LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
X86ISelDAGToDAG.cpp
Go to the documentation of this file.
1 //===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a DAG pattern matching instruction selector for X86,
11 // converting from a legalized dag to a X86 dag.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86MachineFunctionInfo.h"
19 #include "X86RegisterInfo.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetMachine.h"
22 #include "llvm/ADT/Statistic.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
37 using namespace llvm;
38 
39 STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
40 
41 //===----------------------------------------------------------------------===//
42 // Pattern Matcher Implementation
43 //===----------------------------------------------------------------------===//
44 
45 namespace {
46  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
47  /// SDValue's instead of register numbers for the leaves of the matched
48  /// tree.
49  struct X86ISelAddressMode {
50  enum {
51  RegBase,
52  FrameIndexBase
53  } BaseType;
54 
55  // This is really a union, discriminated by BaseType!
56  SDValue Base_Reg;
57  int Base_FrameIndex;
58 
59  unsigned Scale;
60  SDValue IndexReg;
61  int32_t Disp;
62  SDValue Segment;
63  const GlobalValue *GV;
64  const Constant *CP;
65  const BlockAddress *BlockAddr;
66  const char *ES;
67  int JT;
68  unsigned Align; // CP alignment.
69  unsigned char SymbolFlags; // X86II::MO_*
70 
71  X86ISelAddressMode()
72  : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
73  Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
74  SymbolFlags(X86II::MO_NO_FLAG) {
75  }
76 
77  bool hasSymbolicDisplacement() const {
78  return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
79  }
80 
81  bool hasBaseOrIndexReg() const {
82  return BaseType == FrameIndexBase ||
83  IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
84  }
85 
86  /// isRIPRelative - Return true if this addressing mode is already RIP
87  /// relative.
88  bool isRIPRelative() const {
89  if (BaseType != RegBase) return false;
90  if (RegisterSDNode *RegNode =
91  dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
92  return RegNode->getReg() == X86::RIP;
93  return false;
94  }
95 
96  void setBaseReg(SDValue Reg) {
97  BaseType = RegBase;
98  Base_Reg = Reg;
99  }
100 
101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
102  void dump() {
103  dbgs() << "X86ISelAddressMode " << this << '\n';
104  dbgs() << "Base_Reg ";
105  if (Base_Reg.getNode() != 0)
106  Base_Reg.getNode()->dump();
107  else
108  dbgs() << "nul";
109  dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
110  << " Scale" << Scale << '\n'
111  << "IndexReg ";
112  if (IndexReg.getNode() != 0)
113  IndexReg.getNode()->dump();
114  else
115  dbgs() << "nul";
116  dbgs() << " Disp " << Disp << '\n'
117  << "GV ";
118  if (GV)
119  GV->dump();
120  else
121  dbgs() << "nul";
122  dbgs() << " CP ";
123  if (CP)
124  CP->dump();
125  else
126  dbgs() << "nul";
127  dbgs() << '\n'
128  << "ES ";
129  if (ES)
130  dbgs() << ES;
131  else
132  dbgs() << "nul";
133  dbgs() << " JT" << JT << " Align" << Align << '\n';
134  }
135 #endif
136  };
137 }
138 
139 namespace {
140  //===--------------------------------------------------------------------===//
141  /// ISel - X86 specific code to select X86 machine instructions for
142  /// SelectionDAG operations.
143  ///
144  class X86DAGToDAGISel : public SelectionDAGISel {
145  /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
146  /// make the right decision when generating code for different targets.
147  const X86Subtarget *Subtarget;
148 
149  /// OptForSize - If true, selector should try to optimize for code size
150  /// instead of performance.
151  bool OptForSize;
152 
153  public:
154  explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
155  : SelectionDAGISel(tm, OptLevel),
156  Subtarget(&tm.getSubtarget<X86Subtarget>()),
157  OptForSize(false) {}
158 
159  virtual const char *getPassName() const {
160  return "X86 DAG->DAG Instruction Selection";
161  }
162 
163  virtual void EmitFunctionEntryCode();
164 
165  virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
166 
167  virtual void PreprocessISelDAG();
168 
169  inline bool immSext8(SDNode *N) const {
170  return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
171  }
172 
173  // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
174  // sign extended field.
175  inline bool i64immSExt32(SDNode *N) const {
176  uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
177  return (int64_t)v == (int32_t)v;
178  }
179 
180 // Include the pieces autogenerated from the target description.
181 #include "X86GenDAGISel.inc"
182 
183  private:
184  SDNode *Select(SDNode *N);
185  SDNode *SelectGather(SDNode *N, unsigned Opc);
186  SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
187  SDNode *SelectAtomicLoadArith(SDNode *Node, MVT NVT);
188 
189  bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
190  bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
191  bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
192  bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
193  bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
194  unsigned Depth);
195  bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
196  bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
197  SDValue &Scale, SDValue &Index, SDValue &Disp,
198  SDValue &Segment);
199  bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
200  bool SelectLEAAddr(SDValue N, SDValue &Base,
201  SDValue &Scale, SDValue &Index, SDValue &Disp,
202  SDValue &Segment);
203  bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
204  SDValue &Scale, SDValue &Index, SDValue &Disp,
205  SDValue &Segment);
206  bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
207  SDValue &Scale, SDValue &Index, SDValue &Disp,
208  SDValue &Segment);
209  bool SelectScalarSSELoad(SDNode *Root, SDValue N,
210  SDValue &Base, SDValue &Scale,
211  SDValue &Index, SDValue &Disp,
212  SDValue &Segment,
213  SDValue &NodeWithChain);
214 
215  bool TryFoldLoad(SDNode *P, SDValue N,
216  SDValue &Base, SDValue &Scale,
217  SDValue &Index, SDValue &Disp,
218  SDValue &Segment);
219 
220  /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
221  /// inline asm expressions.
222  virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
223  char ConstraintCode,
224  std::vector<SDValue> &OutOps);
225 
226  void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
227 
228  inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
229  SDValue &Scale, SDValue &Index,
230  SDValue &Disp, SDValue &Segment) {
231  Base = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
232  CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
233  getTargetLowering()->getPointerTy()) :
234  AM.Base_Reg;
235  Scale = getI8Imm(AM.Scale);
236  Index = AM.IndexReg;
237  // These are 32-bit even in 64-bit mode since RIP relative offset
238  // is 32-bit.
239  if (AM.GV)
240  Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
241  MVT::i32, AM.Disp,
242  AM.SymbolFlags);
243  else if (AM.CP)
244  Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
245  AM.Align, AM.Disp, AM.SymbolFlags);
246  else if (AM.ES) {
247  assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
248  Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
249  } else if (AM.JT != -1) {
250  assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
251  Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
252  } else if (AM.BlockAddr)
253  Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
254  AM.SymbolFlags);
255  else
256  Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
257 
258  if (AM.Segment.getNode())
259  Segment = AM.Segment;
260  else
261  Segment = CurDAG->getRegister(0, MVT::i32);
262  }
263 
264  /// getI8Imm - Return a target constant with the specified value, of type
265  /// i8.
266  inline SDValue getI8Imm(unsigned Imm) {
267  return CurDAG->getTargetConstant(Imm, MVT::i8);
268  }
269 
270  /// getI32Imm - Return a target constant with the specified value, of type
271  /// i32.
272  inline SDValue getI32Imm(unsigned Imm) {
273  return CurDAG->getTargetConstant(Imm, MVT::i32);
274  }
275 
276  /// getGlobalBaseReg - Return an SDNode that returns the value of
277  /// the global base register. Output instructions required to
278  /// initialize the global base register, if necessary.
279  ///
280  SDNode *getGlobalBaseReg();
281 
282  /// getTargetMachine - Return a reference to the TargetMachine, casted
283  /// to the target-specific type.
284  const X86TargetMachine &getTargetMachine() const {
285  return static_cast<const X86TargetMachine &>(TM);
286  }
287 
288  /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
289  /// to the target-specific type.
290  const X86InstrInfo *getInstrInfo() const {
291  return getTargetMachine().getInstrInfo();
292  }
293  };
294 }
295 
296 
297 bool
298 X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
299  if (OptLevel == CodeGenOpt::None) return false;
300 
301  if (!N.hasOneUse())
302  return false;
303 
304  if (N.getOpcode() != ISD::LOAD)
305  return true;
306 
307  // If N is a load, do additional profitability checks.
308  if (U == Root) {
309  switch (U->getOpcode()) {
310  default: break;
311  case X86ISD::ADD:
312  case X86ISD::SUB:
313  case X86ISD::AND:
314  case X86ISD::XOR:
315  case X86ISD::OR:
316  case ISD::ADD:
317  case ISD::ADDC:
318  case ISD::ADDE:
319  case ISD::AND:
320  case ISD::OR:
321  case ISD::XOR: {
322  SDValue Op1 = U->getOperand(1);
323 
324  // If the other operand is a 8-bit immediate we should fold the immediate
325  // instead. This reduces code size.
326  // e.g.
327  // movl 4(%esp), %eax
328  // addl $4, %eax
329  // vs.
330  // movl $4, %eax
331  // addl 4(%esp), %eax
332  // The former is 2 bytes shorter. In case where the increment is 1, then
333  // the saving can be 4 bytes (by using incl %eax).
334  if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
335  if (Imm->getAPIntValue().isSignedIntN(8))
336  return false;
337 
338  // If the other operand is a TLS address, we should fold it instead.
339  // This produces
340  // movl %gs:0, %eax
341  // leal i@NTPOFF(%eax), %eax
342  // instead of
343  // movl $i@NTPOFF, %eax
344  // addl %gs:0, %eax
345  // if the block also has an access to a second TLS address this will save
346  // a load.
347  // FIXME: This is probably also true for non TLS addresses.
348  if (Op1.getOpcode() == X86ISD::Wrapper) {
349  SDValue Val = Op1.getOperand(0);
351  return false;
352  }
353  }
354  }
355  }
356 
357  return true;
358 }
359 
360 /// MoveBelowCallOrigChain - Replace the original chain operand of the call with
361 /// load's chain operand and move load below the call's chain operand.
363  SDValue Call, SDValue OrigChain) {
365  SDValue Chain = OrigChain.getOperand(0);
366  if (Chain.getNode() == Load.getNode())
367  Ops.push_back(Load.getOperand(0));
368  else {
369  assert(Chain.getOpcode() == ISD::TokenFactor &&
370  "Unexpected chain operand");
371  for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
372  if (Chain.getOperand(i).getNode() == Load.getNode())
373  Ops.push_back(Load.getOperand(0));
374  else
375  Ops.push_back(Chain.getOperand(i));
376  SDValue NewChain =
377  CurDAG->getNode(ISD::TokenFactor, SDLoc(Load),
378  MVT::Other, &Ops[0], Ops.size());
379  Ops.clear();
380  Ops.push_back(NewChain);
381  }
382  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
383  Ops.push_back(OrigChain.getOperand(i));
384  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
385  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
386  Load.getOperand(1), Load.getOperand(2));
387 
388  unsigned NumOps = Call.getNode()->getNumOperands();
389  Ops.clear();
390  Ops.push_back(SDValue(Load.getNode(), 1));
391  for (unsigned i = 1, e = NumOps; i != e; ++i)
392  Ops.push_back(Call.getOperand(i));
393  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
394 }
395 
396 /// isCalleeLoad - Return true if call address is a load and it can be
397 /// moved below CALLSEQ_START and the chains leading up to the call.
398 /// Return the CALLSEQ_START by reference as a second output.
399 /// In the case of a tail call, there isn't a callseq node between the call
400 /// chain and the load.
401 static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
402  // The transformation is somewhat dangerous if the call's chain was glued to
403  // the call. After MoveBelowOrigChain the load is moved between the call and
404  // the chain, this can create a cycle if the load is not folded. So it is
405  // *really* important that we are sure the load will be folded.
406  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
407  return false;
408  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
409  if (!LD ||
410  LD->isVolatile() ||
413  return false;
414 
415  // Now let's find the callseq_start.
416  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
417  if (!Chain.hasOneUse())
418  return false;
419  Chain = Chain.getOperand(0);
420  }
421 
422  if (!Chain.getNumOperands())
423  return false;
424  // Since we are not checking for AA here, conservatively abort if the chain
425  // writes to memory. It's not safe to move the callee (a load) across a store.
426  if (isa<MemSDNode>(Chain.getNode()) &&
427  cast<MemSDNode>(Chain.getNode())->writeMem())
428  return false;
429  if (Chain.getOperand(0).getNode() == Callee.getNode())
430  return true;
431  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
432  Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
433  Callee.getValue(1).hasOneUse())
434  return true;
435  return false;
436 }
437 
438 void X86DAGToDAGISel::PreprocessISelDAG() {
439  // OptForSize is used in pattern predicates that isel is matching.
440  OptForSize = MF->getFunction()->getAttributes().
441  hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
442 
443  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
444  E = CurDAG->allnodes_end(); I != E; ) {
445  SDNode *N = I++; // Preincrement iterator to avoid invalidation issues.
446 
447  if (OptLevel != CodeGenOpt::None &&
448  // Only does this when target favors doesn't favor register indirect
449  // call.
450  ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
451  (N->getOpcode() == X86ISD::TC_RETURN &&
452  // Only does this if load can be folded into TC_RETURN.
453  (Subtarget->is64Bit() ||
454  getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
455  /// Also try moving call address load from outside callseq_start to just
456  /// before the call to allow it to be folded.
457  ///
458  /// [Load chain]
459  /// ^
460  /// |
461  /// [Load]
462  /// ^ ^
463  /// | |
464  /// / \--
465  /// / |
466  ///[CALLSEQ_START] |
467  /// ^ |
468  /// | |
469  /// [LOAD/C2Reg] |
470  /// | |
471  /// \ /
472  /// \ /
473  /// [CALL]
474  bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
475  SDValue Chain = N->getOperand(0);
476  SDValue Load = N->getOperand(1);
477  if (!isCalleeLoad(Load, Chain, HasCallSeq))
478  continue;
479  MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
480  ++NumLoadMoved;
481  continue;
482  }
483 
484  // Lower fpround and fpextend nodes that target the FP stack to be store and
485  // load to the stack. This is a gross hack. We would like to simply mark
486  // these as being illegal, but when we do that, legalize produces these when
487  // it expands calls, then expands these in the same legalize pass. We would
488  // like dag combine to be able to hack on these between the call expansion
489  // and the node legalization. As such this pass basically does "really
490  // late" legalization of these inline with the X86 isel pass.
491  // FIXME: This should only happen when not compiled with -O0.
492  if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
493  continue;
494 
495  MVT SrcVT = N->getOperand(0).getSimpleValueType();
496  MVT DstVT = N->getSimpleValueType(0);
497 
498  // If any of the sources are vectors, no fp stack involved.
499  if (SrcVT.isVector() || DstVT.isVector())
500  continue;
501 
502  // If the source and destination are SSE registers, then this is a legal
503  // conversion that should not be lowered.
504  const X86TargetLowering *X86Lowering =
505  static_cast<const X86TargetLowering *>(getTargetLowering());
506  bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
507  bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
508  if (SrcIsSSE && DstIsSSE)
509  continue;
510 
511  if (!SrcIsSSE && !DstIsSSE) {
512  // If this is an FPStack extension, it is a noop.
513  if (N->getOpcode() == ISD::FP_EXTEND)
514  continue;
515  // If this is a value-preserving FPStack truncation, it is a noop.
516  if (N->getConstantOperandVal(1))
517  continue;
518  }
519 
520  // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
521  // FPStack has extload and truncstore. SSE can fold direct loads into other
522  // operations. Based on this, decide what we want to do.
523  MVT MemVT;
524  if (N->getOpcode() == ISD::FP_ROUND)
525  MemVT = DstVT; // FP_ROUND must use DstVT, we can't do a 'trunc load'.
526  else
527  MemVT = SrcIsSSE ? SrcVT : DstVT;
528 
529  SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
530  SDLoc dl(N);
531 
532  // FIXME: optimize the case where the src/dest is a load or store?
533  SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
534  N->getOperand(0),
535  MemTmp, MachinePointerInfo(), MemVT,
536  false, false, 0);
537  SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
539  MemVT, false, false, 0);
540 
541  // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
542  // extload we created. This will cause general havok on the dag because
543  // anything below the conversion could be folded into other existing nodes.
544  // To avoid invalidating 'I', back it up to the convert node.
545  --I;
546  CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
547 
548  // Now that we did that, the node is dead. Increment the iterator to the
549  // next node to process, then delete N.
550  ++I;
551  CurDAG->DeleteNode(N);
552  }
553 }
554 
555 
556 /// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
557 /// the main function.
558 void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
559  MachineFrameInfo *MFI) {
560  const TargetInstrInfo *TII = TM.getInstrInfo();
561  if (Subtarget->isTargetCygMing()) {
562  unsigned CallOp =
563  Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
564  BuildMI(BB, DebugLoc(),
565  TII->get(CallOp)).addExternalSymbol("__main");
566  }
567 }
568 
569 void X86DAGToDAGISel::EmitFunctionEntryCode() {
570  // If this is main, emit special code for main.
571  if (const Function *Fn = MF->getFunction())
572  if (Fn->hasExternalLinkage() && Fn->getName() == "main")
573  EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
574 }
575 
576 static bool isDispSafeForFrameIndex(int64_t Val) {
577  // On 64-bit platforms, we can run into an issue where a frame index
578  // includes a displacement that, when added to the explicit displacement,
579  // will overflow the displacement field. Assuming that the frame index
580  // displacement fits into a 31-bit integer (which is only slightly more
581  // aggressive than the current fundamental assumption that it fits into
582  // a 32-bit integer), a 31-bit disp should always be safe.
583  return isInt<31>(Val);
584 }
585 
586 bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
587  X86ISelAddressMode &AM) {
588  int64_t Val = AM.Disp + Offset;
589  CodeModel::Model M = TM.getCodeModel();
590  if (Subtarget->is64Bit()) {
592  AM.hasSymbolicDisplacement()))
593  return true;
594  // In addition to the checks required for a register base, check that
595  // we do not try to use an unsafe Disp with a frame index.
596  if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
598  return true;
599  }
600  AM.Disp = Val;
601  return false;
602 
603 }
604 
605 bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
606  SDValue Address = N->getOperand(1);
607 
608  // load gs:0 -> GS segment register.
609  // load fs:0 -> FS segment register.
610  //
611  // This optimization is valid because the GNU TLS model defines that
612  // gs:0 (or fs:0 on X86-64) contains its own address.
613  // For more information see http://people.redhat.com/drepper/tls.pdf
614  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
615  if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
616  Subtarget->isTargetLinux())
617  switch (N->getPointerInfo().getAddrSpace()) {
618  case 256:
619  AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
620  return false;
621  case 257:
622  AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
623  return false;
624  }
625 
626  return true;
627 }
628 
629 /// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
630 /// into an addressing mode. These wrap things that will resolve down into a
631 /// symbol reference. If no match is possible, this returns true, otherwise it
632 /// returns false.
633 bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
634  // If the addressing mode already has a symbol as the displacement, we can
635  // never match another symbol.
636  if (AM.hasSymbolicDisplacement())
637  return true;
638 
639  SDValue N0 = N.getOperand(0);
640  CodeModel::Model M = TM.getCodeModel();
641 
642  // Handle X86-64 rip-relative addresses. We check this before checking direct
643  // folding because RIP is preferable to non-RIP accesses.
644  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
645  // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
646  // they cannot be folded into immediate fields.
647  // FIXME: This can be improved for kernel and other models?
648  (M == CodeModel::Small || M == CodeModel::Kernel)) {
649  // Base and index reg must be 0 in order to use %rip as base.
650  if (AM.hasBaseOrIndexReg())
651  return true;
652  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
653  X86ISelAddressMode Backup = AM;
654  AM.GV = G->getGlobal();
655  AM.SymbolFlags = G->getTargetFlags();
656  if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
657  AM = Backup;
658  return true;
659  }
660  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
661  X86ISelAddressMode Backup = AM;
662  AM.CP = CP->getConstVal();
663  AM.Align = CP->getAlignment();
664  AM.SymbolFlags = CP->getTargetFlags();
665  if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
666  AM = Backup;
667  return true;
668  }
669  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
670  AM.ES = S->getSymbol();
671  AM.SymbolFlags = S->getTargetFlags();
672  } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
673  AM.JT = J->getIndex();
674  AM.SymbolFlags = J->getTargetFlags();
675  } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
676  X86ISelAddressMode Backup = AM;
677  AM.BlockAddr = BA->getBlockAddress();
678  AM.SymbolFlags = BA->getTargetFlags();
679  if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
680  AM = Backup;
681  return true;
682  }
683  } else
684  llvm_unreachable("Unhandled symbol reference node.");
685 
686  if (N.getOpcode() == X86ISD::WrapperRIP)
687  AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
688  return false;
689  }
690 
691  // Handle the case when globals fit in our immediate field: This is true for
692  // X86-32 always and X86-64 when in -mcmodel=small mode. In 64-bit
693  // mode, this only applies to a non-RIP-relative computation.
694  if (!Subtarget->is64Bit() ||
695  M == CodeModel::Small || M == CodeModel::Kernel) {
696  assert(N.getOpcode() != X86ISD::WrapperRIP &&
697  "RIP-relative addressing already handled");
698  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
699  AM.GV = G->getGlobal();
700  AM.Disp += G->getOffset();
701  AM.SymbolFlags = G->getTargetFlags();
702  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
703  AM.CP = CP->getConstVal();
704  AM.Align = CP->getAlignment();
705  AM.Disp += CP->getOffset();
706  AM.SymbolFlags = CP->getTargetFlags();
707  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
708  AM.ES = S->getSymbol();
709  AM.SymbolFlags = S->getTargetFlags();
710  } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
711  AM.JT = J->getIndex();
712  AM.SymbolFlags = J->getTargetFlags();
713  } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
714  AM.BlockAddr = BA->getBlockAddress();
715  AM.Disp += BA->getOffset();
716  AM.SymbolFlags = BA->getTargetFlags();
717  } else
718  llvm_unreachable("Unhandled symbol reference node.");
719  return false;
720  }
721 
722  return true;
723 }
724 
725 /// MatchAddress - Add the specified node to the specified addressing mode,
726 /// returning true if it cannot be done. This just pattern matches for the
727 /// addressing mode.
728 bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
729  if (MatchAddressRecursively(N, AM, 0))
730  return true;
731 
732  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
733  // a smaller encoding and avoids a scaled-index.
734  if (AM.Scale == 2 &&
735  AM.BaseType == X86ISelAddressMode::RegBase &&
736  AM.Base_Reg.getNode() == 0) {
737  AM.Base_Reg = AM.IndexReg;
738  AM.Scale = 1;
739  }
740 
741  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
742  // because it has a smaller encoding.
743  // TODO: Which other code models can use this?
744  if (TM.getCodeModel() == CodeModel::Small &&
745  Subtarget->is64Bit() &&
746  AM.Scale == 1 &&
747  AM.BaseType == X86ISelAddressMode::RegBase &&
748  AM.Base_Reg.getNode() == 0 &&
749  AM.IndexReg.getNode() == 0 &&
750  AM.SymbolFlags == X86II::MO_NO_FLAG &&
751  AM.hasSymbolicDisplacement())
752  AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
753 
754  return false;
755 }
756 
757 // Insert a node into the DAG at least before the Pos node's position. This
758 // will reposition the node as needed, and will assign it a node ID that is <=
759 // the Pos node's ID. Note that this does *not* preserve the uniqueness of node
760 // IDs! The selection DAG must no longer depend on their uniqueness when this
761 // is used.
762 static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
763  if (N.getNode()->getNodeId() == -1 ||
764  N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
765  DAG.RepositionNode(Pos.getNode(), N.getNode());
766  N.getNode()->setNodeId(Pos.getNode()->getNodeId());
767  }
768 }
769 
770 // Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
771 // allows us to convert the shift and and into an h-register extract and
772 // a scaled index. Returns false if the simplification is performed.
774  uint64_t Mask,
775  SDValue Shift, SDValue X,
776  X86ISelAddressMode &AM) {
777  if (Shift.getOpcode() != ISD::SRL ||
778  !isa<ConstantSDNode>(Shift.getOperand(1)) ||
779  !Shift.hasOneUse())
780  return true;
781 
782  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
783  if (ScaleLog <= 0 || ScaleLog >= 4 ||
784  Mask != (0xffu << ScaleLog))
785  return true;
786 
787  MVT VT = N.getSimpleValueType();
788  SDLoc DL(N);
789  SDValue Eight = DAG.getConstant(8, MVT::i8);
790  SDValue NewMask = DAG.getConstant(0xff, VT);
791  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
792  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
793  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
794  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
795 
796  // Insert the new nodes into the topological ordering. We must do this in
797  // a valid topological ordering as nothing is going to go back and re-sort
798  // these nodes. We continually insert before 'N' in sequence as this is
799  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
800  // hierarchy left to express.
801  InsertDAGNode(DAG, N, Eight);
802  InsertDAGNode(DAG, N, Srl);
803  InsertDAGNode(DAG, N, NewMask);
804  InsertDAGNode(DAG, N, And);
805  InsertDAGNode(DAG, N, ShlCount);
806  InsertDAGNode(DAG, N, Shl);
807  DAG.ReplaceAllUsesWith(N, Shl);
808  AM.IndexReg = And;
809  AM.Scale = (1 << ScaleLog);
810  return false;
811 }
812 
813 // Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
814 // allows us to fold the shift into this addressing mode. Returns false if the
815 // transform succeeded.
817  uint64_t Mask,
818  SDValue Shift, SDValue X,
819  X86ISelAddressMode &AM) {
820  if (Shift.getOpcode() != ISD::SHL ||
821  !isa<ConstantSDNode>(Shift.getOperand(1)))
822  return true;
823 
824  // Not likely to be profitable if either the AND or SHIFT node has more
825  // than one use (unless all uses are for address computation). Besides,
826  // isel mechanism requires their node ids to be reused.
827  if (!N.hasOneUse() || !Shift.hasOneUse())
828  return true;
829 
830  // Verify that the shift amount is something we can fold.
831  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
832  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
833  return true;
834 
835  MVT VT = N.getSimpleValueType();
836  SDLoc DL(N);
837  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
838  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
839  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
840 
841  // Insert the new nodes into the topological ordering. We must do this in
842  // a valid topological ordering as nothing is going to go back and re-sort
843  // these nodes. We continually insert before 'N' in sequence as this is
844  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
845  // hierarchy left to express.
846  InsertDAGNode(DAG, N, NewMask);
847  InsertDAGNode(DAG, N, NewAnd);
848  InsertDAGNode(DAG, N, NewShift);
849  DAG.ReplaceAllUsesWith(N, NewShift);
850 
851  AM.Scale = 1 << ShiftAmt;
852  AM.IndexReg = NewAnd;
853  return false;
854 }
855 
856 // Implement some heroics to detect shifts of masked values where the mask can
857 // be replaced by extending the shift and undoing that in the addressing mode
858 // scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
859 // (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
860 // the addressing mode. This results in code such as:
861 //
862 // int f(short *y, int *lookup_table) {
863 // ...
864 // return *y + lookup_table[*y >> 11];
865 // }
866 //
867 // Turning into:
868 // movzwl (%rdi), %eax
869 // movl %eax, %ecx
870 // shrl $11, %ecx
871 // addl (%rsi,%rcx,4), %eax
872 //
873 // Instead of:
874 // movzwl (%rdi), %eax
875 // movl %eax, %ecx
876 // shrl $9, %ecx
877 // andl $124, %rcx
878 // addl (%rsi,%rcx), %eax
879 //
880 // Note that this function assumes the mask is provided as a mask *after* the
881 // value is shifted. The input chain may or may not match that, but computing
882 // such a mask is trivial.
884  uint64_t Mask,
885  SDValue Shift, SDValue X,
886  X86ISelAddressMode &AM) {
887  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
888  !isa<ConstantSDNode>(Shift.getOperand(1)))
889  return true;
890 
891  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
892  unsigned MaskLZ = countLeadingZeros(Mask);
893  unsigned MaskTZ = countTrailingZeros(Mask);
894 
895  // The amount of shift we're trying to fit into the addressing mode is taken
896  // from the trailing zeros of the mask.
897  unsigned AMShiftAmt = MaskTZ;
898 
899  // There is nothing we can do here unless the mask is removing some bits.
900  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
901  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
902 
903  // We also need to ensure that mask is a continuous run of bits.
904  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
905 
906  // Scale the leading zero count down based on the actual size of the value.
907  // Also scale it down based on the size of the shift.
908  MaskLZ -= (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
909 
910  // The final check is to ensure that any masked out high bits of X are
911  // already known to be zero. Otherwise, the mask has a semantic impact
912  // other than masking out a couple of low bits. Unfortunately, because of
913  // the mask, zero extensions will be removed from operands in some cases.
914  // This code works extra hard to look through extensions because we can
915  // replace them with zero extensions cheaply if necessary.
916  bool ReplacingAnyExtend = false;
917  if (X.getOpcode() == ISD::ANY_EXTEND) {
918  unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
920  // Assume that we'll replace the any-extend with a zero-extend, and
921  // narrow the search to the extended value.
922  X = X.getOperand(0);
923  MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
924  ReplacingAnyExtend = true;
925  }
926  APInt MaskedHighBits =
928  APInt KnownZero, KnownOne;
929  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
930  if (MaskedHighBits != KnownZero) return true;
931 
932  // We've identified a pattern that can be transformed into a single shift
933  // and an addressing mode. Make it so.
934  MVT VT = N.getSimpleValueType();
935  if (ReplacingAnyExtend) {
936  assert(X.getValueType() != VT);
937  // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
938  SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
939  InsertDAGNode(DAG, N, NewX);
940  X = NewX;
941  }
942  SDLoc DL(N);
943  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
944  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
945  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
946  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
947 
948  // Insert the new nodes into the topological ordering. We must do this in
949  // a valid topological ordering as nothing is going to go back and re-sort
950  // these nodes. We continually insert before 'N' in sequence as this is
951  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
952  // hierarchy left to express.
953  InsertDAGNode(DAG, N, NewSRLAmt);
954  InsertDAGNode(DAG, N, NewSRL);
955  InsertDAGNode(DAG, N, NewSHLAmt);
956  InsertDAGNode(DAG, N, NewSHL);
957  DAG.ReplaceAllUsesWith(N, NewSHL);
958 
959  AM.Scale = 1 << AMShiftAmt;
960  AM.IndexReg = NewSRL;
961  return false;
962 }
963 
964 bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
965  unsigned Depth) {
966  SDLoc dl(N);
967  DEBUG({
968  dbgs() << "MatchAddress: ";
969  AM.dump();
970  });
971  // Limit recursion.
972  if (Depth > 5)
973  return MatchAddressBase(N, AM);
974 
975  // If this is already a %rip relative address, we can only merge immediates
976  // into it. Instead of handling this in every case, we handle it here.
977  // RIP relative addressing: %rip + 32-bit displacement!
978  if (AM.isRIPRelative()) {
979  // FIXME: JumpTable and ExternalSymbol address currently don't like
980  // displacements. It isn't very important, but this should be fixed for
981  // consistency.
982  if (!AM.ES && AM.JT != -1) return true;
983 
984  if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
985  if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
986  return false;
987  return true;
988  }
989 
990  switch (N.getOpcode()) {
991  default: break;
992  case ISD::Constant: {
993  uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
994  if (!FoldOffsetIntoAddress(Val, AM))
995  return false;
996  break;
997  }
998 
999  case X86ISD::Wrapper:
1000  case X86ISD::WrapperRIP:
1001  if (!MatchWrapper(N, AM))
1002  return false;
1003  break;
1004 
1005  case ISD::LOAD:
1006  if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1007  return false;
1008  break;
1009 
1010  case ISD::FrameIndex:
1011  if (AM.BaseType == X86ISelAddressMode::RegBase &&
1012  AM.Base_Reg.getNode() == 0 &&
1013  (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1014  AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1015  AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1016  return false;
1017  }
1018  break;
1019 
1020  case ISD::SHL:
1021  if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1022  break;
1023 
1024  if (ConstantSDNode
1025  *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1026  unsigned Val = CN->getZExtValue();
1027  // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1028  // that the base operand remains free for further matching. If
1029  // the base doesn't end up getting used, a post-processing step
1030  // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1031  if (Val == 1 || Val == 2 || Val == 3) {
1032  AM.Scale = 1 << Val;
1033  SDValue ShVal = N.getNode()->getOperand(0);
1034 
1035  // Okay, we know that we have a scale by now. However, if the scaled
1036  // value is an add of something and a constant, we can fold the
1037  // constant into the disp field here.
1038  if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1039  AM.IndexReg = ShVal.getNode()->getOperand(0);
1040  ConstantSDNode *AddVal =
1041  cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1042  uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1043  if (!FoldOffsetIntoAddress(Disp, AM))
1044  return false;
1045  }
1046 
1047  AM.IndexReg = ShVal;
1048  return false;
1049  }
1050  }
1051  break;
1052 
1053  case ISD::SRL: {
1054  // Scale must not be used already.
1055  if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1056 
1057  SDValue And = N.getOperand(0);
1058  if (And.getOpcode() != ISD::AND) break;
1059  SDValue X = And.getOperand(0);
1060 
1061  // We only handle up to 64-bit values here as those are what matter for
1062  // addressing mode optimizations.
1063  if (X.getSimpleValueType().getSizeInBits() > 64) break;
1064 
1065  // The mask used for the transform is expected to be post-shift, but we
1066  // found the shift first so just apply the shift to the mask before passing
1067  // it down.
1068  if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1069  !isa<ConstantSDNode>(And.getOperand(1)))
1070  break;
1071  uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1072 
1073  // Try to fold the mask and shift into the scale, and return false if we
1074  // succeed.
1075  if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1076  return false;
1077  break;
1078  }
1079 
1080  case ISD::SMUL_LOHI:
1081  case ISD::UMUL_LOHI:
1082  // A mul_lohi where we need the low part can be folded as a plain multiply.
1083  if (N.getResNo() != 0) break;
1084  // FALL THROUGH
1085  case ISD::MUL:
1086  case X86ISD::MUL_IMM:
1087  // X*[3,5,9] -> X+X*[2,4,8]
1088  if (AM.BaseType == X86ISelAddressMode::RegBase &&
1089  AM.Base_Reg.getNode() == 0 &&
1090  AM.IndexReg.getNode() == 0) {
1091  if (ConstantSDNode
1092  *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1093  if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1094  CN->getZExtValue() == 9) {
1095  AM.Scale = unsigned(CN->getZExtValue())-1;
1096 
1097  SDValue MulVal = N.getNode()->getOperand(0);
1098  SDValue Reg;
1099 
1100  // Okay, we know that we have a scale by now. However, if the scaled
1101  // value is an add of something and a constant, we can fold the
1102  // constant into the disp field here.
1103  if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1104  isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1105  Reg = MulVal.getNode()->getOperand(0);
1106  ConstantSDNode *AddVal =
1107  cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1108  uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1109  if (FoldOffsetIntoAddress(Disp, AM))
1110  Reg = N.getNode()->getOperand(0);
1111  } else {
1112  Reg = N.getNode()->getOperand(0);
1113  }
1114 
1115  AM.IndexReg = AM.Base_Reg = Reg;
1116  return false;
1117  }
1118  }
1119  break;
1120 
1121  case ISD::SUB: {
1122  // Given A-B, if A can be completely folded into the address and
1123  // the index field with the index field unused, use -B as the index.
1124  // This is a win if a has multiple parts that can be folded into
1125  // the address. Also, this saves a mov if the base register has
1126  // other uses, since it avoids a two-address sub instruction, however
1127  // it costs an additional mov if the index register has other uses.
1128 
1129  // Add an artificial use to this node so that we can keep track of
1130  // it if it gets CSE'd with a different node.
1131  HandleSDNode Handle(N);
1132 
1133  // Test if the LHS of the sub can be folded.
1134  X86ISelAddressMode Backup = AM;
1135  if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1136  AM = Backup;
1137  break;
1138  }
1139  // Test if the index field is free for use.
1140  if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1141  AM = Backup;
1142  break;
1143  }
1144 
1145  int Cost = 0;
1146  SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1147  // If the RHS involves a register with multiple uses, this
1148  // transformation incurs an extra mov, due to the neg instruction
1149  // clobbering its operand.
1150  if (!RHS.getNode()->hasOneUse() ||
1151  RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1152  RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1153  RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1154  (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1155  RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1156  ++Cost;
1157  // If the base is a register with multiple uses, this
1158  // transformation may save a mov.
1159  if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1160  AM.Base_Reg.getNode() &&
1161  !AM.Base_Reg.getNode()->hasOneUse()) ||
1162  AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1163  --Cost;
1164  // If the folded LHS was interesting, this transformation saves
1165  // address arithmetic.
1166  if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1167  ((AM.Disp != 0) && (Backup.Disp == 0)) +
1168  (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1169  --Cost;
1170  // If it doesn't look like it may be an overall win, don't do it.
1171  if (Cost >= 0) {
1172  AM = Backup;
1173  break;
1174  }
1175 
1176  // Ok, the transformation is legal and appears profitable. Go for it.
1177  SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1178  SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1179  AM.IndexReg = Neg;
1180  AM.Scale = 1;
1181 
1182  // Insert the new nodes into the topological ordering.
1183  InsertDAGNode(*CurDAG, N, Zero);
1184  InsertDAGNode(*CurDAG, N, Neg);
1185  return false;
1186  }
1187 
1188  case ISD::ADD: {
1189  // Add an artificial use to this node so that we can keep track of
1190  // it if it gets CSE'd with a different node.
1191  HandleSDNode Handle(N);
1192 
1193  X86ISelAddressMode Backup = AM;
1194  if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1195  !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1196  return false;
1197  AM = Backup;
1198 
1199  // Try again after commuting the operands.
1200  if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1201  !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1202  return false;
1203  AM = Backup;
1204 
1205  // If we couldn't fold both operands into the address at the same time,
1206  // see if we can just put each operand into a register and fold at least
1207  // the add.
1208  if (AM.BaseType == X86ISelAddressMode::RegBase &&
1209  !AM.Base_Reg.getNode() &&
1210  !AM.IndexReg.getNode()) {
1211  N = Handle.getValue();
1212  AM.Base_Reg = N.getOperand(0);
1213  AM.IndexReg = N.getOperand(1);
1214  AM.Scale = 1;
1215  return false;
1216  }
1217  N = Handle.getValue();
1218  break;
1219  }
1220 
1221  case ISD::OR:
1222  // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1223  if (CurDAG->isBaseWithConstantOffset(N)) {
1224  X86ISelAddressMode Backup = AM;
1225  ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1226 
1227  // Start with the LHS as an addr mode.
1228  if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1229  !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1230  return false;
1231  AM = Backup;
1232  }
1233  break;
1234 
1235  case ISD::AND: {
1236  // Perform some heroic transforms on an and of a constant-count shift
1237  // with a constant to enable use of the scaled offset field.
1238 
1239  // Scale must not be used already.
1240  if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1241 
1242  SDValue Shift = N.getOperand(0);
1243  if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1244  SDValue X = Shift.getOperand(0);
1245 
1246  // We only handle up to 64-bit values here as those are what matter for
1247  // addressing mode optimizations.
1248  if (X.getSimpleValueType().getSizeInBits() > 64) break;
1249 
1250  if (!isa<ConstantSDNode>(N.getOperand(1)))
1251  break;
1252  uint64_t Mask = N.getConstantOperandVal(1);
1253 
1254  // Try to fold the mask and shift into an extract and scale.
1255  if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1256  return false;
1257 
1258  // Try to fold the mask and shift directly into the scale.
1259  if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1260  return false;
1261 
1262  // Try to swap the mask and shift to place shifts which can be done as
1263  // a scale on the outside of the mask.
1264  if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1265  return false;
1266  break;
1267  }
1268  }
1269 
1270  return MatchAddressBase(N, AM);
1271 }
1272 
1273 /// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1274 /// specified addressing mode without any further recursion.
1275 bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1276  // Is the base register already occupied?
1277  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1278  // If so, check to see if the scale index register is set.
1279  if (AM.IndexReg.getNode() == 0) {
1280  AM.IndexReg = N;
1281  AM.Scale = 1;
1282  return false;
1283  }
1284 
1285  // Otherwise, we cannot select it.
1286  return true;
1287  }
1288 
1289  // Default, generate it as a register.
1290  AM.BaseType = X86ISelAddressMode::RegBase;
1291  AM.Base_Reg = N;
1292  return false;
1293 }
1294 
1295 /// SelectAddr - returns true if it is able pattern match an addressing mode.
1296 /// It returns the operands which make up the maximal addressing mode it can
1297 /// match by reference.
1298 ///
1299 /// Parent is the parent node of the addr operand that is being matched. It
1300 /// is always a load, store, atomic node, or null. It is only null when
1301 /// checking memory operands for inline asm nodes.
1302 bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1303  SDValue &Scale, SDValue &Index,
1304  SDValue &Disp, SDValue &Segment) {
1305  X86ISelAddressMode AM;
1306 
1307  if (Parent &&
1308  // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1309  // that are not a MemSDNode, and thus don't have proper addrspace info.
1310  Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1311  Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1312  Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1313  Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1314  Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1315  unsigned AddrSpace =
1316  cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1317  // AddrSpace 256 -> GS, 257 -> FS.
1318  if (AddrSpace == 256)
1319  AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1320  if (AddrSpace == 257)
1321  AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1322  }
1323 
1324  if (MatchAddress(N, AM))
1325  return false;
1326 
1327  MVT VT = N.getSimpleValueType();
1328  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1329  if (!AM.Base_Reg.getNode())
1330  AM.Base_Reg = CurDAG->getRegister(0, VT);
1331  }
1332 
1333  if (!AM.IndexReg.getNode())
1334  AM.IndexReg = CurDAG->getRegister(0, VT);
1335 
1336  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1337  return true;
1338 }
1339 
1340 /// SelectScalarSSELoad - Match a scalar SSE load. In particular, we want to
1341 /// match a load whose top elements are either undef or zeros. The load flavor
1342 /// is derived from the type of N, which is either v4f32 or v2f64.
1343 ///
1344 /// We also return:
1345 /// PatternChainNode: this is the matched node that has a chain input and
1346 /// output.
1347 bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1348  SDValue N, SDValue &Base,
1349  SDValue &Scale, SDValue &Index,
1350  SDValue &Disp, SDValue &Segment,
1351  SDValue &PatternNodeWithChain) {
1352  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1353  PatternNodeWithChain = N.getOperand(0);
1354  if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1355  PatternNodeWithChain.hasOneUse() &&
1356  IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1357  IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1358  LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1359  if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1360  return false;
1361  return true;
1362  }
1363  }
1364 
1365  // Also handle the case where we explicitly require zeros in the top
1366  // elements. This is a vector shuffle from the zero vector.
1367  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1368  // Check to see if the top elements are all zeros (or bitcast of zeros).
1370  N.getOperand(0).getNode()->hasOneUse() &&
1372  N.getOperand(0).getOperand(0).hasOneUse() &&
1373  IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1374  IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1375  // Okay, this is a zero extending load. Fold it.
1376  LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1377  if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1378  return false;
1379  PatternNodeWithChain = SDValue(LD, 0);
1380  return true;
1381  }
1382  return false;
1383 }
1384 
1385 
1386 bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
1387  if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1388  uint64_t ImmVal = CN->getZExtValue();
1389  if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1390  return false;
1391 
1392  Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
1393  return true;
1394  }
1395 
1396  // In static codegen with small code model, we can get the address of a label
1397  // into a register with 'movl'. TableGen has already made sure we're looking
1398  // at a label of some kind.
1399  assert(N->getOpcode() == X86ISD::Wrapper &&
1400  "Unexpected node type for MOV32ri64");
1401  N = N.getOperand(0);
1402 
1403  if (N->getOpcode() != ISD::TargetConstantPool &&
1404  N->getOpcode() != ISD::TargetJumpTable &&
1405  N->getOpcode() != ISD::TargetGlobalAddress &&
1406  N->getOpcode() != ISD::TargetExternalSymbol &&
1407  N->getOpcode() != ISD::TargetBlockAddress)
1408  return false;
1409 
1410  Imm = N;
1411  return TM.getCodeModel() == CodeModel::Small;
1412 }
1413 
1414 bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
1415  SDValue &Scale, SDValue &Index,
1416  SDValue &Disp, SDValue &Segment) {
1417  if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1418  return false;
1419 
1420  SDLoc DL(N);
1422  if (RN && RN->getReg() == 0)
1423  Base = CurDAG->getRegister(0, MVT::i64);
1424  else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
1425  // Base could already be %rip, particularly in the x32 ABI.
1426  Base = SDValue(CurDAG->getMachineNode(
1428  CurDAG->getTargetConstant(0, MVT::i64),
1429  Base,
1430  CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1431  0);
1432  }
1433 
1434  RN = dyn_cast<RegisterSDNode>(Index);
1435  if (RN && RN->getReg() == 0)
1436  Index = CurDAG->getRegister(0, MVT::i64);
1437  else {
1438  assert(Index.getValueType() == MVT::i32 &&
1439  "Expect to be extending 32-bit registers for use in LEA");
1440  Index = SDValue(CurDAG->getMachineNode(
1442  CurDAG->getTargetConstant(0, MVT::i64),
1443  Index,
1444  CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1445  0);
1446  }
1447 
1448  return true;
1449 }
1450 
1451 /// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1452 /// mode it matches can be cost effectively emitted as an LEA instruction.
1453 bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1454  SDValue &Base, SDValue &Scale,
1455  SDValue &Index, SDValue &Disp,
1456  SDValue &Segment) {
1457  X86ISelAddressMode AM;
1458 
1459  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1460  // segments.
1461  SDValue Copy = AM.Segment;
1462  SDValue T = CurDAG->getRegister(0, MVT::i32);
1463  AM.Segment = T;
1464  if (MatchAddress(N, AM))
1465  return false;
1466  assert (T == AM.Segment);
1467  AM.Segment = Copy;
1468 
1469  MVT VT = N.getSimpleValueType();
1470  unsigned Complexity = 0;
1471  if (AM.BaseType == X86ISelAddressMode::RegBase)
1472  if (AM.Base_Reg.getNode())
1473  Complexity = 1;
1474  else
1475  AM.Base_Reg = CurDAG->getRegister(0, VT);
1476  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1477  Complexity = 4;
1478 
1479  if (AM.IndexReg.getNode())
1480  Complexity++;
1481  else
1482  AM.IndexReg = CurDAG->getRegister(0, VT);
1483 
1484  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1485  // a simple shift.
1486  if (AM.Scale > 1)
1487  Complexity++;
1488 
1489  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1490  // to a LEA. This is determined with some expermentation but is by no means
1491  // optimal (especially for code size consideration). LEA is nice because of
1492  // its three-address nature. Tweak the cost function again when we can run
1493  // convertToThreeAddress() at register allocation time.
1494  if (AM.hasSymbolicDisplacement()) {
1495  // For X86-64, we should always use lea to materialize RIP relative
1496  // addresses.
1497  if (Subtarget->is64Bit())
1498  Complexity = 4;
1499  else
1500  Complexity += 2;
1501  }
1502 
1503  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1504  Complexity++;
1505 
1506  // If it isn't worth using an LEA, reject it.
1507  if (Complexity <= 2)
1508  return false;
1509 
1510  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1511  return true;
1512 }
1513 
1514 /// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1515 bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1516  SDValue &Scale, SDValue &Index,
1517  SDValue &Disp, SDValue &Segment) {
1518  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1519  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1520 
1521  X86ISelAddressMode AM;
1522  AM.GV = GA->getGlobal();
1523  AM.Disp += GA->getOffset();
1524  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1525  AM.SymbolFlags = GA->getTargetFlags();
1526 
1527  if (N.getValueType() == MVT::i32) {
1528  AM.Scale = 1;
1529  AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1530  } else {
1531  AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1532  }
1533 
1534  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1535  return true;
1536 }
1537 
1538 
1539 bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1540  SDValue &Base, SDValue &Scale,
1541  SDValue &Index, SDValue &Disp,
1542  SDValue &Segment) {
1543  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1544  !IsProfitableToFold(N, P, P) ||
1545  !IsLegalToFold(N, P, P, OptLevel))
1546  return false;
1547 
1548  return SelectAddr(N.getNode(),
1549  N.getOperand(1), Base, Scale, Index, Disp, Segment);
1550 }
1551 
1552 /// getGlobalBaseReg - Return an SDNode that returns the value of
1553 /// the global base register. Output instructions required to
1554 /// initialize the global base register, if necessary.
1555 ///
1556 SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1557  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1558  return CurDAG->getRegister(GlobalBaseReg,
1559  getTargetLowering()->getPointerTy()).getNode();
1560 }
1561 
1562 SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1563  SDValue Chain = Node->getOperand(0);
1564  SDValue In1 = Node->getOperand(1);
1565  SDValue In2L = Node->getOperand(2);
1566  SDValue In2H = Node->getOperand(3);
1567 
1568  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1569  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1570  return NULL;
1571  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1572  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1573  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1574  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
1575  MVT::i32, MVT::i32, MVT::Other, Ops);
1576  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1577  return ResNode;
1578 }
1579 
1580 /// Atomic opcode table
1581 ///
1591 };
1592 
1593 enum AtomicSz {
1606 };
1607 
1608 static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1609  {
1610  X86::LOCK_ADD8mi,
1611  X86::LOCK_ADD8mr,
1612  X86::LOCK_ADD16mi8,
1613  X86::LOCK_ADD16mi,
1614  X86::LOCK_ADD16mr,
1615  X86::LOCK_ADD32mi8,
1616  X86::LOCK_ADD32mi,
1617  X86::LOCK_ADD32mr,
1618  X86::LOCK_ADD64mi8,
1619  X86::LOCK_ADD64mi32,
1620  X86::LOCK_ADD64mr,
1621  },
1622  {
1623  X86::LOCK_SUB8mi,
1624  X86::LOCK_SUB8mr,
1625  X86::LOCK_SUB16mi8,
1626  X86::LOCK_SUB16mi,
1627  X86::LOCK_SUB16mr,
1628  X86::LOCK_SUB32mi8,
1629  X86::LOCK_SUB32mi,
1630  X86::LOCK_SUB32mr,
1631  X86::LOCK_SUB64mi8,
1632  X86::LOCK_SUB64mi32,
1633  X86::LOCK_SUB64mr,
1634  },
1635  {
1636  0,
1637  X86::LOCK_INC8m,
1638  0,
1639  0,
1640  X86::LOCK_INC16m,
1641  0,
1642  0,
1643  X86::LOCK_INC32m,
1644  0,
1645  0,
1646  X86::LOCK_INC64m,
1647  },
1648  {
1649  0,
1650  X86::LOCK_DEC8m,
1651  0,
1652  0,
1653  X86::LOCK_DEC16m,
1654  0,
1655  0,
1656  X86::LOCK_DEC32m,
1657  0,
1658  0,
1659  X86::LOCK_DEC64m,
1660  },
1661  {
1662  X86::LOCK_OR8mi,
1663  X86::LOCK_OR8mr,
1664  X86::LOCK_OR16mi8,
1665  X86::LOCK_OR16mi,
1666  X86::LOCK_OR16mr,
1667  X86::LOCK_OR32mi8,
1668  X86::LOCK_OR32mi,
1669  X86::LOCK_OR32mr,
1670  X86::LOCK_OR64mi8,
1671  X86::LOCK_OR64mi32,
1672  X86::LOCK_OR64mr,
1673  },
1674  {
1675  X86::LOCK_AND8mi,
1676  X86::LOCK_AND8mr,
1677  X86::LOCK_AND16mi8,
1678  X86::LOCK_AND16mi,
1679  X86::LOCK_AND16mr,
1680  X86::LOCK_AND32mi8,
1681  X86::LOCK_AND32mi,
1682  X86::LOCK_AND32mr,
1683  X86::LOCK_AND64mi8,
1684  X86::LOCK_AND64mi32,
1685  X86::LOCK_AND64mr,
1686  },
1687  {
1688  X86::LOCK_XOR8mi,
1689  X86::LOCK_XOR8mr,
1690  X86::LOCK_XOR16mi8,
1691  X86::LOCK_XOR16mi,
1692  X86::LOCK_XOR16mr,
1693  X86::LOCK_XOR32mi8,
1694  X86::LOCK_XOR32mi,
1695  X86::LOCK_XOR32mr,
1696  X86::LOCK_XOR64mi8,
1697  X86::LOCK_XOR64mi32,
1698  X86::LOCK_XOR64mr,
1699  }
1700 };
1701 
1702 // Return the target constant operand for atomic-load-op and do simple
1703 // translations, such as from atomic-load-add to lock-sub. The return value is
1704 // one of the following 3 cases:
1705 // + target-constant, the operand could be supported as a target constant.
1706 // + empty, the operand is not needed any more with the new op selected.
1707 // + non-empty, otherwise.
1709  SDLoc dl,
1710  enum AtomicOpc &Op, MVT NVT,
1711  SDValue Val) {
1712  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1713  int64_t CNVal = CN->getSExtValue();
1714  // Quit if not 32-bit imm.
1715  if ((int32_t)CNVal != CNVal)
1716  return Val;
1717  // For atomic-load-add, we could do some optimizations.
1718  if (Op == ADD) {
1719  // Translate to INC/DEC if ADD by 1 or -1.
1720  if ((CNVal == 1) || (CNVal == -1)) {
1721  Op = (CNVal == 1) ? INC : DEC;
1722  // No more constant operand after being translated into INC/DEC.
1723  return SDValue();
1724  }
1725  // Translate to SUB if ADD by negative value.
1726  if (CNVal < 0) {
1727  Op = SUB;
1728  CNVal = -CNVal;
1729  }
1730  }
1731  return CurDAG->getTargetConstant(CNVal, NVT);
1732  }
1733 
1734  // If the value operand is single-used, try to optimize it.
1735  if (Op == ADD && Val.hasOneUse()) {
1736  // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1737  if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1738  Op = SUB;
1739  return Val.getOperand(1);
1740  }
1741  // A special case for i16, which needs truncating as, in most cases, it's
1742  // promoted to i32. We will translate
1743  // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1744  if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1745  Val.getOperand(0).getOpcode() == ISD::SUB &&
1746  X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1747  Op = SUB;
1748  Val = Val.getOperand(0);
1749  return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1750  Val.getOperand(1));
1751  }
1752  }
1753 
1754  return Val;
1755 }
1756 
1757 SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, MVT NVT) {
1758  if (Node->hasAnyUseOfValue(0))
1759  return 0;
1760 
1761  SDLoc dl(Node);
1762 
1763  // Optimize common patterns for __sync_or_and_fetch and similar arith
1764  // operations where the result is not used. This allows us to use the "lock"
1765  // version of the arithmetic instruction.
1766  SDValue Chain = Node->getOperand(0);
1767  SDValue Ptr = Node->getOperand(1);
1768  SDValue Val = Node->getOperand(2);
1769  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1770  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1771  return 0;
1772 
1773  // Which index into the table.
1774  enum AtomicOpc Op;
1775  switch (Node->getOpcode()) {
1776  default:
1777  return 0;
1778  case ISD::ATOMIC_LOAD_OR:
1779  Op = OR;
1780  break;
1781  case ISD::ATOMIC_LOAD_AND:
1782  Op = AND;
1783  break;
1784  case ISD::ATOMIC_LOAD_XOR:
1785  Op = XOR;
1786  break;
1787  case ISD::ATOMIC_LOAD_ADD:
1788  Op = ADD;
1789  break;
1790  }
1791 
1792  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1793  bool isUnOp = !Val.getNode();
1794  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1795 
1796  unsigned Opc = 0;
1797  switch (NVT.SimpleTy) {
1798  default: return 0;
1799  case MVT::i8:
1800  if (isCN)
1801  Opc = AtomicOpcTbl[Op][ConstantI8];
1802  else
1803  Opc = AtomicOpcTbl[Op][I8];
1804  break;
1805  case MVT::i16:
1806  if (isCN) {
1807  if (immSext8(Val.getNode()))
1808  Opc = AtomicOpcTbl[Op][SextConstantI16];
1809  else
1810  Opc = AtomicOpcTbl[Op][ConstantI16];
1811  } else
1812  Opc = AtomicOpcTbl[Op][I16];
1813  break;
1814  case MVT::i32:
1815  if (isCN) {
1816  if (immSext8(Val.getNode()))
1817  Opc = AtomicOpcTbl[Op][SextConstantI32];
1818  else
1819  Opc = AtomicOpcTbl[Op][ConstantI32];
1820  } else
1821  Opc = AtomicOpcTbl[Op][I32];
1822  break;
1823  case MVT::i64:
1824  Opc = AtomicOpcTbl[Op][I64];
1825  if (isCN) {
1826  if (immSext8(Val.getNode()))
1827  Opc = AtomicOpcTbl[Op][SextConstantI64];
1828  else if (i64immSExt32(Val.getNode()))
1829  Opc = AtomicOpcTbl[Op][ConstantI64];
1830  }
1831  break;
1832  }
1833 
1834  assert(Opc != 0 && "Invalid arith lock transform!");
1835 
1836  SDValue Ret;
1837  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1838  dl, NVT), 0);
1839  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1840  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1841  if (isUnOp) {
1842  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1843  Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1844  } else {
1845  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1846  Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1847  }
1848  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1849  SDValue RetVals[] = { Undef, Ret };
1850  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1851 }
1852 
1853 /// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1854 /// any uses which require the SF or OF bits to be accurate.
1856  // Examine each user of the node.
1857  for (SDNode::use_iterator UI = N->use_begin(),
1858  UE = N->use_end(); UI != UE; ++UI) {
1859  // Only examine CopyToReg uses.
1860  if (UI->getOpcode() != ISD::CopyToReg)
1861  return false;
1862  // Only examine CopyToReg uses that copy to EFLAGS.
1863  if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1864  X86::EFLAGS)
1865  return false;
1866  // Examine each user of the CopyToReg use.
1867  for (SDNode::use_iterator FlagUI = UI->use_begin(),
1868  FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1869  // Only examine the Flag result.
1870  if (FlagUI.getUse().getResNo() != 1) continue;
1871  // Anything unusual: assume conservatively.
1872  if (!FlagUI->isMachineOpcode()) return false;
1873  // Examine the opcode of the user.
1874  switch (FlagUI->getMachineOpcode()) {
1875  // These comparisons don't treat the most significant bit specially.
1876  case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1877  case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1878  case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1879  case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1880  case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1881  case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1882  case X86::CMOVA16rr: case X86::CMOVA16rm:
1883  case X86::CMOVA32rr: case X86::CMOVA32rm:
1884  case X86::CMOVA64rr: case X86::CMOVA64rm:
1885  case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1886  case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1887  case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1888  case X86::CMOVB16rr: case X86::CMOVB16rm:
1889  case X86::CMOVB32rr: case X86::CMOVB32rm:
1890  case X86::CMOVB64rr: case X86::CMOVB64rm:
1891  case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1892  case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1893  case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1894  case X86::CMOVE16rr: case X86::CMOVE16rm:
1895  case X86::CMOVE32rr: case X86::CMOVE32rm:
1896  case X86::CMOVE64rr: case X86::CMOVE64rm:
1897  case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1898  case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1899  case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1900  case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1901  case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1902  case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1903  case X86::CMOVP16rr: case X86::CMOVP16rm:
1904  case X86::CMOVP32rr: case X86::CMOVP32rm:
1905  case X86::CMOVP64rr: case X86::CMOVP64rm:
1906  continue;
1907  // Anything else: assume conservatively.
1908  default: return false;
1909  }
1910  }
1911  }
1912  return true;
1913 }
1914 
1915 /// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1916 /// is suitable for doing the {load; increment or decrement; store} to modify
1917 /// transformation.
1918 static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1919  SDValue StoredVal, SelectionDAG *CurDAG,
1920  LoadSDNode* &LoadNode, SDValue &InputChain) {
1921 
1922  // is the value stored the result of a DEC or INC?
1923  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1924 
1925  // is the stored value result 0 of the load?
1926  if (StoredVal.getResNo() != 0) return false;
1927 
1928  // are there other uses of the loaded value than the inc or dec?
1929  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1930 
1931  // is the store non-extending and non-indexed?
1932  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1933  return false;
1934 
1935  SDValue Load = StoredVal->getOperand(0);
1936  // Is the stored value a non-extending and non-indexed load?
1937  if (!ISD::isNormalLoad(Load.getNode())) return false;
1938 
1939  // Return LoadNode by reference.
1940  LoadNode = cast<LoadSDNode>(Load);
1941  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1942  EVT LdVT = LoadNode->getMemoryVT();
1943  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1944  LdVT != MVT::i8)
1945  return false;
1946 
1947  // Is store the only read of the loaded value?
1948  if (!Load.hasOneUse())
1949  return false;
1950 
1951  // Is the address of the store the same as the load?
1952  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1953  LoadNode->getOffset() != StoreNode->getOffset())
1954  return false;
1955 
1956  // Check if the chain is produced by the load or is a TokenFactor with
1957  // the load output chain as an operand. Return InputChain by reference.
1958  SDValue Chain = StoreNode->getChain();
1959 
1960  bool ChainCheck = false;
1961  if (Chain == Load.getValue(1)) {
1962  ChainCheck = true;
1963  InputChain = LoadNode->getChain();
1964  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1965  SmallVector<SDValue, 4> ChainOps;
1966  for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1967  SDValue Op = Chain.getOperand(i);
1968  if (Op == Load.getValue(1)) {
1969  ChainCheck = true;
1970  continue;
1971  }
1972 
1973  // Make sure using Op as part of the chain would not cause a cycle here.
1974  // In theory, we could check whether the chain node is a predecessor of
1975  // the load. But that can be very expensive. Instead visit the uses and
1976  // make sure they all have smaller node id than the load.
1977  int LoadId = LoadNode->getNodeId();
1978  for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1979  UE = UI->use_end(); UI != UE; ++UI) {
1980  if (UI.getUse().getResNo() != 0)
1981  continue;
1982  if (UI->getNodeId() > LoadId)
1983  return false;
1984  }
1985 
1986  ChainOps.push_back(Op);
1987  }
1988 
1989  if (ChainCheck)
1990  // Make a new TokenFactor with all the other input chains except
1991  // for the load.
1992  InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1993  MVT::Other, &ChainOps[0], ChainOps.size());
1994  }
1995  if (!ChainCheck)
1996  return false;
1997 
1998  return true;
1999 }
2000 
2001 /// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
2002 /// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
2003 static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2004  if (Opc == X86ISD::DEC) {
2005  if (LdVT == MVT::i64) return X86::DEC64m;
2006  if (LdVT == MVT::i32) return X86::DEC32m;
2007  if (LdVT == MVT::i16) return X86::DEC16m;
2008  if (LdVT == MVT::i8) return X86::DEC8m;
2009  } else {
2010  assert(Opc == X86ISD::INC && "unrecognized opcode");
2011  if (LdVT == MVT::i64) return X86::INC64m;
2012  if (LdVT == MVT::i32) return X86::INC32m;
2013  if (LdVT == MVT::i16) return X86::INC16m;
2014  if (LdVT == MVT::i8) return X86::INC8m;
2015  }
2016  llvm_unreachable("unrecognized size for LdVT");
2017 }
2018 
2019 /// SelectGather - Customized ISel for GATHER operations.
2020 ///
2021 SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
2022  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2023  SDValue Chain = Node->getOperand(0);
2024  SDValue VSrc = Node->getOperand(2);
2025  SDValue Base = Node->getOperand(3);
2026  SDValue VIdx = Node->getOperand(4);
2027  SDValue VMask = Node->getOperand(5);
2028  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2029  if (!Scale)
2030  return 0;
2031 
2032  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2033  MVT::Other);
2034 
2035  // Memory Operands: Base, Scale, Index, Disp, Segment
2036  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
2037  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2038  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
2039  Disp, Segment, VMask, Chain};
2040  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
2041  // Node has 2 outputs: VDst and MVT::Other.
2042  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2043  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2044  // of ResNode.
2045  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2046  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2047  return ResNode;
2048 }
2049 
2051  MVT NVT = Node->getSimpleValueType(0);
2052  unsigned Opc, MOpc;
2053  unsigned Opcode = Node->getOpcode();
2054  SDLoc dl(Node);
2055 
2056  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2057 
2058  if (Node->isMachineOpcode()) {
2059  DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
2060  Node->setNodeId(-1);
2061  return NULL; // Already selected.
2062  }
2063 
2064  switch (Opcode) {
2065  default: break;
2066  case ISD::INTRINSIC_W_CHAIN: {
2067  unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2068  switch (IntNo) {
2069  default: break;
2086  if (!Subtarget->hasAVX2())
2087  break;
2088  unsigned Opc;
2089  switch (IntNo) {
2090  default: llvm_unreachable("Impossible intrinsic");
2091  case Intrinsic::x86_avx2_gather_d_pd: Opc = X86::VGATHERDPDrm; break;
2092  case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2093  case Intrinsic::x86_avx2_gather_q_pd: Opc = X86::VGATHERQPDrm; break;
2094  case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2095  case Intrinsic::x86_avx2_gather_d_ps: Opc = X86::VGATHERDPSrm; break;
2096  case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2097  case Intrinsic::x86_avx2_gather_q_ps: Opc = X86::VGATHERQPSrm; break;
2098  case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2099  case Intrinsic::x86_avx2_gather_d_q: Opc = X86::VPGATHERDQrm; break;
2100  case Intrinsic::x86_avx2_gather_d_q_256: Opc = X86::VPGATHERDQYrm; break;
2101  case Intrinsic::x86_avx2_gather_q_q: Opc = X86::VPGATHERQQrm; break;
2102  case Intrinsic::x86_avx2_gather_q_q_256: Opc = X86::VPGATHERQQYrm; break;
2103  case Intrinsic::x86_avx2_gather_d_d: Opc = X86::VPGATHERDDrm; break;
2104  case Intrinsic::x86_avx2_gather_d_d_256: Opc = X86::VPGATHERDDYrm; break;
2105  case Intrinsic::x86_avx2_gather_q_d: Opc = X86::VPGATHERQDrm; break;
2106  case Intrinsic::x86_avx2_gather_q_d_256: Opc = X86::VPGATHERQDYrm; break;
2107  }
2108  SDNode *RetVal = SelectGather(Node, Opc);
2109  if (RetVal)
2110  // We already called ReplaceUses inside SelectGather.
2111  return NULL;
2112  break;
2113  }
2114  }
2115  break;
2116  }
2117  case X86ISD::GlobalBaseReg:
2118  return getGlobalBaseReg();
2119 
2120 
2121  case X86ISD::ATOMOR64_DAG:
2122  case X86ISD::ATOMXOR64_DAG:
2123  case X86ISD::ATOMADD64_DAG:
2124  case X86ISD::ATOMSUB64_DAG:
2126  case X86ISD::ATOMAND64_DAG:
2127  case X86ISD::ATOMMAX64_DAG:
2128  case X86ISD::ATOMMIN64_DAG:
2131  case X86ISD::ATOMSWAP64_DAG: {
2132  unsigned Opc;
2133  switch (Opcode) {
2134  default: llvm_unreachable("Impossible opcode");
2135  case X86ISD::ATOMOR64_DAG: Opc = X86::ATOMOR6432; break;
2136  case X86ISD::ATOMXOR64_DAG: Opc = X86::ATOMXOR6432; break;
2137  case X86ISD::ATOMADD64_DAG: Opc = X86::ATOMADD6432; break;
2138  case X86ISD::ATOMSUB64_DAG: Opc = X86::ATOMSUB6432; break;
2139  case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
2140  case X86ISD::ATOMAND64_DAG: Opc = X86::ATOMAND6432; break;
2141  case X86ISD::ATOMMAX64_DAG: Opc = X86::ATOMMAX6432; break;
2142  case X86ISD::ATOMMIN64_DAG: Opc = X86::ATOMMIN6432; break;
2143  case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
2144  case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
2145  case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
2146  }
2147  SDNode *RetVal = SelectAtomic64(Node, Opc);
2148  if (RetVal)
2149  return RetVal;
2150  break;
2151  }
2152 
2153  case ISD::ATOMIC_LOAD_XOR:
2154  case ISD::ATOMIC_LOAD_AND:
2155  case ISD::ATOMIC_LOAD_OR:
2156  case ISD::ATOMIC_LOAD_ADD: {
2157  SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2158  if (RetVal)
2159  return RetVal;
2160  break;
2161  }
2162  case ISD::AND:
2163  case ISD::OR:
2164  case ISD::XOR: {
2165  // For operations of the form (x << C1) op C2, check if we can use a smaller
2166  // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2167  SDValue N0 = Node->getOperand(0);
2168  SDValue N1 = Node->getOperand(1);
2169 
2170  if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2171  break;
2172 
2173  // i8 is unshrinkable, i16 should be promoted to i32.
2174  if (NVT != MVT::i32 && NVT != MVT::i64)
2175  break;
2176 
2178  ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2179  if (!Cst || !ShlCst)
2180  break;
2181 
2182  int64_t Val = Cst->getSExtValue();
2183  uint64_t ShlVal = ShlCst->getZExtValue();
2184 
2185  // Make sure that we don't change the operation by removing bits.
2186  // This only matters for OR and XOR, AND is unaffected.
2187  uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2188  if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2189  break;
2190 
2191  unsigned ShlOp, Op;
2192  MVT CstVT = NVT;
2193 
2194  // Check the minimum bitwidth for the new constant.
2195  // TODO: AND32ri is the same as AND64ri32 with zext imm.
2196  // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2197  // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2198  if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2199  CstVT = MVT::i8;
2200  else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2201  CstVT = MVT::i32;
2202 
2203  // Bail if there is no smaller encoding.
2204  if (NVT == CstVT)
2205  break;
2206 
2207  switch (NVT.SimpleTy) {
2208  default: llvm_unreachable("Unsupported VT!");
2209  case MVT::i32:
2210  assert(CstVT == MVT::i8);
2211  ShlOp = X86::SHL32ri;
2212 
2213  switch (Opcode) {
2214  default: llvm_unreachable("Impossible opcode");
2215  case ISD::AND: Op = X86::AND32ri8; break;
2216  case ISD::OR: Op = X86::OR32ri8; break;
2217  case ISD::XOR: Op = X86::XOR32ri8; break;
2218  }
2219  break;
2220  case MVT::i64:
2221  assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2222  ShlOp = X86::SHL64ri;
2223 
2224  switch (Opcode) {
2225  default: llvm_unreachable("Impossible opcode");
2226  case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2227  case ISD::OR: Op = CstVT==MVT::i8? X86::OR64ri8 : X86::OR64ri32; break;
2228  case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2229  }
2230  break;
2231  }
2232 
2233  // Emit the smaller op and the shift.
2234  SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2235  SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2236  return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2237  getI8Imm(ShlVal));
2238  }
2239  case X86ISD::UMUL: {
2240  SDValue N0 = Node->getOperand(0);
2241  SDValue N1 = Node->getOperand(1);
2242 
2243  unsigned LoReg;
2244  switch (NVT.SimpleTy) {
2245  default: llvm_unreachable("Unsupported VT!");
2246  case MVT::i8: LoReg = X86::AL; Opc = X86::MUL8r; break;
2247  case MVT::i16: LoReg = X86::AX; Opc = X86::MUL16r; break;
2248  case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2249  case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2250  }
2251 
2252  SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2253  N0, SDValue()).getValue(1);
2254 
2255  SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2256  SDValue Ops[] = {N1, InFlag};
2257  SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2258 
2259  ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2260  ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2261  ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2262  return NULL;
2263  }
2264 
2265  case ISD::SMUL_LOHI:
2266  case ISD::UMUL_LOHI: {
2267  SDValue N0 = Node->getOperand(0);
2268  SDValue N1 = Node->getOperand(1);
2269 
2270  bool isSigned = Opcode == ISD::SMUL_LOHI;
2271  bool hasBMI2 = Subtarget->hasBMI2();
2272  if (!isSigned) {
2273  switch (NVT.SimpleTy) {
2274  default: llvm_unreachable("Unsupported VT!");
2275  case MVT::i8: Opc = X86::MUL8r; MOpc = X86::MUL8m; break;
2276  case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2277  case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2278  MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2279  case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2280  MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2281  }
2282  } else {
2283  switch (NVT.SimpleTy) {
2284  default: llvm_unreachable("Unsupported VT!");
2285  case MVT::i8: Opc = X86::IMUL8r; MOpc = X86::IMUL8m; break;
2286  case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2287  case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2288  case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2289  }
2290  }
2291 
2292  unsigned SrcReg, LoReg, HiReg;
2293  switch (Opc) {
2294  default: llvm_unreachable("Unknown MUL opcode!");
2295  case X86::IMUL8r:
2296  case X86::MUL8r:
2297  SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2298  break;
2299  case X86::IMUL16r:
2300  case X86::MUL16r:
2301  SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2302  break;
2303  case X86::IMUL32r:
2304  case X86::MUL32r:
2305  SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2306  break;
2307  case X86::IMUL64r:
2308  case X86::MUL64r:
2309  SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2310  break;
2311  case X86::MULX32rr:
2312  SrcReg = X86::EDX; LoReg = HiReg = 0;
2313  break;
2314  case X86::MULX64rr:
2315  SrcReg = X86::RDX; LoReg = HiReg = 0;
2316  break;
2317  }
2318 
2319  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2320  bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2321  // Multiply is commmutative.
2322  if (!foldedLoad) {
2323  foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2324  if (foldedLoad)
2325  std::swap(N0, N1);
2326  }
2327 
2328  SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2329  N0, SDValue()).getValue(1);
2330  SDValue ResHi, ResLo;
2331 
2332  if (foldedLoad) {
2333  SDValue Chain;
2334  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2335  InFlag };
2336  if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2337  SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2338  SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2339  ResHi = SDValue(CNode, 0);
2340  ResLo = SDValue(CNode, 1);
2341  Chain = SDValue(CNode, 2);
2342  InFlag = SDValue(CNode, 3);
2343  } else {
2344  SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2345  SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2346  Chain = SDValue(CNode, 0);
2347  InFlag = SDValue(CNode, 1);
2348  }
2349 
2350  // Update the chain.
2351  ReplaceUses(N1.getValue(1), Chain);
2352  } else {
2353  SDValue Ops[] = { N1, InFlag };
2354  if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2355  SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2356  SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2357  ResHi = SDValue(CNode, 0);
2358  ResLo = SDValue(CNode, 1);
2359  InFlag = SDValue(CNode, 2);
2360  } else {
2361  SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2362  SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2363  InFlag = SDValue(CNode, 0);
2364  }
2365  }
2366 
2367  // Prevent use of AH in a REX instruction by referencing AX instead.
2368  if (HiReg == X86::AH && Subtarget->is64Bit() &&
2369  !SDValue(Node, 1).use_empty()) {
2370  SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2371  X86::AX, MVT::i16, InFlag);
2372  InFlag = Result.getValue(2);
2373  // Get the low part if needed. Don't use getCopyFromReg for aliasing
2374  // registers.
2375  if (!SDValue(Node, 0).use_empty())
2376  ReplaceUses(SDValue(Node, 1),
2377  CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2378 
2379  // Shift AX down 8 bits.
2380  Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2381  Result,
2382  CurDAG->getTargetConstant(8, MVT::i8)), 0);
2383  // Then truncate it down to i8.
2384  ReplaceUses(SDValue(Node, 1),
2385  CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2386  }
2387  // Copy the low half of the result, if it is needed.
2388  if (!SDValue(Node, 0).use_empty()) {
2389  if (ResLo.getNode() == 0) {
2390  assert(LoReg && "Register for low half is not defined!");
2391  ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2392  InFlag);
2393  InFlag = ResLo.getValue(2);
2394  }
2395  ReplaceUses(SDValue(Node, 0), ResLo);
2396  DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2397  }
2398  // Copy the high half of the result, if it is needed.
2399  if (!SDValue(Node, 1).use_empty()) {
2400  if (ResHi.getNode() == 0) {
2401  assert(HiReg && "Register for high half is not defined!");
2402  ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2403  InFlag);
2404  InFlag = ResHi.getValue(2);
2405  }
2406  ReplaceUses(SDValue(Node, 1), ResHi);
2407  DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2408  }
2409 
2410  return NULL;
2411  }
2412 
2413  case ISD::SDIVREM:
2414  case ISD::UDIVREM: {
2415  SDValue N0 = Node->getOperand(0);
2416  SDValue N1 = Node->getOperand(1);
2417 
2418  bool isSigned = Opcode == ISD::SDIVREM;
2419  if (!isSigned) {
2420  switch (NVT.SimpleTy) {
2421  default: llvm_unreachable("Unsupported VT!");
2422  case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break;
2423  case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2424  case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2425  case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2426  }
2427  } else {
2428  switch (NVT.SimpleTy) {
2429  default: llvm_unreachable("Unsupported VT!");
2430  case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
2431  case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2432  case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2433  case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2434  }
2435  }
2436 
2437  unsigned LoReg, HiReg, ClrReg;
2438  unsigned SExtOpcode;
2439  switch (NVT.SimpleTy) {
2440  default: llvm_unreachable("Unsupported VT!");
2441  case MVT::i8:
2442  LoReg = X86::AL; ClrReg = HiReg = X86::AH;
2443  SExtOpcode = X86::CBW;
2444  break;
2445  case MVT::i16:
2446  LoReg = X86::AX; HiReg = X86::DX;
2447  ClrReg = X86::DX;
2448  SExtOpcode = X86::CWD;
2449  break;
2450  case MVT::i32:
2451  LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2452  SExtOpcode = X86::CDQ;
2453  break;
2454  case MVT::i64:
2455  LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2456  SExtOpcode = X86::CQO;
2457  break;
2458  }
2459 
2460  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2461  bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2462  bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2463 
2464  SDValue InFlag;
2465  if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2466  // Special case for div8, just use a move with zero extension to AX to
2467  // clear the upper 8 bits (AH).
2468  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2469  if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2470  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2471  Move =
2472  SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2473  MVT::Other, Ops), 0);
2474  Chain = Move.getValue(1);
2475  ReplaceUses(N0.getValue(1), Chain);
2476  } else {
2477  Move =
2478  SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2479  Chain = CurDAG->getEntryNode();
2480  }
2481  Chain = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2482  InFlag = Chain.getValue(1);
2483  } else {
2484  InFlag =
2485  CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2486  LoReg, N0, SDValue()).getValue(1);
2487  if (isSigned && !signBitIsZero) {
2488  // Sign extend the low part into the high part.
2489  InFlag =
2490  SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2491  } else {
2492  // Zero out the high part, effectively zero extending the input.
2493  SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2494  switch (NVT.SimpleTy) {
2495  case MVT::i16:
2496  ClrNode =
2497  SDValue(CurDAG->getMachineNode(
2498  TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2499  CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
2500  0);
2501  break;
2502  case MVT::i32:
2503  break;
2504  case MVT::i64:
2505  ClrNode =
2506  SDValue(CurDAG->getMachineNode(
2508  CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
2509  CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2510  0);
2511  break;
2512  default:
2513  llvm_unreachable("Unexpected division source");
2514  }
2515 
2516  InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2517  ClrNode, InFlag).getValue(1);
2518  }
2519  }
2520 
2521  if (foldedLoad) {
2522  SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2523  InFlag };
2524  SDNode *CNode =
2525  CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2526  InFlag = SDValue(CNode, 1);
2527  // Update the chain.
2528  ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2529  } else {
2530  InFlag =
2531  SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2532  }
2533 
2534  // Prevent use of AH in a REX instruction by referencing AX instead.
2535  // Shift it down 8 bits.
2536  //
2537  // The current assumption of the register allocator is that isel
2538  // won't generate explicit references to the GPR8_NOREX registers. If
2539  // the allocator and/or the backend get enhanced to be more robust in
2540  // that regard, this can be, and should be, removed.
2541  if (HiReg == X86::AH && Subtarget->is64Bit() &&
2542  !SDValue(Node, 1).use_empty()) {
2543  SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2544  X86::AX, MVT::i16, InFlag);
2545  InFlag = Result.getValue(2);
2546 
2547  // If we also need AL (the quotient), get it by extracting a subreg from
2548  // Result. The fast register allocator does not like multiple CopyFromReg
2549  // nodes using aliasing registers.
2550  if (!SDValue(Node, 0).use_empty())
2551  ReplaceUses(SDValue(Node, 0),
2552  CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2553 
2554  // Shift AX right by 8 bits instead of using AH.
2555  Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2556  Result,
2557  CurDAG->getTargetConstant(8, MVT::i8)),
2558  0);
2559  ReplaceUses(SDValue(Node, 1),
2560  CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2561  }
2562  // Copy the division (low) result, if it is needed.
2563  if (!SDValue(Node, 0).use_empty()) {
2564  SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2565  LoReg, NVT, InFlag);
2566  InFlag = Result.getValue(2);
2567  ReplaceUses(SDValue(Node, 0), Result);
2568  DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2569  }
2570  // Copy the remainder (high) result, if it is needed.
2571  if (!SDValue(Node, 1).use_empty()) {
2572  SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2573  HiReg, NVT, InFlag);
2574  InFlag = Result.getValue(2);
2575  ReplaceUses(SDValue(Node, 1), Result);
2576  DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2577  }
2578  return NULL;
2579  }
2580 
2581  case X86ISD::CMP:
2582  case X86ISD::SUB: {
2583  // Sometimes a SUB is used to perform comparison.
2584  if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2585  // This node is not a CMP.
2586  break;
2587  SDValue N0 = Node->getOperand(0);
2588  SDValue N1 = Node->getOperand(1);
2589 
2590  // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2591  // use a smaller encoding.
2592  if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2594  // Look past the truncate if CMP is the only use of it.
2595  N0 = N0.getOperand(0);
2596  if ((N0.getNode()->getOpcode() == ISD::AND ||
2597  (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2598  N0.getNode()->hasOneUse() &&
2599  N0.getValueType() != MVT::i8 &&
2600  X86::isZeroNode(N1)) {
2602  if (!C) break;
2603 
2604  // For example, convert "testl %eax, $8" to "testb %al, $8"
2605  if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2606  (!(C->getZExtValue() & 0x80) ||
2607  HasNoSignedComparisonUses(Node))) {
2608  SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2609  SDValue Reg = N0.getNode()->getOperand(0);
2610 
2611  // On x86-32, only the ABCD registers have 8-bit subregisters.
2612  if (!Subtarget->is64Bit()) {
2613  const TargetRegisterClass *TRC;
2614  switch (N0.getSimpleValueType().SimpleTy) {
2615  case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2616  case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2617  default: llvm_unreachable("Unsupported TEST operand type!");
2618  }
2619  SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2620  Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2621  Reg.getValueType(), Reg, RC), 0);
2622  }
2623 
2624  // Extract the l-register.
2625  SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2626  MVT::i8, Reg);
2627 
2628  // Emit a testb.
2629  SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2630  Subreg, Imm);
2631  // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2632  // one, do not call ReplaceAllUsesWith.
2633  ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2634  SDValue(NewNode, 0));
2635  return NULL;
2636  }
2637 
2638  // For example, "testl %eax, $2048" to "testb %ah, $8".
2639  if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2640  (!(C->getZExtValue() & 0x8000) ||
2641  HasNoSignedComparisonUses(Node))) {
2642  // Shift the immediate right by 8 bits.
2643  SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2644  MVT::i8);
2645  SDValue Reg = N0.getNode()->getOperand(0);
2646 
2647  // Put the value in an ABCD register.
2648  const TargetRegisterClass *TRC;
2649  switch (N0.getSimpleValueType().SimpleTy) {
2650  case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2651  case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2652  case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2653  default: llvm_unreachable("Unsupported TEST operand type!");
2654  }
2655  SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2656  Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2657  Reg.getValueType(), Reg, RC), 0);
2658 
2659  // Extract the h-register.
2660  SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2661  MVT::i8, Reg);
2662 
2663  // Emit a testb. The EXTRACT_SUBREG becomes a COPY that can only
2664  // target GR8_NOREX registers, so make sure the register class is
2665  // forced.
2666  SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2667  MVT::i32, Subreg, ShiftedImm);
2668  // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2669  // one, do not call ReplaceAllUsesWith.
2670  ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2671  SDValue(NewNode, 0));
2672  return NULL;
2673  }
2674 
2675  // For example, "testl %eax, $32776" to "testw %ax, $32776".
2676  if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2677  N0.getValueType() != MVT::i16 &&
2678  (!(C->getZExtValue() & 0x8000) ||
2679  HasNoSignedComparisonUses(Node))) {
2680  SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2681  SDValue Reg = N0.getNode()->getOperand(0);
2682 
2683  // Extract the 16-bit subregister.
2684  SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2685  MVT::i16, Reg);
2686 
2687  // Emit a testw.
2688  SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2689  Subreg, Imm);
2690  // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2691  // one, do not call ReplaceAllUsesWith.
2692  ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2693  SDValue(NewNode, 0));
2694  return NULL;
2695  }
2696 
2697  // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2698  if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2699  N0.getValueType() == MVT::i64 &&
2700  (!(C->getZExtValue() & 0x80000000) ||
2701  HasNoSignedComparisonUses(Node))) {
2702  SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2703  SDValue Reg = N0.getNode()->getOperand(0);
2704 
2705  // Extract the 32-bit subregister.
2706  SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2707  MVT::i32, Reg);
2708 
2709  // Emit a testl.
2710  SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2711  Subreg, Imm);
2712  // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2713  // one, do not call ReplaceAllUsesWith.
2714  ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2715  SDValue(NewNode, 0));
2716  return NULL;
2717  }
2718  }
2719  break;
2720  }
2721  case ISD::STORE: {
2722  // Change a chain of {load; incr or dec; store} of the same value into
2723  // a simple increment or decrement through memory of that value, if the
2724  // uses of the modified value and its address are suitable.
2725  // The DEC64m tablegen pattern is currently not able to match the case where
2726  // the EFLAGS on the original DEC are used. (This also applies to
2727  // {INC,DEC}X{64,32,16,8}.)
2728  // We'll need to improve tablegen to allow flags to be transferred from a
2729  // node in the pattern to the result node. probably with a new keyword
2730  // for example, we have this
2731  // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2732  // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2733  // (implicit EFLAGS)]>;
2734  // but maybe need something like this
2735  // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2736  // [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2737  // (transferrable EFLAGS)]>;
2738 
2739  StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2740  SDValue StoredVal = StoreNode->getOperand(1);
2741  unsigned Opc = StoredVal->getOpcode();
2742 
2743  LoadSDNode *LoadNode = 0;
2744  SDValue InputChain;
2745  if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2746  LoadNode, InputChain))
2747  break;
2748 
2749  SDValue Base, Scale, Index, Disp, Segment;
2750  if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2751  Base, Scale, Index, Disp, Segment))
2752  break;
2753 
2754  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2755  MemOp[0] = StoreNode->getMemOperand();
2756  MemOp[1] = LoadNode->getMemOperand();
2757  const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2758  EVT LdVT = LoadNode->getMemoryVT();
2759  unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2760  MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2761  SDLoc(Node),
2762  MVT::i32, MVT::Other, Ops);
2763  Result->setMemRefs(MemOp, MemOp + 2);
2764 
2765  ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2766  ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2767 
2768  return Result;
2769  }
2770  }
2771 
2772  SDNode *ResNode = SelectCode(Node);
2773 
2774  DEBUG(dbgs() << "=> ";
2775  if (ResNode == NULL || ResNode == Node)
2776  Node->dump(CurDAG);
2777  else
2778  ResNode->dump(CurDAG);
2779  dbgs() << '\n');
2780 
2781  return ResNode;
2782 }
2783 
2784 bool X86DAGToDAGISel::
2785 SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2786  std::vector<SDValue> &OutOps) {
2787  SDValue Op0, Op1, Op2, Op3, Op4;
2788  switch (ConstraintCode) {
2789  case 'o': // offsetable ??
2790  case 'v': // not offsetable ??
2791  default: return true;
2792  case 'm': // memory
2793  if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2794  return true;
2795  break;
2796  }
2797 
2798  OutOps.push_back(Op0);
2799  OutOps.push_back(Op1);
2800  OutOps.push_back(Op2);
2801  OutOps.push_back(Op3);
2802  OutOps.push_back(Op4);
2803  return false;
2804 }
2805 
2806 /// createX86ISelDag - This pass converts a legalized DAG into a
2807 /// X86-specific DAG, ready for instruction scheduling.
2808 ///
2810  CodeGenOpt::Level OptLevel) {
2811  return new X86DAGToDAGISel(TM, OptLevel);
2812 }
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
bool isInt< 32 >(int64_t x)
Definition: MathExtras.h:276
static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq)
SDValue getConstant(uint64_t Val, EVT VT, bool isTarget=false)
SDValue getValue(unsigned R) const
void dump() const
dump - Dump this node, for debugging.
void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd)
bool hasOneUse() const
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const
static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, uint64_t Mask, SDValue Shift, SDValue X, X86ISelAddressMode &AM)
bool hasOneUse() const
unsigned getReg() const
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getOpcode() const
unsigned getSizeInBits() const
Definition: ValueTypes.h:359
unsigned getNumOperands() const
unsigned getNumOperands() const
const SDValue & getOperand(unsigned Num) const
void setNodeId(int Id)
setNodeId - Set unique node id.
void ComputeMaskedBits(SDValue Op, APInt &KnownZero, APInt &KnownOne, unsigned Depth=0) const
const SDValue & getBasePtr() const
unsigned getResNo() const
get the index which selects a specific result in the SDNode
unsigned CountTrailingOnes_64(uint64_t Value)
Definition: MathExtras.h:410
const HexagonInstrInfo * TII
bool isNormalStore(const SDNode *N)
#define llvm_unreachable(msg)
bool isInt< 8 >(int64_t x)
Definition: MathExtras.h:268
static bool HasNoSignedComparisonUses(SDNode *N)
SimpleValueType SimpleTy
Definition: ValueTypes.h:161
static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG, SDLoc dl, enum AtomicOpc &Op, MVT NVT, SDValue Val)
Abstract Stack Frame Information.
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countLeadingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the most significant bit to the least stopping at the first 1...
Definition: MathExtras.h:120
#define false
Definition: ConvertUTF.c:64
#define G(x, y, z)
Definition: MD5.cpp:52
X86 compare and logical compare instructions.
static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N, uint64_t Mask, SDValue Shift, SDValue X, X86ISelAddressMode &AM)
static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc, SDValue StoredVal, SelectionDAG *CurDAG, LoadSDNode *&LoadNode, SDValue &InputChain)
#define T
enable_if_c< std::numeric_limits< T >::is_integer &&!std::numeric_limits< T >::is_signed, std::size_t >::type countTrailingZeros(T Val, ZeroBehavior ZB=ZB_Width)
Count number of 0's from the least significant bit to the most stopping at the first 1...
Definition: MathExtras.h:49
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
const SDValue & getBasePtr() const
static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd]
EVT getMemoryVT() const
getMemoryVT - Return the type of the in-memory value.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Get a value with high bits set.
Definition: APInt.h:510
SDNode * getNode() const
get the SDNode which holds the desired result
#define P(N)
bool isNormalLoad(const SDNode *N)
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
const SDValue & getOperand(unsigned i) const
bool isNonTemporal() const
LLVM Constant Representation.
Definition: Constant.h:41
bool isVector() const
isVector - Return true if this is a vector value type.
Definition: ValueTypes.h:190
void RepositionNode(allnodes_iterator Position, SDNode *N)
Definition: SelectionDAG.h:982
unsigned getOpcode() const
use_iterator use_begin() const
bool isVolatile() const
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition: ISDOpcodes.h:411
ISD::MemIndexedMode getAddressingMode() const
uint64_t getConstantOperandVal(unsigned Num) const
const MCInstrDesc & get(unsigned Opcode) const
Definition: MCInstrInfo.h:48
const MachinePointerInfo & getPointerInfo() const
const SDValue & getOffset() const
SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
const SDValue & getChain() const
MachineMemOperand * getMemOperand() const
unsigned getAddrSpace() const
bool use_empty() const
static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N)
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
ISD::LoadExtType getExtensionType() const
Class for arbitrary precision integers.
Definition: APInt.h:75
int64_t getSExtValue() const
static use_iterator use_end()
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:357
SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT)
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:360
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
static bool isDispSafeForFrameIndex(int64_t Val)
uint64_t getConstantOperandVal(unsigned i) const
static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc)
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:295
bool hasAnyUseOfValue(unsigned Value) const
FunctionPass * createX86ISelDag(X86TargetMachine &TM, CodeGenOpt::Level OptLevel)
IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
Definition: TargetOpcodes.h:52
void ReplaceAllUsesWith(SDValue From, SDValue Op)
#define I(x, y, z)
Definition: MD5.cpp:54
#define N
STATISTIC(NumLoadMoved,"Number of loads moved below TokenFactor")
static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N, uint64_t Mask, SDValue Shift, SDValue X, X86ISelAddressMode &AM)
static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, SDValue Call, SDValue OrigChain)
static unsigned getReg(const void *D, unsigned RC, unsigned RegNo)
const SDValue & getOffset() const
bool isNON_EXTLoad(const SDNode *N)
int getNodeId() const
EVT getValueType() const
SDValue getTargetExtractSubreg(int SRIdx, SDLoc DL, EVT VT, SDValue Operand)
#define DEBUG(X)
Definition: Debug.h:97
bool isZeroNode(SDValue Elt)
SDValue getTargetConstant(uint64_t Val, EVT VT)
Definition: SelectionDAG.h:408
bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement=true)
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:363
MVT getSimpleValueType(unsigned ResNo) const
bool isScalarFPTypeInSSEReg(EVT VT) const
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
bool isOperandOf(SDNode *N) const
bool isMachineOpcode() const
uint64_t getZExtValue() const