjoint, even if they
35 // have leaves with common names.
36 //
37 // The second field identifies the type's parent node in the tree, or
38 // is null or omitted for a root node. A type is considered to alias
39 // all of its descendants and all of its ancestors in the tree. Also,
40 // a type is considered to alias all types in other trees, so that
41 // bitcode produced from multiple front-ends is handled conservatively.
42 //
43 // If the third field is present, it's an integer which if equal to 1
44 // indicates that the type is "constant" (meaning pointsToConstantMemory
45 // should return true; see
46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
47 //
48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
49 // "!tbaa" are called path tag nodes.
50 //
51 // The path tag node has 4 fields with the last field being optional.
52 //
53 // The first field is the base type node, it can be a struct type node
54 // or a scalar type node. The second field is the access type node, it
55 // must be a scalar type node. The third field is the offset into the base type.
56 // The last field has the same meaning as the last field of our scalar TBAA:
57 // it's an integer which if equal to 1 indicates that the access is "constant".
58 //
59 // The struct type node has a name and a list of pairs, one pair for each member
60 // of the struct. The first element of each pair is a type node (a struct type
61 // node or a sclar type node), specifying the type of the member, the second
62 // element of each pair is the offset of the member.
63 //
64 // Given an example
65 // typedef struct {
66 // short s;
67 // } A;
68 // typedef struct {
69 // uint16_t s;
70 // A a;
71 // } B;
72 //
73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
75 // type short) and the offset is 4.
76 //
77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
79 // !2 = metadata !{metadata !"short", metadata !1} // Scalar type node
80 // !3 = metadata !{metadata !"A", metadata !2, i64 0} // Struct type node
81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
82 // // Struct type node
83 // !5 = metadata !{metadata !4, metadata !2, i64 4} // Path tag node
84 //
85 // The struct type nodes and the scalar type nodes form a type DAG.
86 // Root (!0)
87 // char (!1) -- edge to Root
88 // short (!2) -- edge to char
89 // A (!3) -- edge with offset 0 to short
90 // B (!4) -- edge with offset 0 to short and edge with offset 4 to A
91 //
92 // To check if two tags (tagX and tagY) can alias, we start from the base type
93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
94 // the offset until we reach the base type of tagY or until we reach the Root
95 // node.
96 // If we reach the base type of tagY, compare the adjusted offset with
97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
98 // otherwise.
99 // If we reach the Root node, perform the above starting from base type of tagY
100 // to see if we reach base type of tagX.
101 //
102 // If they have different roots, they're part of different potentially
103 // unrelated type systems, so we return Alias to be conservative.
104 // If neither node is an ancestor of the other and they have the same root,
105 // then we say NoAlias.
106 //
107 // TODO: The current metadata format doesn't support struct
108 // fields. For example:
109 // struct X {
110 // double d;
111 // int i;
112 // };
113 // void foo(struct X *x, struct X *y, double *p) {
114 // *x = *y;
115 // *p = 0.0;
116 // }
117 // Struct X has a double member, so the store to *x can alias the store to *p.
118 // Currently it's not possible to precisely describe all the things struct X
119 // aliases, so struct assignments must use conservative TBAA nodes. There's
120 // no scheme for attaching metadata to @llvm.memcpy yet either.
121 //
122 //===----------------------------------------------------------------------===//
123 
124 #include "llvm/Analysis/Passes.h"
126 #include "llvm/IR/Constants.h"
127 #include "llvm/IR/LLVMContext.h"
128 #include "llvm/IR/Metadata.h"
129 #include "llvm/IR/Module.h"
130 #include "llvm/Pass.h"
132 using namespace llvm;
133 
134 // A handy option for disabling TBAA functionality. The same effect can also be
135 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
136 // more convenient.
137 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
138 
139 namespace {
140  /// TBAANode - This is a simple wrapper around an MDNode which provides a
141  /// higher-level interface by hiding the details of how alias analysis
142  /// information is encoded in its operands.
143  class TBAANode {
144  const MDNode *Node;
145 
146  public:
147  TBAANode() : Node(0) {}
148  explicit TBAANode(const MDNode *N) : Node(N) {}
149 
150  /// getNode - Get the MDNode for this TBAANode.
151  const MDNode *getNode() const { return Node; }
152 
153  /// getParent - Get this TBAANode's Alias tree parent.
154  TBAANode getParent() const {
155  if (Node->getNumOperands() < 2)
156  return TBAANode();
157  MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
158  if (!P)
159  return TBAANode();
160  // Ok, this node has a valid parent. Return it.
161  return TBAANode(P);
162  }
163 
164  /// TypeIsImmutable - Test if this TBAANode represents a type for objects
165  /// which are not modified (by any means) in the context where this
166  /// AliasAnalysis is relevant.
167  bool TypeIsImmutable() const {
168  if (Node->getNumOperands() < 3)
169  return false;
170  ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(2));
171  if (!CI)
172  return false;
173  return CI->getValue()[0];
174  }
175  };
176 
177  /// This is a simple wrapper around an MDNode which provides a
178  /// higher-level interface by hiding the details of how alias analysis
179  /// information is encoded in its operands.
180  class TBAAStructTagNode {
181  /// This node should be created with createTBAAStructTagNode.
182  const MDNode *Node;
183 
184  public:
185  TBAAStructTagNode() : Node(0) {}
186  explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
187 
188  /// Get the MDNode for this TBAAStructTagNode.
189  const MDNode *getNode() const { return Node; }
190 
191  const MDNode *getBaseType() const {
192  return dyn_cast_or_null<MDNode>(Node->getOperand(0));
193  }
194  const MDNode *getAccessType() const {
195  return dyn_cast_or_null<MDNode>(Node->getOperand(1));
196  }
197  uint64_t getOffset() const {
198  return cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
199  }
200  /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
201  /// objects which are not modified (by any means) in the context where this
202  /// AliasAnalysis is relevant.
203  bool TypeIsImmutable() const {
204  if (Node->getNumOperands() < 4)
205  return false;
206  ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(3));
207  if (!CI)
208  return false;
209  return CI->getValue()[0];
210  }
211  };
212 
213  /// This is a simple wrapper around an MDNode which provides a
214  /// higher-level interface by hiding the details of how alias analysis
215  /// information is encoded in its operands.
216  class TBAAStructTypeNode {
217  /// This node should be created with createTBAAStructTypeNode.
218  const MDNode *Node;
219 
220  public:
221  TBAAStructTypeNode() : Node(0) {}
222  explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
223 
224  /// Get the MDNode for this TBAAStructTypeNode.
225  const MDNode *getNode() const { return Node; }
226 
227  /// Get this TBAAStructTypeNode's field in the type DAG with
228  /// given offset. Update the offset to be relative to the field type.
229  TBAAStructTypeNode getParent(uint64_t &Offset) const {
230  // Parent can be omitted for the root node.
231  if (Node->getNumOperands() < 2)
232  return TBAAStructTypeNode();
233 
234  // Fast path for a scalar type node and a struct type node with a single
235  // field.
236  if (Node->getNumOperands() <= 3) {
237  uint64_t Cur = Node->getNumOperands() == 2 ? 0 :
238  cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
239  Offset -= Cur;
240  MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
241  if (!P)
242  return TBAAStructTypeNode();
243  return TBAAStructTypeNode(P);
244  }
245 
246  // Assume the offsets are in order. We return the previous field if
247  // the current offset is bigger than the given offset.
248  unsigned TheIdx = 0;
249  for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
250  uint64_t Cur = cast<ConstantInt>(Node->getOperand(Idx + 1))->
251  getZExtValue();
252  if (Cur > Offset) {
253  assert(Idx >= 3 &&
254  "TBAAStructTypeNode::getParent should have an offset match!");
255  TheIdx = Idx - 2;
256  break;
257  }
258  }
259  // Move along the last field.
260  if (TheIdx == 0)
261  TheIdx = Node->getNumOperands() - 2;
262  uint64_t Cur = cast<ConstantInt>(Node->getOperand(TheIdx + 1))->
263  getZExtValue();
264  Offset -= Cur;
265  MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
266  if (!P)
267  return TBAAStructTypeNode();
268  return TBAAStructTypeNode(P);
269  }
270  };
271 }
272 
273 namespace {
274  /// TypeBasedAliasAnalysis - This is a simple alias analysis
275  /// implementation that uses TypeBased to answer queries.
276  class TypeBasedAliasAnalysis : public ImmutablePass,
277  public AliasAnalysis {
278  public:
279  static char ID; // Class identification, replacement for typeinfo
280  TypeBasedAliasAnalysis() : ImmutablePass(ID) {
282  }
283 
284  virtual void initializePass() {
285  InitializeAliasAnalysis(this);
286  }
287 
288  /// getAdjustedAnalysisPointer - This method is used when a pass implements
289  /// an analysis interface through multiple inheritance. If needed, it
290  /// should override this to adjust the this pointer as needed for the
291  /// specified pass info.
292  virtual void *getAdjustedAnalysisPointer(const void *PI) {
293  if (PI == &AliasAnalysis::ID)
294  return (AliasAnalysis*)this;
295  return this;
296  }
297 
298  bool Aliases(const MDNode *A, const MDNode *B) const;
299  bool PathAliases(const MDNode *A, const MDNode *B) const;
300 
301  private:
302  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
303  virtual AliasResult alias(const Location &LocA, const Location &LocB);
304  virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
305  virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
306  virtual ModRefBehavior getModRefBehavior(const Function *F);
307  virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
308  const Location &Loc);
309  virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
310  ImmutableCallSite CS2);
311  };
312 } // End of anonymous namespace
313 
314 // Register this pass...
316 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
317  "Type-Based Alias Analysis", false, true, false)
318 
320  return new TypeBasedAliasAnalysis();
321 }
322 
323 void
324 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
325  AU.setPreservesAll();
327 }
328 
329 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
330 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
331 /// format.
332 static bool isStructPathTBAA(const MDNode *MD) {
333  // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
334  // a TBAA tag.
335  return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
336 }
337 
338 /// Aliases - Test whether the type represented by A may alias the
339 /// type represented by B.
340 bool
341 TypeBasedAliasAnalysis::Aliases(const MDNode *A,
342  const MDNode *B) const {
343  if (isStructPathTBAA(A))
344  return PathAliases(A, B);
345 
346  // Keep track of the root node for A and B.
347  TBAANode RootA, RootB;
348 
349  // Climb the tree from A to see if we reach B.
350  for (TBAANode T(A); ; ) {
351  if (T.getNode() == B)
352  // B is an ancestor of A.
353  return true;
354 
355  RootA = T;
356  T = T.getParent();
357  if (!T.getNode())
358  break;
359  }
360 
361  // Climb the tree from B to see if we reach A.
362  for (TBAANode T(B); ; ) {
363  if (T.getNode() == A)
364  // A is an ancestor of B.
365  return true;
366 
367  RootB = T;
368  T = T.getParent();
369  if (!T.getNode())
370  break;
371  }
372 
373  // Neither node is an ancestor of the other.
374 
375  // If they have different roots, they're part of different potentially
376  // unrelated type systems, so we must be conservative.
377  if (RootA.getNode() != RootB.getNode())
378  return true;
379 
380  // If they have the same root, then we've proved there's no alias.
381  return false;
382 }
383 
384 /// Test whether the struct-path tag represented by A may alias the
385 /// struct-path tag represented by B.
386 bool
387 TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
388  const MDNode *B) const {
389  // Keep track of the root node for A and B.
390  TBAAStructTypeNode RootA, RootB;
391  TBAAStructTagNode TagA(A), TagB(B);
392 
393  // TODO: We need to check if AccessType of TagA encloses AccessType of
394  // TagB to support aggregate AccessType. If yes, return true.
395 
396  // Start from the base type of A, follow the edge with the correct offset in
397  // the type DAG and adjust the offset until we reach the base type of B or
398  // until we reach the Root node.
399  // Compare the adjusted offset once we have the same base.
400 
401  // Climb the type DAG from base type of A to see if we reach base type of B.
402  const MDNode *BaseA = TagA.getBaseType();
403  const MDNode *BaseB = TagB.getBaseType();
404  uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
405  for (TBAAStructTypeNode T(BaseA); ; ) {
406  if (T.getNode() == BaseB)
407  // Base type of A encloses base type of B, check if the offsets match.
408  return OffsetA == OffsetB;
409 
410  RootA = T;
411  // Follow the edge with the correct offset, OffsetA will be adjusted to
412  // be relative to the field type.
413  T = T.getParent(OffsetA);
414  if (!T.getNode())
415  break;
416  }
417 
418  // Reset OffsetA and climb the type DAG from base type of B to see if we reach
419  // base type of A.
420  OffsetA = TagA.getOffset();
421  for (TBAAStructTypeNode T(BaseB); ; ) {
422  if (T.getNode() == BaseA)
423  // Base type of B encloses base type of A, check if the offsets match.
424  return OffsetA == OffsetB;
425 
426  RootB = T;
427  // Follow the edge with the correct offset, OffsetB will be adjusted to
428  // be relative to the field type.
429  T = T.getParent(OffsetB);
430  if (!T.getNode())
431  break;
432  }
433 
434  // Neither node is an ancestor of the other.
435 
436  // If they have different roots, they're part of different potentially
437  // unrelated type systems, so we must be conservative.
438  if (RootA.getNode() != RootB.getNode())
439  return true;
440 
441  // If they have the same root, then we've proved there's no alias.
442  return false;
443 }
444 
446 TypeBasedAliasAnalysis::alias(const Location &LocA,
447  const Location &LocB) {
448  if (!EnableTBAA)
449  return AliasAnalysis::alias(LocA, LocB);
450 
451  // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
452  // be conservative.
453  const MDNode *AM = LocA.TBAATag;
454  if (!AM) return AliasAnalysis::alias(LocA, LocB);
455  const MDNode *BM = LocB.TBAATag;
456  if (!BM) return AliasAnalysis::alias(LocA, LocB);
457 
458  // If they may alias, chain to the next AliasAnalysis.
459  if (Aliases(AM, BM))
460  return AliasAnalysis::alias(LocA, LocB);
461 
462  // Otherwise return a definitive result.
463  return NoAlias;
464 }
465 
466 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
467  bool OrLocal) {
468  if (!EnableTBAA)
469  return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
470 
471  const MDNode *M = Loc.TBAATag;
472  if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
473 
474  // If this is an "immutable" type, we can assume the pointer is pointing
475  // to constant memory.
476  if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
477  (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
478  return true;
479 
480  return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
481 }
482 
484 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
485  if (!EnableTBAA)
487 
488  ModRefBehavior Min = UnknownModRefBehavior;
489 
490  // If this is an "immutable" type, we can assume the call doesn't write
491  // to memory.
493  if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
494  (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
495  Min = OnlyReadsMemory;
496 
498 }
499 
501 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
502  // Functions don't have metadata. Just chain to the next implementation.
504 }
505 
507 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
508  const Location &Loc) {
509  if (!EnableTBAA)
510  return AliasAnalysis::getModRefInfo(CS, Loc);
511 
512  if (const MDNode *L = Loc.TBAATag)
513  if (const MDNode *M =
515  if (!Aliases(L, M))
516  return NoModRef;
517 
518  return AliasAnalysis::getModRefInfo(CS, Loc);
519 }
520 
522 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
523  ImmutableCallSite CS2) {
524  if (!EnableTBAA)
525  return AliasAnalysis::getModRefInfo(CS1, CS2);
526 
527  if (const MDNode *M1 =
529  if (const MDNode *M2 =
531  if (!Aliases(M1, M2))
532  return NoModRef;
533 
534  return AliasAnalysis::getModRefInfo(CS1, CS2);
535 }
536 
538  if (!isStructPathTBAA(this)) {
539  if (getNumOperands() < 1) return false;
540  if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
541  if (Tag1->getString() == "vtable pointer") return true;
542  }
543  return false;
544  }
545 
546  // For struct-path aware TBAA, we use the access type of the tag.
547  if (getNumOperands() < 2) return false;
548  MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
549  if (!Tag) return false;
550  if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
551  if (Tag1->getString() == "vtable pointer") return true;
552  }
553  return false;
554 }
555 
557  if (!A || !B)
558  return NULL;
559 
560  if (A == B)
561  return A;
562 
563  // For struct-path aware TBAA, we use the access type of the tag.
564  bool StructPath = isStructPathTBAA(A);
565  if (StructPath) {
566  A = cast_or_null<MDNode>(A->getOperand(1));
567  if (!A) return 0;
568  B = cast_or_null<MDNode>(B->getOperand(1));
569  if (!B) return 0;
570  }
571 
573  MDNode *T = A;
574  while (T) {
575  PathA.push_back(T);
576  T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
577  }
578 
580  T = B;
581  while (T) {
582  PathB.push_back(T);
583  T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1)) : 0;
584  }
585 
586  int IA = PathA.size() - 1;
587  int IB = PathB.size() - 1;
588 
589  MDNode *Ret = 0;
590  while (IA >= 0 && IB >=0) {
591  if (PathA[IA] == PathB[IB])
592  Ret = PathA[IA];
593  else
594  break;
595  --IA;
596  --IB;
597  }
598  if (!StructPath)
599  return Ret;
600 
601  if (!Ret)
602  return 0;
603  // We need to convert from a type node to a tag node.
604  Type *Int64 = IntegerType::get(A->getContext(), 64);
605  Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
606  return MDNode::get(A->getContext(), Ops);
607 }
virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal=false)
static PassRegistry * getPassRegistry()
ModRefResult getModRefInfo(const Instruction *I, const Location &Loc)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getNumOperands() const
Definition: User.h:108
unsigned getNumOperands() const
getNumOperands - Return number of MDNode operands.
Definition: Metadata.h:142
MDNode - a tuple of other values.
Definition: Metadata.h:69
F(f)
static MDNode * get(LLVMContext &Context, ArrayRef< Value * > Vals)
Definition: Metadata.cpp:268
Value * getOperand(unsigned i) const LLVM_READONLY
getOperand - Return specified operand.
Definition: Metadata.cpp:307
void initializeTypeBasedAliasAnalysisPass(PassRegistry &)
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
bool isTBAAVtableAccess() const
Check whether MDNode is a vtable access.
#define T
#define P(N)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
ImmutablePass * createTypeBasedAliasAnalysisPass()
InstrTy * getInstruction() const
Definition: CallSite.h:79
virtual AliasResult alias(const Location &LocA, const Location &LocB)
#define ModRefBehavior
static Type * getAccessType(const Instruction *Inst)
getAccessType - Return the type of the memory being accessed.
static MDNode * getMostGenericTBAA(MDNode *A, MDNode *B)
Methods for metadata merging.
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:517
virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS)
getModRefBehavior - Return the behavior when calling the given call site.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
Get or create an IntegerType instance.
Definition: Type.cpp:305
Class for constant integers.
Definition: Constants.h:51
MDNode * getMetadata(unsigned KindID) const
Definition: Instruction.h:140
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis,"tbaa","Type-Based Alias Analysis", false, true, false) ImmutablePass *llvm
static cl::opt< bool > EnableTBAA("enable-tbaa", cl::init(true))
ImmutableCallSite - establish a view to a call site for examination.
Definition: CallSite.h:318
#define N
LLVM Value Representation.
Definition: Value.h:66
static const Function * getParent(const Value *V)
virtual void getAnalysisUsage(AnalysisUsage &AU) const
static bool isStructPathTBAA(const MDNode *MD)