LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
InstCombineSelect.cpp
Go to the documentation of this file.
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombine.h"
18 using namespace llvm;
19 using namespace PatternMatch;
20 
21 /// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
22 /// returning the kind and providing the out parameter results if we
23 /// successfully match.
25 MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
26  SelectInst *SI = dyn_cast<SelectInst>(V);
27  if (SI == 0) return SPF_UNKNOWN;
28 
29  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
30  if (ICI == 0) return SPF_UNKNOWN;
31 
32  LHS = ICI->getOperand(0);
33  RHS = ICI->getOperand(1);
34 
35  // (icmp X, Y) ? X : Y
36  if (SI->getTrueValue() == ICI->getOperand(0) &&
37  SI->getFalseValue() == ICI->getOperand(1)) {
38  switch (ICI->getPredicate()) {
39  default: return SPF_UNKNOWN; // Equality.
40  case ICmpInst::ICMP_UGT:
41  case ICmpInst::ICMP_UGE: return SPF_UMAX;
42  case ICmpInst::ICMP_SGT:
43  case ICmpInst::ICMP_SGE: return SPF_SMAX;
44  case ICmpInst::ICMP_ULT:
45  case ICmpInst::ICMP_ULE: return SPF_UMIN;
46  case ICmpInst::ICMP_SLT:
47  case ICmpInst::ICMP_SLE: return SPF_SMIN;
48  }
49  }
50 
51  // (icmp X, Y) ? Y : X
52  if (SI->getTrueValue() == ICI->getOperand(1) &&
53  SI->getFalseValue() == ICI->getOperand(0)) {
54  switch (ICI->getPredicate()) {
55  default: return SPF_UNKNOWN; // Equality.
56  case ICmpInst::ICMP_UGT:
57  case ICmpInst::ICMP_UGE: return SPF_UMIN;
58  case ICmpInst::ICMP_SGT:
59  case ICmpInst::ICMP_SGE: return SPF_SMIN;
60  case ICmpInst::ICMP_ULT:
61  case ICmpInst::ICMP_ULE: return SPF_UMAX;
62  case ICmpInst::ICMP_SLT:
63  case ICmpInst::ICMP_SLE: return SPF_SMAX;
64  }
65  }
66 
67  // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
68 
69  return SPF_UNKNOWN;
70 }
71 
72 
73 /// GetSelectFoldableOperands - We want to turn code that looks like this:
74 /// %C = or %A, %B
75 /// %D = select %cond, %C, %A
76 /// into:
77 /// %C = select %cond, %B, 0
78 /// %D = or %A, %C
79 ///
80 /// Assuming that the specified instruction is an operand to the select, return
81 /// a bitmask indicating which operands of this instruction are foldable if they
82 /// equal the other incoming value of the select.
83 ///
85  switch (I->getOpcode()) {
86  case Instruction::Add:
87  case Instruction::Mul:
88  case Instruction::And:
89  case Instruction::Or:
90  case Instruction::Xor:
91  return 3; // Can fold through either operand.
92  case Instruction::Sub: // Can only fold on the amount subtracted.
93  case Instruction::Shl: // Can only fold on the shift amount.
94  case Instruction::LShr:
95  case Instruction::AShr:
96  return 1;
97  default:
98  return 0; // Cannot fold
99  }
100 }
101 
102 /// GetSelectFoldableConstant - For the same transformation as the previous
103 /// function, return the identity constant that goes into the select.
105  switch (I->getOpcode()) {
106  default: llvm_unreachable("This cannot happen!");
107  case Instruction::Add:
108  case Instruction::Sub:
109  case Instruction::Or:
110  case Instruction::Xor:
111  case Instruction::Shl:
112  case Instruction::LShr:
113  case Instruction::AShr:
114  return Constant::getNullValue(I->getType());
115  case Instruction::And:
116  return Constant::getAllOnesValue(I->getType());
117  case Instruction::Mul:
118  return ConstantInt::get(I->getType(), 1);
119  }
120 }
121 
122 /// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
123 /// have the same opcode and only one use each. Try to simplify this.
125  Instruction *FI) {
126  if (TI->getNumOperands() == 1) {
127  // If this is a non-volatile load or a cast from the same type,
128  // merge.
129  if (TI->isCast()) {
130  Type *FIOpndTy = FI->getOperand(0)->getType();
131  if (TI->getOperand(0)->getType() != FIOpndTy)
132  return 0;
133  // The select condition may be a vector. We may only change the operand
134  // type if the vector width remains the same (and matches the condition).
135  Type *CondTy = SI.getCondition()->getType();
136  if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
137  CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
138  return 0;
139  } else {
140  return 0; // unknown unary op.
141  }
142 
143  // Fold this by inserting a select from the input values.
144  Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
145  FI->getOperand(0), SI.getName()+".v");
146  return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
147  TI->getType());
148  }
149 
150  // Only handle binary operators here.
151  if (!isa<BinaryOperator>(TI))
152  return 0;
153 
154  // Figure out if the operations have any operands in common.
155  Value *MatchOp, *OtherOpT, *OtherOpF;
156  bool MatchIsOpZero;
157  if (TI->getOperand(0) == FI->getOperand(0)) {
158  MatchOp = TI->getOperand(0);
159  OtherOpT = TI->getOperand(1);
160  OtherOpF = FI->getOperand(1);
161  MatchIsOpZero = true;
162  } else if (TI->getOperand(1) == FI->getOperand(1)) {
163  MatchOp = TI->getOperand(1);
164  OtherOpT = TI->getOperand(0);
165  OtherOpF = FI->getOperand(0);
166  MatchIsOpZero = false;
167  } else if (!TI->isCommutative()) {
168  return 0;
169  } else if (TI->getOperand(0) == FI->getOperand(1)) {
170  MatchOp = TI->getOperand(0);
171  OtherOpT = TI->getOperand(1);
172  OtherOpF = FI->getOperand(0);
173  MatchIsOpZero = true;
174  } else if (TI->getOperand(1) == FI->getOperand(0)) {
175  MatchOp = TI->getOperand(1);
176  OtherOpT = TI->getOperand(0);
177  OtherOpF = FI->getOperand(1);
178  MatchIsOpZero = true;
179  } else {
180  return 0;
181  }
182 
183  // If we reach here, they do have operations in common.
184  Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
185  OtherOpF, SI.getName()+".v");
186 
187  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
188  if (MatchIsOpZero)
189  return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
190  else
191  return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
192  }
193  llvm_unreachable("Shouldn't get here");
194 }
195 
196 static bool isSelect01(Constant *C1, Constant *C2) {
197  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
198  if (!C1I)
199  return false;
200  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
201  if (!C2I)
202  return false;
203  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
204  return false;
205  return C1I->isOne() || C1I->isAllOnesValue() ||
206  C2I->isOne() || C2I->isAllOnesValue();
207 }
208 
209 /// FoldSelectIntoOp - Try fold the select into one of the operands to
210 /// facilitate further optimization.
212  Value *FalseVal) {
213  // See the comment above GetSelectFoldableOperands for a description of the
214  // transformation we are doing here.
215  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
216  if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
217  !isa<Constant>(FalseVal)) {
218  if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
219  unsigned OpToFold = 0;
220  if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
221  OpToFold = 1;
222  } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
223  OpToFold = 2;
224  }
225 
226  if (OpToFold) {
228  Value *OOp = TVI->getOperand(2-OpToFold);
229  // Avoid creating select between 2 constants unless it's selecting
230  // between 0, 1 and -1.
231  if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
232  Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
233  NewSel->takeName(TVI);
234  BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
236  FalseVal, NewSel);
237  if (isa<PossiblyExactOperator>(BO))
238  BO->setIsExact(TVI_BO->isExact());
239  if (isa<OverflowingBinaryOperator>(BO)) {
240  BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
241  BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
242  }
243  return BO;
244  }
245  }
246  }
247  }
248  }
249 
250  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
251  if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
252  !isa<Constant>(TrueVal)) {
253  if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
254  unsigned OpToFold = 0;
255  if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
256  OpToFold = 1;
257  } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
258  OpToFold = 2;
259  }
260 
261  if (OpToFold) {
263  Value *OOp = FVI->getOperand(2-OpToFold);
264  // Avoid creating select between 2 constants unless it's selecting
265  // between 0, 1 and -1.
266  if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
267  Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
268  NewSel->takeName(FVI);
269  BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
271  TrueVal, NewSel);
272  if (isa<PossiblyExactOperator>(BO))
273  BO->setIsExact(FVI_BO->isExact());
274  if (isa<OverflowingBinaryOperator>(BO)) {
275  BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
276  BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
277  }
278  return BO;
279  }
280  }
281  }
282  }
283  }
284 
285  return 0;
286 }
287 
288 /// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
289 /// replaced with RepOp.
290 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
291  const DataLayout *TD,
292  const TargetLibraryInfo *TLI) {
293  // Trivial replacement.
294  if (V == Op)
295  return RepOp;
296 
298  if (!I)
299  return 0;
300 
301  // If this is a binary operator, try to simplify it with the replaced op.
302  if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
303  if (B->getOperand(0) == Op)
304  return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
305  if (B->getOperand(1) == Op)
306  return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
307  }
308 
309  // Same for CmpInsts.
310  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
311  if (C->getOperand(0) == Op)
312  return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
313  TLI);
314  if (C->getOperand(1) == Op)
315  return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
316  TLI);
317  }
318 
319  // TODO: We could hand off more cases to instsimplify here.
320 
321  // If all operands are constant after substituting Op for RepOp then we can
322  // constant fold the instruction.
323  if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
324  // Build a list of all constant operands.
325  SmallVector<Constant*, 8> ConstOps;
326  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
327  if (I->getOperand(i) == Op)
328  ConstOps.push_back(CRepOp);
329  else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
330  ConstOps.push_back(COp);
331  else
332  break;
333  }
334 
335  // All operands were constants, fold it.
336  if (ConstOps.size() == I->getNumOperands()) {
337  if (CmpInst *C = dyn_cast<CmpInst>(I))
338  return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
339  ConstOps[1], TD, TLI);
340 
341  if (LoadInst *LI = dyn_cast<LoadInst>(I))
342  if (!LI->isVolatile())
343  return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
344 
345  return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
346  ConstOps, TD, TLI);
347  }
348  }
349 
350  return 0;
351 }
352 
353 /// foldSelectICmpAndOr - We want to turn:
354 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
355 /// into:
356 /// (or (shl (and X, C1), C3), y)
357 /// iff:
358 /// C1 and C2 are both powers of 2
359 /// where:
360 /// C3 = Log(C2) - Log(C1)
361 ///
362 /// This transform handles cases where:
363 /// 1. The icmp predicate is inverted
364 /// 2. The select operands are reversed
365 /// 3. The magnitude of C2 and C1 are flipped
366 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
367  Value *FalseVal,
368  InstCombiner::BuilderTy *Builder) {
369  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
370  if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
371  return 0;
372 
373  Value *CmpLHS = IC->getOperand(0);
374  Value *CmpRHS = IC->getOperand(1);
375 
376  if (!match(CmpRHS, m_Zero()))
377  return 0;
378 
379  Value *X;
380  const APInt *C1;
381  if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
382  return 0;
383 
384  const APInt *C2;
385  bool OrOnTrueVal = false;
386  bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
387  if (!OrOnFalseVal)
388  OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
389 
390  if (!OrOnFalseVal && !OrOnTrueVal)
391  return 0;
392 
393  Value *V = CmpLHS;
394  Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
395 
396  unsigned C1Log = C1->logBase2();
397  unsigned C2Log = C2->logBase2();
398  if (C2Log > C1Log) {
399  V = Builder->CreateZExtOrTrunc(V, Y->getType());
400  V = Builder->CreateShl(V, C2Log - C1Log);
401  } else if (C1Log > C2Log) {
402  V = Builder->CreateLShr(V, C1Log - C2Log);
403  V = Builder->CreateZExtOrTrunc(V, Y->getType());
404  } else
405  V = Builder->CreateZExtOrTrunc(V, Y->getType());
406 
407  ICmpInst::Predicate Pred = IC->getPredicate();
408  if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
409  (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
410  V = Builder->CreateXor(V, *C2);
411 
412  return Builder->CreateOr(V, Y);
413 }
414 
415 /// visitSelectInstWithICmp - Visit a SelectInst that has an
416 /// ICmpInst as its first operand.
417 ///
419  ICmpInst *ICI) {
420  bool Changed = false;
421  ICmpInst::Predicate Pred = ICI->getPredicate();
422  Value *CmpLHS = ICI->getOperand(0);
423  Value *CmpRHS = ICI->getOperand(1);
424  Value *TrueVal = SI.getTrueValue();
425  Value *FalseVal = SI.getFalseValue();
426 
427  // Check cases where the comparison is with a constant that
428  // can be adjusted to fit the min/max idiom. We may move or edit ICI
429  // here, so make sure the select is the only user.
430  if (ICI->hasOneUse())
431  if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
432  // X < MIN ? T : F --> F
433  if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
434  && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
435  return ReplaceInstUsesWith(SI, FalseVal);
436  // X > MAX ? T : F --> F
437  else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
438  && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
439  return ReplaceInstUsesWith(SI, FalseVal);
440  switch (Pred) {
441  default: break;
442  case ICmpInst::ICMP_ULT:
443  case ICmpInst::ICMP_SLT:
444  case ICmpInst::ICMP_UGT:
445  case ICmpInst::ICMP_SGT: {
446  // These transformations only work for selects over integers.
447  IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
448  if (!SelectTy)
449  break;
450 
451  Constant *AdjustedRHS;
452  if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
453  AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
454  else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
455  AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
456 
457  // X > C ? X : C+1 --> X < C+1 ? C+1 : X
458  // X < C ? X : C-1 --> X > C-1 ? C-1 : X
459  if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
460  (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
461  ; // Nothing to do here. Values match without any sign/zero extension.
462 
463  // Types do not match. Instead of calculating this with mixed types
464  // promote all to the larger type. This enables scalar evolution to
465  // analyze this expression.
466  else if (CmpRHS->getType()->getScalarSizeInBits()
467  < SelectTy->getBitWidth()) {
468  Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
469 
470  // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
471  // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
472  // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
473  // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
474  if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
475  sextRHS == FalseVal) {
476  CmpLHS = TrueVal;
477  AdjustedRHS = sextRHS;
478  } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
479  sextRHS == TrueVal) {
480  CmpLHS = FalseVal;
481  AdjustedRHS = sextRHS;
482  } else if (ICI->isUnsigned()) {
483  Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
484  // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
485  // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
486  // zext + signed compare cannot be changed:
487  // 0xff <s 0x00, but 0x00ff >s 0x0000
488  if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
489  zextRHS == FalseVal) {
490  CmpLHS = TrueVal;
491  AdjustedRHS = zextRHS;
492  } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
493  zextRHS == TrueVal) {
494  CmpLHS = FalseVal;
495  AdjustedRHS = zextRHS;
496  } else
497  break;
498  } else
499  break;
500  } else
501  break;
502 
503  Pred = ICmpInst::getSwappedPredicate(Pred);
504  CmpRHS = AdjustedRHS;
505  std::swap(FalseVal, TrueVal);
506  ICI->setPredicate(Pred);
507  ICI->setOperand(0, CmpLHS);
508  ICI->setOperand(1, CmpRHS);
509  SI.setOperand(1, TrueVal);
510  SI.setOperand(2, FalseVal);
511 
512  // Move ICI instruction right before the select instruction. Otherwise
513  // the sext/zext value may be defined after the ICI instruction uses it.
514  ICI->moveBefore(&SI);
515 
516  Changed = true;
517  break;
518  }
519  }
520  }
521 
522  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
523  // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
524  // FIXME: Type and constness constraints could be lifted, but we have to
525  // watch code size carefully. We should consider xor instead of
526  // sub/add when we decide to do that.
527  if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
528  if (TrueVal->getType() == Ty) {
529  if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
530  ConstantInt *C1 = NULL, *C2 = NULL;
531  if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
532  C1 = dyn_cast<ConstantInt>(TrueVal);
533  C2 = dyn_cast<ConstantInt>(FalseVal);
534  } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
535  C1 = dyn_cast<ConstantInt>(FalseVal);
536  C2 = dyn_cast<ConstantInt>(TrueVal);
537  }
538  if (C1 && C2) {
539  // This shift results in either -1 or 0.
540  Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
541 
542  // Check if we can express the operation with a single or.
543  if (C2->isAllOnesValue())
544  return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
545 
546  Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
547  return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
548  }
549  }
550  }
551  }
552 
553  // If we have an equality comparison then we know the value in one of the
554  // arms of the select. See if substituting this value into the arm and
555  // simplifying the result yields the same value as the other arm.
556  if (Pred == ICmpInst::ICMP_EQ) {
557  if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
558  SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
559  return ReplaceInstUsesWith(SI, FalseVal);
560  if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
561  SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
562  return ReplaceInstUsesWith(SI, FalseVal);
563  } else if (Pred == ICmpInst::ICMP_NE) {
564  if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
565  SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
566  return ReplaceInstUsesWith(SI, TrueVal);
567  if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
568  SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
569  return ReplaceInstUsesWith(SI, TrueVal);
570  }
571 
572  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
573 
574  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
575  if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
576  // Transform (X == C) ? X : Y -> (X == C) ? C : Y
577  SI.setOperand(1, CmpRHS);
578  Changed = true;
579  } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
580  // Transform (X != C) ? Y : X -> (X != C) ? Y : C
581  SI.setOperand(2, CmpRHS);
582  Changed = true;
583  }
584  }
585 
586  if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
587  return ReplaceInstUsesWith(SI, V);
588 
589  return Changed ? &SI : 0;
590 }
591 
592 
593 /// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
594 /// PHI node (but the two may be in different blocks). See if the true/false
595 /// values (V) are live in all of the predecessor blocks of the PHI. For
596 /// example, cases like this cannot be mapped:
597 ///
598 /// X = phi [ C1, BB1], [C2, BB2]
599 /// Y = add
600 /// Z = select X, Y, 0
601 ///
602 /// because Y is not live in BB1/BB2.
603 ///
605  const SelectInst &SI) {
606  // If the value is a non-instruction value like a constant or argument, it
607  // can always be mapped.
608  const Instruction *I = dyn_cast<Instruction>(V);
609  if (I == 0) return true;
610 
611  // If V is a PHI node defined in the same block as the condition PHI, we can
612  // map the arguments.
613  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
614 
615  if (const PHINode *VP = dyn_cast<PHINode>(I))
616  if (VP->getParent() == CondPHI->getParent())
617  return true;
618 
619  // Otherwise, if the PHI and select are defined in the same block and if V is
620  // defined in a different block, then we can transform it.
621  if (SI.getParent() == CondPHI->getParent() &&
622  I->getParent() != CondPHI->getParent())
623  return true;
624 
625  // Otherwise we have a 'hard' case and we can't tell without doing more
626  // detailed dominator based analysis, punt.
627  return false;
628 }
629 
630 /// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
631 /// SPF2(SPF1(A, B), C)
633  SelectPatternFlavor SPF1,
634  Value *A, Value *B,
635  Instruction &Outer,
636  SelectPatternFlavor SPF2, Value *C) {
637  if (C == A || C == B) {
638  // MAX(MAX(A, B), B) -> MAX(A, B)
639  // MIN(MIN(a, b), a) -> MIN(a, b)
640  if (SPF1 == SPF2)
641  return ReplaceInstUsesWith(Outer, Inner);
642 
643  // MAX(MIN(a, b), a) -> a
644  // MIN(MAX(a, b), a) -> a
645  if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
646  (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
647  (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
648  (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
649  return ReplaceInstUsesWith(Outer, C);
650  }
651 
652  // TODO: MIN(MIN(A, 23), 97)
653  return 0;
654 }
655 
656 
657 /// foldSelectICmpAnd - If one of the constants is zero (we know they can't
658 /// both be) and we have an icmp instruction with zero, and we have an 'and'
659 /// with the non-constant value and a power of two we can turn the select
660 /// into a shift on the result of the 'and'.
661 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
662  ConstantInt *FalseVal,
663  InstCombiner::BuilderTy *Builder) {
664  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
665  if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
666  return 0;
667 
668  if (!match(IC->getOperand(1), m_Zero()))
669  return 0;
670 
671  ConstantInt *AndRHS;
672  Value *LHS = IC->getOperand(0);
673  if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
674  return 0;
675 
676  // If both select arms are non-zero see if we have a select of the form
677  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
678  // for 'x ? 2^n : 0' and fix the thing up at the end.
679  ConstantInt *Offset = 0;
680  if (!TrueVal->isZero() && !FalseVal->isZero()) {
681  if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
682  Offset = FalseVal;
683  else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
684  Offset = TrueVal;
685  else
686  return 0;
687 
688  // Adjust TrueVal and FalseVal to the offset.
689  TrueVal = ConstantInt::get(Builder->getContext(),
690  TrueVal->getValue() - Offset->getValue());
691  FalseVal = ConstantInt::get(Builder->getContext(),
692  FalseVal->getValue() - Offset->getValue());
693  }
694 
695  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
696  if (!AndRHS->getValue().isPowerOf2() ||
697  (!TrueVal->getValue().isPowerOf2() &&
698  !FalseVal->getValue().isPowerOf2()))
699  return 0;
700 
701  // Determine which shift is needed to transform result of the 'and' into the
702  // desired result.
703  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
704  unsigned ValZeros = ValC->getValue().logBase2();
705  unsigned AndZeros = AndRHS->getValue().logBase2();
706 
707  // If types don't match we can still convert the select by introducing a zext
708  // or a trunc of the 'and'. The trunc case requires that all of the truncated
709  // bits are zero, we can figure that out by looking at the 'and' mask.
710  if (AndZeros >= ValC->getBitWidth())
711  return 0;
712 
713  Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
714  if (ValZeros > AndZeros)
715  V = Builder->CreateShl(V, ValZeros - AndZeros);
716  else if (ValZeros < AndZeros)
717  V = Builder->CreateLShr(V, AndZeros - ValZeros);
718 
719  // Okay, now we know that everything is set up, we just don't know whether we
720  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
721  bool ShouldNotVal = !TrueVal->isZero();
722  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
723  if (ShouldNotVal)
724  V = Builder->CreateXor(V, ValC);
725 
726  // Apply an offset if needed.
727  if (Offset)
728  V = Builder->CreateAdd(V, Offset);
729  return V;
730 }
731 
733  Value *CondVal = SI.getCondition();
734  Value *TrueVal = SI.getTrueValue();
735  Value *FalseVal = SI.getFalseValue();
736 
737  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
738  return ReplaceInstUsesWith(SI, V);
739 
740  if (SI.getType()->isIntegerTy(1)) {
741  if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
742  if (C->getZExtValue()) {
743  // Change: A = select B, true, C --> A = or B, C
744  return BinaryOperator::CreateOr(CondVal, FalseVal);
745  }
746  // Change: A = select B, false, C --> A = and !B, C
747  Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
748  return BinaryOperator::CreateAnd(NotCond, FalseVal);
749  }
750  if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
751  if (C->getZExtValue() == false) {
752  // Change: A = select B, C, false --> A = and B, C
753  return BinaryOperator::CreateAnd(CondVal, TrueVal);
754  }
755  // Change: A = select B, C, true --> A = or !B, C
756  Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
757  return BinaryOperator::CreateOr(NotCond, TrueVal);
758  }
759 
760  // select a, b, a -> a&b
761  // select a, a, b -> a|b
762  if (CondVal == TrueVal)
763  return BinaryOperator::CreateOr(CondVal, FalseVal);
764  if (CondVal == FalseVal)
765  return BinaryOperator::CreateAnd(CondVal, TrueVal);
766 
767  // select a, ~a, b -> (~a)&b
768  // select a, b, ~a -> (~a)|b
769  if (match(TrueVal, m_Not(m_Specific(CondVal))))
770  return BinaryOperator::CreateAnd(TrueVal, FalseVal);
771  if (match(FalseVal, m_Not(m_Specific(CondVal))))
772  return BinaryOperator::CreateOr(TrueVal, FalseVal);
773  }
774 
775  // Selecting between two integer constants?
776  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
777  if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
778  // select C, 1, 0 -> zext C to int
779  if (FalseValC->isZero() && TrueValC->getValue() == 1)
780  return new ZExtInst(CondVal, SI.getType());
781 
782  // select C, -1, 0 -> sext C to int
783  if (FalseValC->isZero() && TrueValC->isAllOnesValue())
784  return new SExtInst(CondVal, SI.getType());
785 
786  // select C, 0, 1 -> zext !C to int
787  if (TrueValC->isZero() && FalseValC->getValue() == 1) {
788  Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
789  return new ZExtInst(NotCond, SI.getType());
790  }
791 
792  // select C, 0, -1 -> sext !C to int
793  if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
794  Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
795  return new SExtInst(NotCond, SI.getType());
796  }
797 
798  if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
799  return ReplaceInstUsesWith(SI, V);
800  }
801 
802  // See if we are selecting two values based on a comparison of the two values.
803  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
804  if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
805  // Transform (X == Y) ? X : Y -> Y
806  if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
807  // This is not safe in general for floating point:
808  // consider X== -0, Y== +0.
809  // It becomes safe if either operand is a nonzero constant.
810  ConstantFP *CFPt, *CFPf;
811  if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
812  !CFPt->getValueAPF().isZero()) ||
813  ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
814  !CFPf->getValueAPF().isZero()))
815  return ReplaceInstUsesWith(SI, FalseVal);
816  }
817  // Transform (X une Y) ? X : Y -> X
818  if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
819  // This is not safe in general for floating point:
820  // consider X== -0, Y== +0.
821  // It becomes safe if either operand is a nonzero constant.
822  ConstantFP *CFPt, *CFPf;
823  if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
824  !CFPt->getValueAPF().isZero()) ||
825  ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
826  !CFPf->getValueAPF().isZero()))
827  return ReplaceInstUsesWith(SI, TrueVal);
828  }
829  // NOTE: if we wanted to, this is where to detect MIN/MAX
830 
831  } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
832  // Transform (X == Y) ? Y : X -> X
833  if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
834  // This is not safe in general for floating point:
835  // consider X== -0, Y== +0.
836  // It becomes safe if either operand is a nonzero constant.
837  ConstantFP *CFPt, *CFPf;
838  if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
839  !CFPt->getValueAPF().isZero()) ||
840  ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
841  !CFPf->getValueAPF().isZero()))
842  return ReplaceInstUsesWith(SI, FalseVal);
843  }
844  // Transform (X une Y) ? Y : X -> Y
845  if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
846  // This is not safe in general for floating point:
847  // consider X== -0, Y== +0.
848  // It becomes safe if either operand is a nonzero constant.
849  ConstantFP *CFPt, *CFPf;
850  if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
851  !CFPt->getValueAPF().isZero()) ||
852  ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
853  !CFPf->getValueAPF().isZero()))
854  return ReplaceInstUsesWith(SI, TrueVal);
855  }
856  // NOTE: if we wanted to, this is where to detect MIN/MAX
857  }
858  // NOTE: if we wanted to, this is where to detect ABS
859  }
860 
861  // See if we are selecting two values based on a comparison of the two values.
862  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
863  if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
864  return Result;
865 
866  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
867  if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
868  if (TI->hasOneUse() && FI->hasOneUse()) {
869  Instruction *AddOp = 0, *SubOp = 0;
870 
871  // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
872  if (TI->getOpcode() == FI->getOpcode())
873  if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
874  return IV;
875 
876  // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
877  // even legal for FP.
878  if ((TI->getOpcode() == Instruction::Sub &&
879  FI->getOpcode() == Instruction::Add) ||
880  (TI->getOpcode() == Instruction::FSub &&
881  FI->getOpcode() == Instruction::FAdd)) {
882  AddOp = FI; SubOp = TI;
883  } else if ((FI->getOpcode() == Instruction::Sub &&
884  TI->getOpcode() == Instruction::Add) ||
885  (FI->getOpcode() == Instruction::FSub &&
886  TI->getOpcode() == Instruction::FAdd)) {
887  AddOp = TI; SubOp = FI;
888  }
889 
890  if (AddOp) {
891  Value *OtherAddOp = 0;
892  if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
893  OtherAddOp = AddOp->getOperand(1);
894  } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
895  OtherAddOp = AddOp->getOperand(0);
896  }
897 
898  if (OtherAddOp) {
899  // So at this point we know we have (Y -> OtherAddOp):
900  // select C, (add X, Y), (sub X, Z)
901  Value *NegVal; // Compute -Z
902  if (SI.getType()->isFPOrFPVectorTy()) {
903  NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
904  } else {
905  NegVal = Builder->CreateNeg(SubOp->getOperand(1));
906  }
907 
908  Value *NewTrueOp = OtherAddOp;
909  Value *NewFalseOp = NegVal;
910  if (AddOp != TI)
911  std::swap(NewTrueOp, NewFalseOp);
912  Value *NewSel =
913  Builder->CreateSelect(CondVal, NewTrueOp,
914  NewFalseOp, SI.getName() + ".p");
915 
916  if (SI.getType()->isFPOrFPVectorTy())
917  return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
918  else
919  return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
920  }
921  }
922  }
923 
924  // See if we can fold the select into one of our operands.
925  if (SI.getType()->isIntegerTy()) {
926  if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
927  return FoldI;
928 
929  // MAX(MAX(a, b), a) -> MAX(a, b)
930  // MIN(MIN(a, b), a) -> MIN(a, b)
931  // MAX(MIN(a, b), a) -> a
932  // MIN(MAX(a, b), a) -> a
933  Value *LHS, *RHS, *LHS2, *RHS2;
934  if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
935  if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
936  if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
937  SI, SPF, RHS))
938  return R;
939  if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
940  if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
941  SI, SPF, LHS))
942  return R;
943  }
944 
945  // TODO.
946  // ABS(-X) -> ABS(X)
947  // ABS(ABS(X)) -> ABS(X)
948  }
949 
950  // See if we can fold the select into a phi node if the condition is a select.
951  if (isa<PHINode>(SI.getCondition()))
952  // The true/false values have to be live in the PHI predecessor's blocks.
953  if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
955  if (Instruction *NV = FoldOpIntoPhi(SI))
956  return NV;
957 
958  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
959  if (TrueSI->getCondition() == CondVal) {
960  if (SI.getTrueValue() == TrueSI->getTrueValue())
961  return 0;
962  SI.setOperand(1, TrueSI->getTrueValue());
963  return &SI;
964  }
965  }
966  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
967  if (FalseSI->getCondition() == CondVal) {
968  if (SI.getFalseValue() == FalseSI->getFalseValue())
969  return 0;
970  SI.setOperand(2, FalseSI->getFalseValue());
971  return &SI;
972  }
973  }
974 
975  if (BinaryOperator::isNot(CondVal)) {
977  SI.setOperand(1, FalseVal);
978  SI.setOperand(2, TrueVal);
979  return &SI;
980  }
981 
982  if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
983  unsigned VWidth = VecTy->getNumElements();
984  APInt UndefElts(VWidth, 0);
985  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
986  if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
987  if (V != &SI)
988  return ReplaceInstUsesWith(SI, V);
989  return &SI;
990  }
991 
992  if (isa<ConstantAggregateZero>(CondVal)) {
993  return ReplaceInstUsesWith(SI, FalseVal);
994  }
995  }
996 
997  return 0;
998 }
Value * CreateLShr(Value *LHS, Value *RHS, const Twine &Name="", bool isExact=false)
Definition: IRBuilder.h:753
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
Definition: PatternMatch.h:467
class_match< Value > m_Value()
m_Value() - Match an arbitrary value and ignore it.
Definition: PatternMatch.h:70
Abstract base class of comparison instructions.
Definition: InstrTypes.h:633
static APInt getAllOnesValue(unsigned numBits)
Get the all-ones value.
Definition: APInt.h:450
unsigned getScalarSizeInBits()
Definition: Type.cpp:135
match_zero m_Zero()
Definition: PatternMatch.h:137
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
unsigned getBitWidth() const
getBitWidth - Return the bitwidth of this constant.
Definition: Constants.h:110
This class represents zero extension of integer types.
unsigned getNumOperands() const
Definition: User.h:108
static Constant * GetSelectFoldableConstant(Instruction *I)
unsigned less or equal
Definition: InstrTypes.h:677
unsigned less than
Definition: InstrTypes.h:676
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:667
static bool isEquality(Predicate P)
Definition: Instructions.h:997
This class represents a sign extension of integer types.
unsigned getBitWidth() const
Get the number of bits in this IntegerType.
Definition: DerivedTypes.h:61
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
bool isCast() const
Definition: Instruction.h:89
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:42
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:821
Instruction * visitSelectInst(SelectInst &SI)
const APInt & getValue() const
Return the constant's value.
Definition: Constants.h:105
#define llvm_unreachable(msg)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
static Value * foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, ConstantInt *FalseVal, InstCombiner::BuilderTy *Builder)
not_match< LHS > m_Not(const LHS &L)
Definition: PatternMatch.h:738
static Value * SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, const DataLayout *TD, const TargetLibraryInfo *TLI)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Definition: IRBuilder.h:805
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
m_ZExt
Definition: PatternMatch.h:692
Represents a floating point comparison operator.
class_match< ConstantInt > m_ConstantInt()
m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:72
cst_pred_ty< is_power2 > m_Power2()
m_Power2() - Match an integer or vector power of 2.
Definition: PatternMatch.h:281
void takeName(Value *V)
Definition: Value.cpp:239
static const Value * getNotArgument(const Value *BinOp)
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", Instruction *InsertBefore=0)
Construct any of the CastInst subclasses.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
Definition: PatternMatch.h:473
bool isVectorTy() const
Definition: Type.h:229
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:615
LLVM Constant Representation.
Definition: Constant.h:41
const Value * getCondition() const
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
specificval_ty m_Specific(const Value *V)
m_Specific - Match if we have a specific specified value.
Definition: PatternMatch.h:323
Represent an integer comparison operator.
Definition: Instructions.h:911
Instruction * FoldSelectIntoOp(SelectInst &SI, Value *, Value *)
Value * getOperand(unsigned i) const
Definition: User.h:88
bool isCommutative() const
Definition: Instruction.h:269
static bool isNot(const Value *V)
static Value * foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, Value *FalseVal, InstCombiner::BuilderTy *Builder)
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
Integer representation type.
Definition: DerivedTypes.h:37
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:714
Instruction * FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI)
Constant * ConstantFoldLoadFromConstPtr(Constant *C, const DataLayout *TD=0)
static Constant * getAllOnesValue(Type *Ty)
Get the all ones value.
Definition: Constants.cpp:163
LLVMContext & getContext() const
Definition: IRBuilder.h:79
bool isFPOrFPVectorTy() const
Definition: Type.h:186
bool hasNoSignedWrap() const
hasNoSignedWrap - Determine whether the no signed wrap flag is set.
const Value * getTrueValue() const
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:390
Value * SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
signed greater than
Definition: InstrTypes.h:678
void setIsExact(bool b=true)
CastClass_match< OpTy, Instruction::SExt > m_SExt(const OpTy &Op)
m_SExt
Definition: PatternMatch.h:685
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
static SelectPatternFlavor MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS)
Class for constant integers.
Definition: Constants.h:51
unsigned getVectorNumElements() const
Definition: Type.cpp:214
unsigned logBase2() const
Definition: APInt.h:1500
Type * getType() const
Definition: Value.h:111
SelectPatternFlavor
Definition: InstCombine.h:33
signed less than
Definition: InstrTypes.h:680
Predicate getSwappedPredicate() const
Return the predicate as if the operands were swapped.
Definition: InstrTypes.h:753
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
bool isZero() const
Definition: Constants.h:160
Value * SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
bool isExact() const
isExact - Determine whether the exact flag is set.
void setPredicate(Predicate P)
Set the predicate for this instruction to the specified value.
Definition: InstrTypes.h:719
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
bool isAllOnesValue() const
Definition: Constants.cpp:88
Instruction * FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1, Value *A, Value *B, Instruction &Outer, SelectPatternFlavor SPF2, Value *C)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
signed less or equal
Definition: InstrTypes.h:681
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isIntegerTy() const
Definition: Type.h:196
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:734
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy. Return the value untouched if the type of ...
Definition: IRBuilder.h:1079
Value * SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
static Constant * getSExt(Constant *C, Type *Ty)
Definition: Constants.cpp:1541
static Constant * getZExt(Constant *C, Type *Ty)
Definition: Constants.cpp:1555
unsigned greater or equal
Definition: InstrTypes.h:675
#define I(x, y, z)
Definition: MD5.cpp:54
static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, const SelectInst &SI)
bool hasOneUse() const
Definition: Value.h:161
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=0)
const APFloat & getValueAPF() const
Definition: Constants.h:263
bool isUnsigned() const
Determine if this instruction is using an unsigned comparison.
Definition: InstrTypes.h:786
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:654
LLVM Value Representation.
Definition: Value.h:66
bool hasNoUnsignedWrap() const
hasNoUnsignedWrap - Determine whether the no unsigned wrap flag is set.
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
bool isZero() const
Returns true if and only if the float is plus or minus zero.
Definition: APFloat.h:376
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
Constant * ConstantFoldInstOperands(unsigned Opcode, Type *DestTy, ArrayRef< Constant * > Ops, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0)
static bool isSelect01(Constant *C1, Constant *C2)
static unsigned GetSelectFoldableOperands(Instruction *I)
const Value * getFalseValue() const
unsigned greater than
Definition: InstrTypes.h:674
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml","ocaml 3.10-compatible collector")
Instruction * visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI)
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
const BasicBlock * getParent() const
Definition: Instruction.h:52
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
bool isOne() const
Determine if the value is one.
Definition: Constants.h:168
signed greater or equal
Definition: InstrTypes.h:679