LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LegalizeVectorTypes.cpp
Go to the documentation of this file.
1 //===------- LegalizeVectorTypes.cpp - Legalization of vector types -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file performs vector type splitting and scalarization for LegalizeTypes.
11 // Scalarization is the act of changing a computation in an illegal one-element
12 // vector type to be a computation in its scalar element type. For example,
13 // implementing <1 x f32> arithmetic in a scalar f32 register. This is needed
14 // as a base case when scalarizing vector arithmetic like <4 x f32>, which
15 // eventually decomposes to scalars if the target doesn't support v4f32 or v2f32
16 // types.
17 // Splitting is the act of changing a computation in an invalid vector type to
18 // be a computation in two vectors of half the size. For example, implementing
19 // <128 x f32> operations in terms of two <64 x f32> operations.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #include "LegalizeTypes.h"
24 #include "llvm/IR/DataLayout.h"
27 using namespace llvm;
28 
29 //===----------------------------------------------------------------------===//
30 // Result Vector Scalarization: <1 x ty> -> ty.
31 //===----------------------------------------------------------------------===//
32 
33 void DAGTypeLegalizer::ScalarizeVectorResult(SDNode *N, unsigned ResNo) {
34  DEBUG(dbgs() << "Scalarize node result " << ResNo << ": ";
35  N->dump(&DAG);
36  dbgs() << "\n");
37  SDValue R = SDValue();
38 
39  switch (N->getOpcode()) {
40  default:
41 #ifndef NDEBUG
42  dbgs() << "ScalarizeVectorResult #" << ResNo << ": ";
43  N->dump(&DAG);
44  dbgs() << "\n";
45 #endif
46  report_fatal_error("Do not know how to scalarize the result of this "
47  "operator!\n");
48 
49  case ISD::MERGE_VALUES: R = ScalarizeVecRes_MERGE_VALUES(N, ResNo);break;
50  case ISD::BITCAST: R = ScalarizeVecRes_BITCAST(N); break;
51  case ISD::BUILD_VECTOR: R = ScalarizeVecRes_BUILD_VECTOR(N); break;
52  case ISD::CONVERT_RNDSAT: R = ScalarizeVecRes_CONVERT_RNDSAT(N); break;
53  case ISD::EXTRACT_SUBVECTOR: R = ScalarizeVecRes_EXTRACT_SUBVECTOR(N); break;
54  case ISD::FP_ROUND: R = ScalarizeVecRes_FP_ROUND(N); break;
55  case ISD::FP_ROUND_INREG: R = ScalarizeVecRes_InregOp(N); break;
56  case ISD::FPOWI: R = ScalarizeVecRes_FPOWI(N); break;
57  case ISD::INSERT_VECTOR_ELT: R = ScalarizeVecRes_INSERT_VECTOR_ELT(N); break;
58  case ISD::LOAD: R = ScalarizeVecRes_LOAD(cast<LoadSDNode>(N));break;
59  case ISD::SCALAR_TO_VECTOR: R = ScalarizeVecRes_SCALAR_TO_VECTOR(N); break;
60  case ISD::SIGN_EXTEND_INREG: R = ScalarizeVecRes_InregOp(N); break;
61  case ISD::VSELECT: R = ScalarizeVecRes_VSELECT(N); break;
62  case ISD::SELECT: R = ScalarizeVecRes_SELECT(N); break;
63  case ISD::SELECT_CC: R = ScalarizeVecRes_SELECT_CC(N); break;
64  case ISD::SETCC: R = ScalarizeVecRes_SETCC(N); break;
65  case ISD::UNDEF: R = ScalarizeVecRes_UNDEF(N); break;
66  case ISD::VECTOR_SHUFFLE: R = ScalarizeVecRes_VECTOR_SHUFFLE(N); break;
67  case ISD::ANY_EXTEND:
68  case ISD::CTLZ:
69  case ISD::CTPOP:
70  case ISD::CTTZ:
71  case ISD::FABS:
72  case ISD::FCEIL:
73  case ISD::FCOS:
74  case ISD::FEXP:
75  case ISD::FEXP2:
76  case ISD::FFLOOR:
77  case ISD::FLOG:
78  case ISD::FLOG10:
79  case ISD::FLOG2:
80  case ISD::FNEARBYINT:
81  case ISD::FNEG:
82  case ISD::FP_EXTEND:
83  case ISD::FP_TO_SINT:
84  case ISD::FP_TO_UINT:
85  case ISD::FRINT:
86  case ISD::FROUND:
87  case ISD::FSIN:
88  case ISD::FSQRT:
89  case ISD::FTRUNC:
90  case ISD::SIGN_EXTEND:
91  case ISD::SINT_TO_FP:
92  case ISD::TRUNCATE:
93  case ISD::UINT_TO_FP:
94  case ISD::ZERO_EXTEND:
95  R = ScalarizeVecRes_UnaryOp(N);
96  break;
97 
98  case ISD::ADD:
99  case ISD::AND:
100  case ISD::FADD:
101  case ISD::FCOPYSIGN:
102  case ISD::FDIV:
103  case ISD::FMUL:
104  case ISD::FPOW:
105  case ISD::FREM:
106  case ISD::FSUB:
107  case ISD::MUL:
108  case ISD::OR:
109  case ISD::SDIV:
110  case ISD::SREM:
111  case ISD::SUB:
112  case ISD::UDIV:
113  case ISD::UREM:
114  case ISD::XOR:
115  case ISD::SHL:
116  case ISD::SRA:
117  case ISD::SRL:
118  R = ScalarizeVecRes_BinOp(N);
119  break;
120  case ISD::FMA:
121  R = ScalarizeVecRes_TernaryOp(N);
122  break;
123  }
124 
125  // If R is null, the sub-method took care of registering the result.
126  if (R.getNode())
127  SetScalarizedVector(SDValue(N, ResNo), R);
128 }
129 
130 SDValue DAGTypeLegalizer::ScalarizeVecRes_BinOp(SDNode *N) {
131  SDValue LHS = GetScalarizedVector(N->getOperand(0));
132  SDValue RHS = GetScalarizedVector(N->getOperand(1));
133  return DAG.getNode(N->getOpcode(), SDLoc(N),
134  LHS.getValueType(), LHS, RHS);
135 }
136 
137 SDValue DAGTypeLegalizer::ScalarizeVecRes_TernaryOp(SDNode *N) {
138  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
139  SDValue Op1 = GetScalarizedVector(N->getOperand(1));
140  SDValue Op2 = GetScalarizedVector(N->getOperand(2));
141  return DAG.getNode(N->getOpcode(), SDLoc(N),
142  Op0.getValueType(), Op0, Op1, Op2);
143 }
144 
145 SDValue DAGTypeLegalizer::ScalarizeVecRes_MERGE_VALUES(SDNode *N,
146  unsigned ResNo) {
147  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
148  return GetScalarizedVector(Op);
149 }
150 
151 SDValue DAGTypeLegalizer::ScalarizeVecRes_BITCAST(SDNode *N) {
152  EVT NewVT = N->getValueType(0).getVectorElementType();
153  return DAG.getNode(ISD::BITCAST, SDLoc(N),
154  NewVT, N->getOperand(0));
155 }
156 
157 SDValue DAGTypeLegalizer::ScalarizeVecRes_BUILD_VECTOR(SDNode *N) {
158  EVT EltVT = N->getValueType(0).getVectorElementType();
159  SDValue InOp = N->getOperand(0);
160  // The BUILD_VECTOR operands may be of wider element types and
161  // we may need to truncate them back to the requested return type.
162  if (EltVT.isInteger())
163  return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
164  return InOp;
165 }
166 
167 SDValue DAGTypeLegalizer::ScalarizeVecRes_CONVERT_RNDSAT(SDNode *N) {
168  EVT NewVT = N->getValueType(0).getVectorElementType();
169  SDValue Op0 = GetScalarizedVector(N->getOperand(0));
170  return DAG.getConvertRndSat(NewVT, SDLoc(N),
171  Op0, DAG.getValueType(NewVT),
172  DAG.getValueType(Op0.getValueType()),
173  N->getOperand(3),
174  N->getOperand(4),
175  cast<CvtRndSatSDNode>(N)->getCvtCode());
176 }
177 
178 SDValue DAGTypeLegalizer::ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
179  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
181  N->getOperand(0), N->getOperand(1));
182 }
183 
184 SDValue DAGTypeLegalizer::ScalarizeVecRes_FP_ROUND(SDNode *N) {
185  EVT NewVT = N->getValueType(0).getVectorElementType();
186  SDValue Op = GetScalarizedVector(N->getOperand(0));
187  return DAG.getNode(ISD::FP_ROUND, SDLoc(N),
188  NewVT, Op, N->getOperand(1));
189 }
190 
191 SDValue DAGTypeLegalizer::ScalarizeVecRes_FPOWI(SDNode *N) {
192  SDValue Op = GetScalarizedVector(N->getOperand(0));
193  return DAG.getNode(ISD::FPOWI, SDLoc(N),
194  Op.getValueType(), Op, N->getOperand(1));
195 }
196 
197 SDValue DAGTypeLegalizer::ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N) {
198  // The value to insert may have a wider type than the vector element type,
199  // so be sure to truncate it to the element type if necessary.
200  SDValue Op = N->getOperand(1);
201  EVT EltVT = N->getValueType(0).getVectorElementType();
202  if (Op.getValueType() != EltVT)
203  // FIXME: Can this happen for floating point types?
204  Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, Op);
205  return Op;
206 }
207 
208 SDValue DAGTypeLegalizer::ScalarizeVecRes_LOAD(LoadSDNode *N) {
209  assert(N->isUnindexed() && "Indexed vector load?");
210 
211  SDValue Result = DAG.getLoad(ISD::UNINDEXED,
212  N->getExtensionType(),
214  SDLoc(N),
215  N->getChain(), N->getBasePtr(),
216  DAG.getUNDEF(N->getBasePtr().getValueType()),
217  N->getPointerInfo(),
219  N->isVolatile(), N->isNonTemporal(),
221  N->getTBAAInfo());
222 
223  // Legalized the chain result - switch anything that used the old chain to
224  // use the new one.
225  ReplaceValueWith(SDValue(N, 1), Result.getValue(1));
226  return Result;
227 }
228 
229 SDValue DAGTypeLegalizer::ScalarizeVecRes_UnaryOp(SDNode *N) {
230  // Get the dest type - it doesn't always match the input type, e.g. int_to_fp.
231  EVT DestVT = N->getValueType(0).getVectorElementType();
232  SDValue Op = GetScalarizedVector(N->getOperand(0));
233  return DAG.getNode(N->getOpcode(), SDLoc(N), DestVT, Op);
234 }
235 
236 SDValue DAGTypeLegalizer::ScalarizeVecRes_InregOp(SDNode *N) {
237  EVT EltVT = N->getValueType(0).getVectorElementType();
238  EVT ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT().getVectorElementType();
239  SDValue LHS = GetScalarizedVector(N->getOperand(0));
240  return DAG.getNode(N->getOpcode(), SDLoc(N), EltVT,
241  LHS, DAG.getValueType(ExtVT));
242 }
243 
244 SDValue DAGTypeLegalizer::ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N) {
245  // If the operand is wider than the vector element type then it is implicitly
246  // truncated. Make that explicit here.
247  EVT EltVT = N->getValueType(0).getVectorElementType();
248  SDValue InOp = N->getOperand(0);
249  if (InOp.getValueType() != EltVT)
250  return DAG.getNode(ISD::TRUNCATE, SDLoc(N), EltVT, InOp);
251  return InOp;
252 }
253 
254 SDValue DAGTypeLegalizer::ScalarizeVecRes_VSELECT(SDNode *N) {
255  SDValue Cond = GetScalarizedVector(N->getOperand(0));
256  SDValue LHS = GetScalarizedVector(N->getOperand(1));
257  TargetLowering::BooleanContent ScalarBool = TLI.getBooleanContents(false);
259  if (ScalarBool != VecBool) {
260  EVT CondVT = Cond.getValueType();
261  switch (ScalarBool) {
263  break;
265  assert(VecBool == TargetLowering::UndefinedBooleanContent ||
267  // Vector read from all ones, scalar expects a single 1 so mask.
268  Cond = DAG.getNode(ISD::AND, SDLoc(N), CondVT,
269  Cond, DAG.getConstant(1, CondVT));
270  break;
272  assert(VecBool == TargetLowering::UndefinedBooleanContent ||
274  // Vector reads from a one, scalar from all ones so sign extend.
275  Cond = DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), CondVT,
276  Cond, DAG.getValueType(MVT::i1));
277  break;
278  }
279  }
280 
281  return DAG.getSelect(SDLoc(N),
282  LHS.getValueType(), Cond, LHS,
283  GetScalarizedVector(N->getOperand(2)));
284 }
285 
286 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT(SDNode *N) {
287  SDValue LHS = GetScalarizedVector(N->getOperand(1));
288  return DAG.getSelect(SDLoc(N),
289  LHS.getValueType(), N->getOperand(0), LHS,
290  GetScalarizedVector(N->getOperand(2)));
291 }
292 
293 SDValue DAGTypeLegalizer::ScalarizeVecRes_SELECT_CC(SDNode *N) {
294  SDValue LHS = GetScalarizedVector(N->getOperand(2));
295  return DAG.getNode(ISD::SELECT_CC, SDLoc(N), LHS.getValueType(),
296  N->getOperand(0), N->getOperand(1),
297  LHS, GetScalarizedVector(N->getOperand(3)),
298  N->getOperand(4));
299 }
300 
301 SDValue DAGTypeLegalizer::ScalarizeVecRes_SETCC(SDNode *N) {
302  assert(N->getValueType(0).isVector() ==
303  N->getOperand(0).getValueType().isVector() &&
304  "Scalar/Vector type mismatch");
305 
306  if (N->getValueType(0).isVector()) return ScalarizeVecRes_VSETCC(N);
307 
308  SDValue LHS = GetScalarizedVector(N->getOperand(0));
309  SDValue RHS = GetScalarizedVector(N->getOperand(1));
310  SDLoc DL(N);
311 
312  // Turn it into a scalar SETCC.
313  return DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, N->getOperand(2));
314 }
315 
316 SDValue DAGTypeLegalizer::ScalarizeVecRes_UNDEF(SDNode *N) {
317  return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
318 }
319 
320 SDValue DAGTypeLegalizer::ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N) {
321  // Figure out if the scalar is the LHS or RHS and return it.
322  SDValue Arg = N->getOperand(2).getOperand(0);
323  if (Arg.getOpcode() == ISD::UNDEF)
324  return DAG.getUNDEF(N->getValueType(0).getVectorElementType());
325  unsigned Op = !cast<ConstantSDNode>(Arg)->isNullValue();
326  return GetScalarizedVector(N->getOperand(Op));
327 }
328 
329 SDValue DAGTypeLegalizer::ScalarizeVecRes_VSETCC(SDNode *N) {
330  assert(N->getValueType(0).isVector() &&
331  N->getOperand(0).getValueType().isVector() &&
332  "Operand types must be vectors");
333 
334  SDValue LHS = GetScalarizedVector(N->getOperand(0));
335  SDValue RHS = GetScalarizedVector(N->getOperand(1));
336  EVT NVT = N->getValueType(0).getVectorElementType();
337  SDLoc DL(N);
338 
339  // Turn it into a scalar SETCC.
340  SDValue Res = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS,
341  N->getOperand(2));
342  // Vectors may have a different boolean contents to scalars. Promote the
343  // value appropriately.
344  ISD::NodeType ExtendCode =
346  return DAG.getNode(ExtendCode, DL, NVT, Res);
347 }
348 
349 
350 //===----------------------------------------------------------------------===//
351 // Operand Vector Scalarization <1 x ty> -> ty.
352 //===----------------------------------------------------------------------===//
353 
354 bool DAGTypeLegalizer::ScalarizeVectorOperand(SDNode *N, unsigned OpNo) {
355  DEBUG(dbgs() << "Scalarize node operand " << OpNo << ": ";
356  N->dump(&DAG);
357  dbgs() << "\n");
358  SDValue Res = SDValue();
359 
360  if (Res.getNode() == 0) {
361  switch (N->getOpcode()) {
362  default:
363 #ifndef NDEBUG
364  dbgs() << "ScalarizeVectorOperand Op #" << OpNo << ": ";
365  N->dump(&DAG);
366  dbgs() << "\n";
367 #endif
368  llvm_unreachable("Do not know how to scalarize this operator's operand!");
369  case ISD::BITCAST:
370  Res = ScalarizeVecOp_BITCAST(N);
371  break;
372  case ISD::ANY_EXTEND:
373  case ISD::ZERO_EXTEND:
374  case ISD::SIGN_EXTEND:
375  case ISD::TRUNCATE:
376  Res = ScalarizeVecOp_UnaryOp(N);
377  break;
378  case ISD::CONCAT_VECTORS:
379  Res = ScalarizeVecOp_CONCAT_VECTORS(N);
380  break;
382  Res = ScalarizeVecOp_EXTRACT_VECTOR_ELT(N);
383  break;
384  case ISD::STORE:
385  Res = ScalarizeVecOp_STORE(cast<StoreSDNode>(N), OpNo);
386  break;
387  }
388  }
389 
390  // If the result is null, the sub-method took care of registering results etc.
391  if (!Res.getNode()) return false;
392 
393  // If the result is N, the sub-method updated N in place. Tell the legalizer
394  // core about this.
395  if (Res.getNode() == N)
396  return true;
397 
398  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
399  "Invalid operand expansion");
400 
401  ReplaceValueWith(SDValue(N, 0), Res);
402  return false;
403 }
404 
405 /// ScalarizeVecOp_BITCAST - If the value to convert is a vector that needs
406 /// to be scalarized, it must be <1 x ty>. Convert the element instead.
407 SDValue DAGTypeLegalizer::ScalarizeVecOp_BITCAST(SDNode *N) {
408  SDValue Elt = GetScalarizedVector(N->getOperand(0));
409  return DAG.getNode(ISD::BITCAST, SDLoc(N),
410  N->getValueType(0), Elt);
411 }
412 
413 /// ScalarizeVecOp_EXTEND - If the value to extend is a vector that needs
414 /// to be scalarized, it must be <1 x ty>. Extend the element instead.
415 SDValue DAGTypeLegalizer::ScalarizeVecOp_UnaryOp(SDNode *N) {
416  assert(N->getValueType(0).getVectorNumElements() == 1 &&
417  "Unexected vector type!");
418  SDValue Elt = GetScalarizedVector(N->getOperand(0));
420  Ops[0] = DAG.getNode(N->getOpcode(), SDLoc(N),
421  N->getValueType(0).getScalarType(), Elt);
422  // Revectorize the result so the types line up with what the uses of this
423  // expression expect.
424  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0),
425  &Ops[0], 1);
426 }
427 
428 /// ScalarizeVecOp_CONCAT_VECTORS - The vectors to concatenate have length one -
429 /// use a BUILD_VECTOR instead.
430 SDValue DAGTypeLegalizer::ScalarizeVecOp_CONCAT_VECTORS(SDNode *N) {
432  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
433  Ops[i] = GetScalarizedVector(N->getOperand(i));
434  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), N->getValueType(0),
435  &Ops[0], Ops.size());
436 }
437 
438 /// ScalarizeVecOp_EXTRACT_VECTOR_ELT - If the input is a vector that needs to
439 /// be scalarized, it must be <1 x ty>, so just return the element, ignoring the
440 /// index.
441 SDValue DAGTypeLegalizer::ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
442  SDValue Res = GetScalarizedVector(N->getOperand(0));
443  if (Res.getValueType() != N->getValueType(0))
444  Res = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), N->getValueType(0),
445  Res);
446  return Res;
447 }
448 
449 /// ScalarizeVecOp_STORE - If the value to store is a vector that needs to be
450 /// scalarized, it must be <1 x ty>. Just store the element.
451 SDValue DAGTypeLegalizer::ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo){
452  assert(N->isUnindexed() && "Indexed store of one-element vector?");
453  assert(OpNo == 1 && "Do not know how to scalarize this operand!");
454  SDLoc dl(N);
455 
456  if (N->isTruncatingStore())
457  return DAG.getTruncStore(N->getChain(), dl,
458  GetScalarizedVector(N->getOperand(1)),
459  N->getBasePtr(), N->getPointerInfo(),
461  N->isVolatile(), N->isNonTemporal(),
462  N->getAlignment(), N->getTBAAInfo());
463 
464  return DAG.getStore(N->getChain(), dl, GetScalarizedVector(N->getOperand(1)),
465  N->getBasePtr(), N->getPointerInfo(),
466  N->isVolatile(), N->isNonTemporal(),
467  N->getOriginalAlignment(), N->getTBAAInfo());
468 }
469 
470 
471 //===----------------------------------------------------------------------===//
472 // Result Vector Splitting
473 //===----------------------------------------------------------------------===//
474 
475 /// SplitVectorResult - This method is called when the specified result of the
476 /// specified node is found to need vector splitting. At this point, the node
477 /// may also have invalid operands or may have other results that need
478 /// legalization, we just know that (at least) one result needs vector
479 /// splitting.
480 void DAGTypeLegalizer::SplitVectorResult(SDNode *N, unsigned ResNo) {
481  DEBUG(dbgs() << "Split node result: ";
482  N->dump(&DAG);
483  dbgs() << "\n");
484  SDValue Lo, Hi;
485 
486  // See if the target wants to custom expand this node.
487  if (CustomLowerNode(N, N->getValueType(ResNo), true))
488  return;
489 
490  switch (N->getOpcode()) {
491  default:
492 #ifndef NDEBUG
493  dbgs() << "SplitVectorResult #" << ResNo << ": ";
494  N->dump(&DAG);
495  dbgs() << "\n";
496 #endif
497  report_fatal_error("Do not know how to split the result of this "
498  "operator!\n");
499 
500  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
501  case ISD::VSELECT:
502  case ISD::SELECT: SplitRes_SELECT(N, Lo, Hi); break;
503  case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break;
504  case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break;
505  case ISD::BITCAST: SplitVecRes_BITCAST(N, Lo, Hi); break;
506  case ISD::BUILD_VECTOR: SplitVecRes_BUILD_VECTOR(N, Lo, Hi); break;
507  case ISD::CONCAT_VECTORS: SplitVecRes_CONCAT_VECTORS(N, Lo, Hi); break;
508  case ISD::EXTRACT_SUBVECTOR: SplitVecRes_EXTRACT_SUBVECTOR(N, Lo, Hi); break;
509  case ISD::FP_ROUND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
510  case ISD::FPOWI: SplitVecRes_FPOWI(N, Lo, Hi); break;
511  case ISD::INSERT_VECTOR_ELT: SplitVecRes_INSERT_VECTOR_ELT(N, Lo, Hi); break;
512  case ISD::SCALAR_TO_VECTOR: SplitVecRes_SCALAR_TO_VECTOR(N, Lo, Hi); break;
513  case ISD::SIGN_EXTEND_INREG: SplitVecRes_InregOp(N, Lo, Hi); break;
514  case ISD::LOAD:
515  SplitVecRes_LOAD(cast<LoadSDNode>(N), Lo, Hi);
516  break;
517  case ISD::SETCC:
518  SplitVecRes_SETCC(N, Lo, Hi);
519  break;
520  case ISD::VECTOR_SHUFFLE:
521  SplitVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N), Lo, Hi);
522  break;
523 
524  case ISD::CONVERT_RNDSAT:
525  case ISD::CTLZ:
526  case ISD::CTTZ:
529  case ISD::CTPOP:
530  case ISD::FABS:
531  case ISD::FCEIL:
532  case ISD::FCOS:
533  case ISD::FEXP:
534  case ISD::FEXP2:
535  case ISD::FFLOOR:
536  case ISD::FLOG:
537  case ISD::FLOG10:
538  case ISD::FLOG2:
539  case ISD::FNEARBYINT:
540  case ISD::FNEG:
541  case ISD::FP_EXTEND:
542  case ISD::FP_ROUND:
543  case ISD::FP_TO_SINT:
544  case ISD::FP_TO_UINT:
545  case ISD::FRINT:
546  case ISD::FROUND:
547  case ISD::FSIN:
548  case ISD::FSQRT:
549  case ISD::FTRUNC:
550  case ISD::SINT_TO_FP:
551  case ISD::TRUNCATE:
552  case ISD::UINT_TO_FP:
553  SplitVecRes_UnaryOp(N, Lo, Hi);
554  break;
555 
556  case ISD::ANY_EXTEND:
557  case ISD::SIGN_EXTEND:
558  case ISD::ZERO_EXTEND:
559  SplitVecRes_ExtendOp(N, Lo, Hi);
560  break;
561 
562  case ISD::ADD:
563  case ISD::SUB:
564  case ISD::MUL:
565  case ISD::FADD:
566  case ISD::FCOPYSIGN:
567  case ISD::FSUB:
568  case ISD::FMUL:
569  case ISD::SDIV:
570  case ISD::UDIV:
571  case ISD::FDIV:
572  case ISD::FPOW:
573  case ISD::AND:
574  case ISD::OR:
575  case ISD::XOR:
576  case ISD::SHL:
577  case ISD::SRA:
578  case ISD::SRL:
579  case ISD::UREM:
580  case ISD::SREM:
581  case ISD::FREM:
582  SplitVecRes_BinOp(N, Lo, Hi);
583  break;
584  case ISD::FMA:
585  SplitVecRes_TernaryOp(N, Lo, Hi);
586  break;
587  }
588 
589  // If Lo/Hi is null, the sub-method took care of registering results etc.
590  if (Lo.getNode())
591  SetSplitVector(SDValue(N, ResNo), Lo, Hi);
592 }
593 
594 void DAGTypeLegalizer::SplitVecRes_BinOp(SDNode *N, SDValue &Lo,
595  SDValue &Hi) {
596  SDValue LHSLo, LHSHi;
597  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
598  SDValue RHSLo, RHSHi;
599  GetSplitVector(N->getOperand(1), RHSLo, RHSHi);
600  SDLoc dl(N);
601 
602  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo, RHSLo);
603  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi, RHSHi);
604 }
605 
606 void DAGTypeLegalizer::SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo,
607  SDValue &Hi) {
608  SDValue Op0Lo, Op0Hi;
609  GetSplitVector(N->getOperand(0), Op0Lo, Op0Hi);
610  SDValue Op1Lo, Op1Hi;
611  GetSplitVector(N->getOperand(1), Op1Lo, Op1Hi);
612  SDValue Op2Lo, Op2Hi;
613  GetSplitVector(N->getOperand(2), Op2Lo, Op2Hi);
614  SDLoc dl(N);
615 
616  Lo = DAG.getNode(N->getOpcode(), dl, Op0Lo.getValueType(),
617  Op0Lo, Op1Lo, Op2Lo);
618  Hi = DAG.getNode(N->getOpcode(), dl, Op0Hi.getValueType(),
619  Op0Hi, Op1Hi, Op2Hi);
620 }
621 
622 void DAGTypeLegalizer::SplitVecRes_BITCAST(SDNode *N, SDValue &Lo,
623  SDValue &Hi) {
624  // We know the result is a vector. The input may be either a vector or a
625  // scalar value.
626  EVT LoVT, HiVT;
627  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
628  SDLoc dl(N);
629 
630  SDValue InOp = N->getOperand(0);
631  EVT InVT = InOp.getValueType();
632 
633  // Handle some special cases efficiently.
634  switch (getTypeAction(InVT)) {
640  break;
643  // A scalar to vector conversion, where the scalar needs expansion.
644  // If the vector is being split in two then we can just convert the
645  // expanded pieces.
646  if (LoVT == HiVT) {
647  GetExpandedOp(InOp, Lo, Hi);
648  if (TLI.isBigEndian())
649  std::swap(Lo, Hi);
650  Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
651  Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
652  return;
653  }
654  break;
656  // If the input is a vector that needs to be split, convert each split
657  // piece of the input now.
658  GetSplitVector(InOp, Lo, Hi);
659  Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
660  Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
661  return;
662  }
663 
664  // In the general case, convert the input to an integer and split it by hand.
665  EVT LoIntVT = EVT::getIntegerVT(*DAG.getContext(), LoVT.getSizeInBits());
666  EVT HiIntVT = EVT::getIntegerVT(*DAG.getContext(), HiVT.getSizeInBits());
667  if (TLI.isBigEndian())
668  std::swap(LoIntVT, HiIntVT);
669 
670  SplitInteger(BitConvertToInteger(InOp), LoIntVT, HiIntVT, Lo, Hi);
671 
672  if (TLI.isBigEndian())
673  std::swap(Lo, Hi);
674  Lo = DAG.getNode(ISD::BITCAST, dl, LoVT, Lo);
675  Hi = DAG.getNode(ISD::BITCAST, dl, HiVT, Hi);
676 }
677 
678 void DAGTypeLegalizer::SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo,
679  SDValue &Hi) {
680  EVT LoVT, HiVT;
681  SDLoc dl(N);
682  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
683  unsigned LoNumElts = LoVT.getVectorNumElements();
684  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+LoNumElts);
685  Lo = DAG.getNode(ISD::BUILD_VECTOR, dl, LoVT, &LoOps[0], LoOps.size());
686 
687  SmallVector<SDValue, 8> HiOps(N->op_begin()+LoNumElts, N->op_end());
688  Hi = DAG.getNode(ISD::BUILD_VECTOR, dl, HiVT, &HiOps[0], HiOps.size());
689 }
690 
691 void DAGTypeLegalizer::SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo,
692  SDValue &Hi) {
693  assert(!(N->getNumOperands() & 1) && "Unsupported CONCAT_VECTORS");
694  SDLoc dl(N);
695  unsigned NumSubvectors = N->getNumOperands() / 2;
696  if (NumSubvectors == 1) {
697  Lo = N->getOperand(0);
698  Hi = N->getOperand(1);
699  return;
700  }
701 
702  EVT LoVT, HiVT;
703  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
704 
705  SmallVector<SDValue, 8> LoOps(N->op_begin(), N->op_begin()+NumSubvectors);
706  Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, LoVT, &LoOps[0], LoOps.size());
707 
708  SmallVector<SDValue, 8> HiOps(N->op_begin()+NumSubvectors, N->op_end());
709  Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HiVT, &HiOps[0], HiOps.size());
710 }
711 
712 void DAGTypeLegalizer::SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo,
713  SDValue &Hi) {
714  SDValue Vec = N->getOperand(0);
715  SDValue Idx = N->getOperand(1);
716  SDLoc dl(N);
717 
718  EVT LoVT, HiVT;
719  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
720 
721  Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, LoVT, Vec, Idx);
722  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
723  Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, HiVT, Vec,
724  DAG.getConstant(IdxVal + LoVT.getVectorNumElements(),
725  TLI.getVectorIdxTy()));
726 }
727 
728 void DAGTypeLegalizer::SplitVecRes_FPOWI(SDNode *N, SDValue &Lo,
729  SDValue &Hi) {
730  SDLoc dl(N);
731  GetSplitVector(N->getOperand(0), Lo, Hi);
732  Lo = DAG.getNode(ISD::FPOWI, dl, Lo.getValueType(), Lo, N->getOperand(1));
733  Hi = DAG.getNode(ISD::FPOWI, dl, Hi.getValueType(), Hi, N->getOperand(1));
734 }
735 
736 void DAGTypeLegalizer::SplitVecRes_InregOp(SDNode *N, SDValue &Lo,
737  SDValue &Hi) {
738  SDValue LHSLo, LHSHi;
739  GetSplitVector(N->getOperand(0), LHSLo, LHSHi);
740  SDLoc dl(N);
741 
742  EVT LoVT, HiVT;
743  llvm::tie(LoVT, HiVT) =
744  DAG.GetSplitDestVTs(cast<VTSDNode>(N->getOperand(1))->getVT());
745 
746  Lo = DAG.getNode(N->getOpcode(), dl, LHSLo.getValueType(), LHSLo,
747  DAG.getValueType(LoVT));
748  Hi = DAG.getNode(N->getOpcode(), dl, LHSHi.getValueType(), LHSHi,
749  DAG.getValueType(HiVT));
750 }
751 
752 void DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo,
753  SDValue &Hi) {
754  SDValue Vec = N->getOperand(0);
755  SDValue Elt = N->getOperand(1);
756  SDValue Idx = N->getOperand(2);
757  SDLoc dl(N);
758  GetSplitVector(Vec, Lo, Hi);
759 
760  if (ConstantSDNode *CIdx = dyn_cast<ConstantSDNode>(Idx)) {
761  unsigned IdxVal = CIdx->getZExtValue();
762  unsigned LoNumElts = Lo.getValueType().getVectorNumElements();
763  if (IdxVal < LoNumElts)
764  Lo = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
765  Lo.getValueType(), Lo, Elt, Idx);
766  else
767  Hi = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Hi.getValueType(), Hi, Elt,
768  DAG.getConstant(IdxVal - LoNumElts,
769  TLI.getVectorIdxTy()));
770  return;
771  }
772 
773  // Spill the vector to the stack.
774  EVT VecVT = Vec.getValueType();
775  EVT EltVT = VecVT.getVectorElementType();
776  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
777  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
778  MachinePointerInfo(), false, false, 0);
779 
780  // Store the new element. This may be larger than the vector element type,
781  // so use a truncating store.
782  SDValue EltPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
783  Type *VecType = VecVT.getTypeForEVT(*DAG.getContext());
784  unsigned Alignment =
785  TLI.getDataLayout()->getPrefTypeAlignment(VecType);
786  Store = DAG.getTruncStore(Store, dl, Elt, EltPtr, MachinePointerInfo(), EltVT,
787  false, false, 0);
788 
789  // Load the Lo part from the stack slot.
790  Lo = DAG.getLoad(Lo.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
791  false, false, false, 0);
792 
793  // Increment the pointer to the other part.
794  unsigned IncrementSize = Lo.getValueType().getSizeInBits() / 8;
795  StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
796  DAG.getConstant(IncrementSize, StackPtr.getValueType()));
797 
798  // Load the Hi part from the stack slot.
799  Hi = DAG.getLoad(Hi.getValueType(), dl, Store, StackPtr, MachinePointerInfo(),
800  false, false, false, MinAlign(Alignment, IncrementSize));
801 }
802 
803 void DAGTypeLegalizer::SplitVecRes_SCALAR_TO_VECTOR(SDNode *N, SDValue &Lo,
804  SDValue &Hi) {
805  EVT LoVT, HiVT;
806  SDLoc dl(N);
807  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
808  Lo = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoVT, N->getOperand(0));
809  Hi = DAG.getUNDEF(HiVT);
810 }
811 
812 void DAGTypeLegalizer::SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo,
813  SDValue &Hi) {
814  assert(ISD::isUNINDEXEDLoad(LD) && "Indexed load during type legalization!");
815  EVT LoVT, HiVT;
816  SDLoc dl(LD);
817  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(LD->getValueType(0));
818 
819  ISD::LoadExtType ExtType = LD->getExtensionType();
820  SDValue Ch = LD->getChain();
821  SDValue Ptr = LD->getBasePtr();
822  SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
823  EVT MemoryVT = LD->getMemoryVT();
824  unsigned Alignment = LD->getOriginalAlignment();
825  bool isVolatile = LD->isVolatile();
826  bool isNonTemporal = LD->isNonTemporal();
827  bool isInvariant = LD->isInvariant();
828  const MDNode *TBAAInfo = LD->getTBAAInfo();
829 
830  EVT LoMemVT, HiMemVT;
831  llvm::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
832 
833  Lo = DAG.getLoad(ISD::UNINDEXED, ExtType, LoVT, dl, Ch, Ptr, Offset,
834  LD->getPointerInfo(), LoMemVT, isVolatile, isNonTemporal,
835  isInvariant, Alignment, TBAAInfo);
836 
837  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
838  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
839  DAG.getConstant(IncrementSize, Ptr.getValueType()));
840  Hi = DAG.getLoad(ISD::UNINDEXED, ExtType, HiVT, dl, Ch, Ptr, Offset,
841  LD->getPointerInfo().getWithOffset(IncrementSize),
842  HiMemVT, isVolatile, isNonTemporal, isInvariant, Alignment,
843  TBAAInfo);
844 
845  // Build a factor node to remember that this load is independent of the
846  // other one.
847  Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
848  Hi.getValue(1));
849 
850  // Legalized the chain result - switch anything that used the old chain to
851  // use the new one.
852  ReplaceValueWith(SDValue(LD, 1), Ch);
853 }
854 
855 void DAGTypeLegalizer::SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi) {
856  assert(N->getValueType(0).isVector() &&
857  N->getOperand(0).getValueType().isVector() &&
858  "Operand types must be vectors");
859 
860  EVT LoVT, HiVT;
861  SDLoc DL(N);
862  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
863 
864  // Split the input.
865  SDValue LL, LH, RL, RH;
866  llvm::tie(LL, LH) = DAG.SplitVectorOperand(N, 0);
867  llvm::tie(RL, RH) = DAG.SplitVectorOperand(N, 1);
868 
869  Lo = DAG.getNode(N->getOpcode(), DL, LoVT, LL, RL, N->getOperand(2));
870  Hi = DAG.getNode(N->getOpcode(), DL, HiVT, LH, RH, N->getOperand(2));
871 }
872 
873 void DAGTypeLegalizer::SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo,
874  SDValue &Hi) {
875  // Get the dest types - they may not match the input types, e.g. int_to_fp.
876  EVT LoVT, HiVT;
877  SDLoc dl(N);
878  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
879 
880  // If the input also splits, handle it directly for a compile time speedup.
881  // Otherwise split it by hand.
882  EVT InVT = N->getOperand(0).getValueType();
883  if (getTypeAction(InVT) == TargetLowering::TypeSplitVector)
884  GetSplitVector(N->getOperand(0), Lo, Hi);
885  else
886  llvm::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
887 
888  if (N->getOpcode() == ISD::FP_ROUND) {
889  Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo, N->getOperand(1));
890  Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi, N->getOperand(1));
891  } else if (N->getOpcode() == ISD::CONVERT_RNDSAT) {
892  SDValue DTyOpLo = DAG.getValueType(LoVT);
893  SDValue DTyOpHi = DAG.getValueType(HiVT);
894  SDValue STyOpLo = DAG.getValueType(Lo.getValueType());
895  SDValue STyOpHi = DAG.getValueType(Hi.getValueType());
896  SDValue RndOp = N->getOperand(3);
897  SDValue SatOp = N->getOperand(4);
898  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
899  Lo = DAG.getConvertRndSat(LoVT, dl, Lo, DTyOpLo, STyOpLo, RndOp, SatOp,
900  CvtCode);
901  Hi = DAG.getConvertRndSat(HiVT, dl, Hi, DTyOpHi, STyOpHi, RndOp, SatOp,
902  CvtCode);
903  } else {
904  Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
905  Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
906  }
907 }
908 
909 void DAGTypeLegalizer::SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo,
910  SDValue &Hi) {
911  SDLoc dl(N);
912  EVT SrcVT = N->getOperand(0).getValueType();
913  EVT DestVT = N->getValueType(0);
914  EVT LoVT, HiVT;
915  llvm::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(DestVT);
916 
917  // We can do better than a generic split operation if the extend is doing
918  // more than just doubling the width of the elements and the following are
919  // true:
920  // - The number of vector elements is even,
921  // - the source type is legal,
922  // - the type of a split source is illegal,
923  // - the type of an extended (by doubling element size) source is legal, and
924  // - the type of that extended source when split is legal.
925  //
926  // This won't necessarily completely legalize the operation, but it will
927  // more effectively move in the right direction and prevent falling down
928  // to scalarization in many cases due to the input vector being split too
929  // far.
930  unsigned NumElements = SrcVT.getVectorNumElements();
931  if ((NumElements & 1) == 0 &&
932  SrcVT.getSizeInBits() * 2 < DestVT.getSizeInBits()) {
933  LLVMContext &Ctx = *DAG.getContext();
934  EVT NewSrcVT = EVT::getVectorVT(
935  Ctx, EVT::getIntegerVT(
936  Ctx, SrcVT.getVectorElementType().getSizeInBits() * 2),
937  NumElements);
938  EVT SplitSrcVT =
939  EVT::getVectorVT(Ctx, SrcVT.getVectorElementType(), NumElements / 2);
940  EVT SplitLoVT, SplitHiVT;
941  llvm::tie(SplitLoVT, SplitHiVT) = DAG.GetSplitDestVTs(NewSrcVT);
942  if (TLI.isTypeLegal(SrcVT) && !TLI.isTypeLegal(SplitSrcVT) &&
943  TLI.isTypeLegal(NewSrcVT) && TLI.isTypeLegal(SplitLoVT)) {
944  DEBUG(dbgs() << "Split vector extend via incremental extend:";
945  N->dump(&DAG); dbgs() << "\n");
946  // Extend the source vector by one step.
947  SDValue NewSrc =
948  DAG.getNode(N->getOpcode(), dl, NewSrcVT, N->getOperand(0));
949  // Get the low and high halves of the new, extended one step, vector.
950  llvm::tie(Lo, Hi) = DAG.SplitVector(NewSrc, dl);
951  // Extend those vector halves the rest of the way.
952  Lo = DAG.getNode(N->getOpcode(), dl, LoVT, Lo);
953  Hi = DAG.getNode(N->getOpcode(), dl, HiVT, Hi);
954  return;
955  }
956  }
957  // Fall back to the generic unary operator splitting otherwise.
958  SplitVecRes_UnaryOp(N, Lo, Hi);
959 }
960 
961 void DAGTypeLegalizer::SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N,
962  SDValue &Lo, SDValue &Hi) {
963  // The low and high parts of the original input give four input vectors.
964  SDValue Inputs[4];
965  SDLoc dl(N);
966  GetSplitVector(N->getOperand(0), Inputs[0], Inputs[1]);
967  GetSplitVector(N->getOperand(1), Inputs[2], Inputs[3]);
968  EVT NewVT = Inputs[0].getValueType();
969  unsigned NewElts = NewVT.getVectorNumElements();
970 
971  // If Lo or Hi uses elements from at most two of the four input vectors, then
972  // express it as a vector shuffle of those two inputs. Otherwise extract the
973  // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
975  for (unsigned High = 0; High < 2; ++High) {
976  SDValue &Output = High ? Hi : Lo;
977 
978  // Build a shuffle mask for the output, discovering on the fly which
979  // input vectors to use as shuffle operands (recorded in InputUsed).
980  // If building a suitable shuffle vector proves too hard, then bail
981  // out with useBuildVector set.
982  unsigned InputUsed[2] = { -1U, -1U }; // Not yet discovered.
983  unsigned FirstMaskIdx = High * NewElts;
984  bool useBuildVector = false;
985  for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
986  // The mask element. This indexes into the input.
987  int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
988 
989  // The input vector this mask element indexes into.
990  unsigned Input = (unsigned)Idx / NewElts;
991 
992  if (Input >= array_lengthof(Inputs)) {
993  // The mask element does not index into any input vector.
994  Ops.push_back(-1);
995  continue;
996  }
997 
998  // Turn the index into an offset from the start of the input vector.
999  Idx -= Input * NewElts;
1000 
1001  // Find or create a shuffle vector operand to hold this input.
1002  unsigned OpNo;
1003  for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
1004  if (InputUsed[OpNo] == Input) {
1005  // This input vector is already an operand.
1006  break;
1007  } else if (InputUsed[OpNo] == -1U) {
1008  // Create a new operand for this input vector.
1009  InputUsed[OpNo] = Input;
1010  break;
1011  }
1012  }
1013 
1014  if (OpNo >= array_lengthof(InputUsed)) {
1015  // More than two input vectors used! Give up on trying to create a
1016  // shuffle vector. Insert all elements into a BUILD_VECTOR instead.
1017  useBuildVector = true;
1018  break;
1019  }
1020 
1021  // Add the mask index for the new shuffle vector.
1022  Ops.push_back(Idx + OpNo * NewElts);
1023  }
1024 
1025  if (useBuildVector) {
1026  EVT EltVT = NewVT.getVectorElementType();
1028 
1029  // Extract the input elements by hand.
1030  for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
1031  // The mask element. This indexes into the input.
1032  int Idx = N->getMaskElt(FirstMaskIdx + MaskOffset);
1033 
1034  // The input vector this mask element indexes into.
1035  unsigned Input = (unsigned)Idx / NewElts;
1036 
1037  if (Input >= array_lengthof(Inputs)) {
1038  // The mask element is "undef" or indexes off the end of the input.
1039  SVOps.push_back(DAG.getUNDEF(EltVT));
1040  continue;
1041  }
1042 
1043  // Turn the index into an offset from the start of the input vector.
1044  Idx -= Input * NewElts;
1045 
1046  // Extract the vector element by hand.
1047  SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
1048  Inputs[Input], DAG.getConstant(Idx,
1049  TLI.getVectorIdxTy())));
1050  }
1051 
1052  // Construct the Lo/Hi output using a BUILD_VECTOR.
1053  Output = DAG.getNode(ISD::BUILD_VECTOR,dl,NewVT, &SVOps[0], SVOps.size());
1054  } else if (InputUsed[0] == -1U) {
1055  // No input vectors were used! The result is undefined.
1056  Output = DAG.getUNDEF(NewVT);
1057  } else {
1058  SDValue Op0 = Inputs[InputUsed[0]];
1059  // If only one input was used, use an undefined vector for the other.
1060  SDValue Op1 = InputUsed[1] == -1U ?
1061  DAG.getUNDEF(NewVT) : Inputs[InputUsed[1]];
1062  // At least one input vector was used. Create a new shuffle vector.
1063  Output = DAG.getVectorShuffle(NewVT, dl, Op0, Op1, &Ops[0]);
1064  }
1065 
1066  Ops.clear();
1067  }
1068 }
1069 
1070 
1071 //===----------------------------------------------------------------------===//
1072 // Operand Vector Splitting
1073 //===----------------------------------------------------------------------===//
1074 
1075 /// SplitVectorOperand - This method is called when the specified operand of the
1076 /// specified node is found to need vector splitting. At this point, all of the
1077 /// result types of the node are known to be legal, but other operands of the
1078 /// node may need legalization as well as the specified one.
1079 bool DAGTypeLegalizer::SplitVectorOperand(SDNode *N, unsigned OpNo) {
1080  DEBUG(dbgs() << "Split node operand: ";
1081  N->dump(&DAG);
1082  dbgs() << "\n");
1083  SDValue Res = SDValue();
1084 
1085  // See if the target wants to custom split this node.
1086  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
1087  return false;
1088 
1089  if (Res.getNode() == 0) {
1090  switch (N->getOpcode()) {
1091  default:
1092 #ifndef NDEBUG
1093  dbgs() << "SplitVectorOperand Op #" << OpNo << ": ";
1094  N->dump(&DAG);
1095  dbgs() << "\n";
1096 #endif
1097  report_fatal_error("Do not know how to split this operator's "
1098  "operand!\n");
1099 
1100  case ISD::SETCC: Res = SplitVecOp_VSETCC(N); break;
1101  case ISD::BITCAST: Res = SplitVecOp_BITCAST(N); break;
1102  case ISD::EXTRACT_SUBVECTOR: Res = SplitVecOp_EXTRACT_SUBVECTOR(N); break;
1103  case ISD::EXTRACT_VECTOR_ELT:Res = SplitVecOp_EXTRACT_VECTOR_ELT(N); break;
1104  case ISD::CONCAT_VECTORS: Res = SplitVecOp_CONCAT_VECTORS(N); break;
1105  case ISD::TRUNCATE: Res = SplitVecOp_TRUNCATE(N); break;
1106  case ISD::FP_ROUND: Res = SplitVecOp_FP_ROUND(N); break;
1107  case ISD::STORE:
1108  Res = SplitVecOp_STORE(cast<StoreSDNode>(N), OpNo);
1109  break;
1110  case ISD::VSELECT:
1111  Res = SplitVecOp_VSELECT(N, OpNo);
1112  break;
1113  case ISD::CTTZ:
1114  case ISD::CTLZ:
1115  case ISD::CTPOP:
1116  case ISD::FP_EXTEND:
1117  case ISD::FP_TO_SINT:
1118  case ISD::FP_TO_UINT:
1119  case ISD::SINT_TO_FP:
1120  case ISD::UINT_TO_FP:
1121  case ISD::FTRUNC:
1122  case ISD::SIGN_EXTEND:
1123  case ISD::ZERO_EXTEND:
1124  case ISD::ANY_EXTEND:
1125  Res = SplitVecOp_UnaryOp(N);
1126  break;
1127  }
1128  }
1129 
1130  // If the result is null, the sub-method took care of registering results etc.
1131  if (!Res.getNode()) return false;
1132 
1133  // If the result is N, the sub-method updated N in place. Tell the legalizer
1134  // core about this.
1135  if (Res.getNode() == N)
1136  return true;
1137 
1138  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
1139  "Invalid operand expansion");
1140 
1141  ReplaceValueWith(SDValue(N, 0), Res);
1142  return false;
1143 }
1144 
1145 SDValue DAGTypeLegalizer::SplitVecOp_VSELECT(SDNode *N, unsigned OpNo) {
1146  // The only possibility for an illegal operand is the mask, since result type
1147  // legalization would have handled this node already otherwise.
1148  assert(OpNo == 0 && "Illegal operand must be mask");
1149 
1150  SDValue Mask = N->getOperand(0);
1151  SDValue Src0 = N->getOperand(1);
1152  SDValue Src1 = N->getOperand(2);
1153  EVT Src0VT = Src0.getValueType();
1154  SDLoc DL(N);
1155  assert(Mask.getValueType().isVector() && "VSELECT without a vector mask?");
1156 
1157  SDValue Lo, Hi;
1158  GetSplitVector(N->getOperand(0), Lo, Hi);
1159  assert(Lo.getValueType() == Hi.getValueType() &&
1160  "Lo and Hi have differing types");
1161 
1162  EVT LoOpVT, HiOpVT;
1163  llvm::tie(LoOpVT, HiOpVT) = DAG.GetSplitDestVTs(Src0VT);
1164  assert(LoOpVT == HiOpVT && "Asymmetric vector split?");
1165 
1166  SDValue LoOp0, HiOp0, LoOp1, HiOp1, LoMask, HiMask;
1167  llvm::tie(LoOp0, HiOp0) = DAG.SplitVector(Src0, DL);
1168  llvm::tie(LoOp1, HiOp1) = DAG.SplitVector(Src1, DL);
1169  llvm::tie(LoMask, HiMask) = DAG.SplitVector(Mask, DL);
1170 
1171  SDValue LoSelect =
1172  DAG.getNode(ISD::VSELECT, DL, LoOpVT, LoMask, LoOp0, LoOp1);
1173  SDValue HiSelect =
1174  DAG.getNode(ISD::VSELECT, DL, HiOpVT, HiMask, HiOp0, HiOp1);
1175 
1176  return DAG.getNode(ISD::CONCAT_VECTORS, DL, Src0VT, LoSelect, HiSelect);
1177 }
1178 
1179 SDValue DAGTypeLegalizer::SplitVecOp_UnaryOp(SDNode *N) {
1180  // The result has a legal vector type, but the input needs splitting.
1181  EVT ResVT = N->getValueType(0);
1182  SDValue Lo, Hi;
1183  SDLoc dl(N);
1184  GetSplitVector(N->getOperand(0), Lo, Hi);
1185  EVT InVT = Lo.getValueType();
1186 
1187  EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1188  InVT.getVectorNumElements());
1189 
1190  Lo = DAG.getNode(N->getOpcode(), dl, OutVT, Lo);
1191  Hi = DAG.getNode(N->getOpcode(), dl, OutVT, Hi);
1192 
1193  return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
1194 }
1195 
1196 SDValue DAGTypeLegalizer::SplitVecOp_BITCAST(SDNode *N) {
1197  // For example, i64 = BITCAST v4i16 on alpha. Typically the vector will
1198  // end up being split all the way down to individual components. Convert the
1199  // split pieces into integers and reassemble.
1200  SDValue Lo, Hi;
1201  GetSplitVector(N->getOperand(0), Lo, Hi);
1202  Lo = BitConvertToInteger(Lo);
1203  Hi = BitConvertToInteger(Hi);
1204 
1205  if (TLI.isBigEndian())
1206  std::swap(Lo, Hi);
1207 
1208  return DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0),
1209  JoinIntegers(Lo, Hi));
1210 }
1211 
1212 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
1213  // We know that the extracted result type is legal.
1214  EVT SubVT = N->getValueType(0);
1215  SDValue Idx = N->getOperand(1);
1216  SDLoc dl(N);
1217  SDValue Lo, Hi;
1218  GetSplitVector(N->getOperand(0), Lo, Hi);
1219 
1220  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1221  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1222 
1223  if (IdxVal < LoElts) {
1224  assert(IdxVal + SubVT.getVectorNumElements() <= LoElts &&
1225  "Extracted subvector crosses vector split!");
1226  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Lo, Idx);
1227  } else {
1228  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVT, Hi,
1229  DAG.getConstant(IdxVal - LoElts, Idx.getValueType()));
1230  }
1231 }
1232 
1233 SDValue DAGTypeLegalizer::SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
1234  SDValue Vec = N->getOperand(0);
1235  SDValue Idx = N->getOperand(1);
1236  EVT VecVT = Vec.getValueType();
1237 
1238  if (isa<ConstantSDNode>(Idx)) {
1239  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
1240  assert(IdxVal < VecVT.getVectorNumElements() && "Invalid vector index!");
1241 
1242  SDValue Lo, Hi;
1243  GetSplitVector(Vec, Lo, Hi);
1244 
1245  uint64_t LoElts = Lo.getValueType().getVectorNumElements();
1246 
1247  if (IdxVal < LoElts)
1248  return SDValue(DAG.UpdateNodeOperands(N, Lo, Idx), 0);
1249  return SDValue(DAG.UpdateNodeOperands(N, Hi,
1250  DAG.getConstant(IdxVal - LoElts,
1251  Idx.getValueType())), 0);
1252  }
1253 
1254  // Store the vector to the stack.
1255  EVT EltVT = VecVT.getVectorElementType();
1256  SDLoc dl(N);
1257  SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1258  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1259  MachinePointerInfo(), false, false, 0);
1260 
1261  // Load back the required element.
1262  StackPtr = GetVectorElementPointer(StackPtr, EltVT, Idx);
1263  return DAG.getExtLoad(ISD::EXTLOAD, dl, N->getValueType(0), Store, StackPtr,
1264  MachinePointerInfo(), EltVT, false, false, 0);
1265 }
1266 
1267 SDValue DAGTypeLegalizer::SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo) {
1268  assert(N->isUnindexed() && "Indexed store of vector?");
1269  assert(OpNo == 1 && "Can only split the stored value");
1270  SDLoc DL(N);
1271 
1272  bool isTruncating = N->isTruncatingStore();
1273  SDValue Ch = N->getChain();
1274  SDValue Ptr = N->getBasePtr();
1275  EVT MemoryVT = N->getMemoryVT();
1276  unsigned Alignment = N->getOriginalAlignment();
1277  bool isVol = N->isVolatile();
1278  bool isNT = N->isNonTemporal();
1279  const MDNode *TBAAInfo = N->getTBAAInfo();
1280  SDValue Lo, Hi;
1281  GetSplitVector(N->getOperand(1), Lo, Hi);
1282 
1283  EVT LoMemVT, HiMemVT;
1284  llvm::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemoryVT);
1285 
1286  unsigned IncrementSize = LoMemVT.getSizeInBits()/8;
1287 
1288  if (isTruncating)
1289  Lo = DAG.getTruncStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1290  LoMemVT, isVol, isNT, Alignment, TBAAInfo);
1291  else
1292  Lo = DAG.getStore(Ch, DL, Lo, Ptr, N->getPointerInfo(),
1293  isVol, isNT, Alignment, TBAAInfo);
1294 
1295  // Increment the pointer to the other half.
1296  Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1297  DAG.getConstant(IncrementSize, Ptr.getValueType()));
1298 
1299  if (isTruncating)
1300  Hi = DAG.getTruncStore(Ch, DL, Hi, Ptr,
1301  N->getPointerInfo().getWithOffset(IncrementSize),
1302  HiMemVT, isVol, isNT, Alignment, TBAAInfo);
1303  else
1304  Hi = DAG.getStore(Ch, DL, Hi, Ptr,
1305  N->getPointerInfo().getWithOffset(IncrementSize),
1306  isVol, isNT, Alignment, TBAAInfo);
1307 
1308  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Lo, Hi);
1309 }
1310 
1311 SDValue DAGTypeLegalizer::SplitVecOp_CONCAT_VECTORS(SDNode *N) {
1312  SDLoc DL(N);
1313 
1314  // The input operands all must have the same type, and we know the result
1315  // type is valid. Convert this to a buildvector which extracts all the
1316  // input elements.
1317  // TODO: If the input elements are power-two vectors, we could convert this to
1318  // a new CONCAT_VECTORS node with elements that are half-wide.
1320  EVT EltVT = N->getValueType(0).getVectorElementType();
1321  for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1322  SDValue Op = N->getOperand(op);
1323  for (unsigned i = 0, e = Op.getValueType().getVectorNumElements();
1324  i != e; ++i) {
1325  Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
1326  Op, DAG.getConstant(i, TLI.getVectorIdxTy())));
1327 
1328  }
1329  }
1330 
1331  return DAG.getNode(ISD::BUILD_VECTOR, DL, N->getValueType(0),
1332  &Elts[0], Elts.size());
1333 }
1334 
1335 SDValue DAGTypeLegalizer::SplitVecOp_TRUNCATE(SDNode *N) {
1336  // The result type is legal, but the input type is illegal. If splitting
1337  // ends up with the result type of each half still being legal, just
1338  // do that. If, however, that would result in an illegal result type,
1339  // we can try to get more clever with power-two vectors. Specifically,
1340  // split the input type, but also widen the result element size, then
1341  // concatenate the halves and truncate again. For example, consider a target
1342  // where v8i8 is legal and v8i32 is not (ARM, which doesn't have 256-bit
1343  // vectors). To perform a "%res = v8i8 trunc v8i32 %in" we do:
1344  // %inlo = v4i32 extract_subvector %in, 0
1345  // %inhi = v4i32 extract_subvector %in, 4
1346  // %lo16 = v4i16 trunc v4i32 %inlo
1347  // %hi16 = v4i16 trunc v4i32 %inhi
1348  // %in16 = v8i16 concat_vectors v4i16 %lo16, v4i16 %hi16
1349  // %res = v8i8 trunc v8i16 %in16
1350  //
1351  // Without this transform, the original truncate would end up being
1352  // scalarized, which is pretty much always a last resort.
1353  SDValue InVec = N->getOperand(0);
1354  EVT InVT = InVec->getValueType(0);
1355  EVT OutVT = N->getValueType(0);
1356  unsigned NumElements = OutVT.getVectorNumElements();
1357  // Widening should have already made sure this is a power-two vector
1358  // if we're trying to split it at all. assert() that's true, just in case.
1359  assert(!(NumElements & 1) && "Splitting vector, but not in half!");
1360 
1361  unsigned InElementSize = InVT.getVectorElementType().getSizeInBits();
1362  unsigned OutElementSize = OutVT.getVectorElementType().getSizeInBits();
1363 
1364  // If the input elements are only 1/2 the width of the result elements,
1365  // just use the normal splitting. Our trick only work if there's room
1366  // to split more than once.
1367  if (InElementSize <= OutElementSize * 2)
1368  return SplitVecOp_UnaryOp(N);
1369  SDLoc DL(N);
1370 
1371  // Extract the halves of the input via extract_subvector.
1372  SDValue InLoVec, InHiVec;
1373  llvm::tie(InLoVec, InHiVec) = DAG.SplitVector(InVec, DL);
1374  // Truncate them to 1/2 the element size.
1375  EVT HalfElementVT = EVT::getIntegerVT(*DAG.getContext(), InElementSize/2);
1376  EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT,
1377  NumElements/2);
1378  SDValue HalfLo = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InLoVec);
1379  SDValue HalfHi = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, InHiVec);
1380  // Concatenate them to get the full intermediate truncation result.
1381  EVT InterVT = EVT::getVectorVT(*DAG.getContext(), HalfElementVT, NumElements);
1382  SDValue InterVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InterVT, HalfLo,
1383  HalfHi);
1384  // Now finish up by truncating all the way down to the original result
1385  // type. This should normally be something that ends up being legal directly,
1386  // but in theory if a target has very wide vectors and an annoyingly
1387  // restricted set of legal types, this split can chain to build things up.
1388  return DAG.getNode(ISD::TRUNCATE, DL, OutVT, InterVec);
1389 }
1390 
1391 SDValue DAGTypeLegalizer::SplitVecOp_VSETCC(SDNode *N) {
1392  assert(N->getValueType(0).isVector() &&
1393  N->getOperand(0).getValueType().isVector() &&
1394  "Operand types must be vectors");
1395  // The result has a legal vector type, but the input needs splitting.
1396  SDValue Lo0, Hi0, Lo1, Hi1, LoRes, HiRes;
1397  SDLoc DL(N);
1398  GetSplitVector(N->getOperand(0), Lo0, Hi0);
1399  GetSplitVector(N->getOperand(1), Lo1, Hi1);
1400  unsigned PartElements = Lo0.getValueType().getVectorNumElements();
1401  EVT PartResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, PartElements);
1402  EVT WideResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 2*PartElements);
1403 
1404  LoRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Lo0, Lo1, N->getOperand(2));
1405  HiRes = DAG.getNode(ISD::SETCC, DL, PartResVT, Hi0, Hi1, N->getOperand(2));
1406  SDValue Con = DAG.getNode(ISD::CONCAT_VECTORS, DL, WideResVT, LoRes, HiRes);
1407  return PromoteTargetBoolean(Con, N->getValueType(0));
1408 }
1409 
1410 
1411 SDValue DAGTypeLegalizer::SplitVecOp_FP_ROUND(SDNode *N) {
1412  // The result has a legal vector type, but the input needs splitting.
1413  EVT ResVT = N->getValueType(0);
1414  SDValue Lo, Hi;
1415  SDLoc DL(N);
1416  GetSplitVector(N->getOperand(0), Lo, Hi);
1417  EVT InVT = Lo.getValueType();
1418 
1419  EVT OutVT = EVT::getVectorVT(*DAG.getContext(), ResVT.getVectorElementType(),
1420  InVT.getVectorNumElements());
1421 
1422  Lo = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Lo, N->getOperand(1));
1423  Hi = DAG.getNode(ISD::FP_ROUND, DL, OutVT, Hi, N->getOperand(1));
1424 
1425  return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi);
1426 }
1427 
1428 
1429 
1430 //===----------------------------------------------------------------------===//
1431 // Result Vector Widening
1432 //===----------------------------------------------------------------------===//
1433 
1434 void DAGTypeLegalizer::WidenVectorResult(SDNode *N, unsigned ResNo) {
1435  DEBUG(dbgs() << "Widen node result " << ResNo << ": ";
1436  N->dump(&DAG);
1437  dbgs() << "\n");
1438 
1439  // See if the target wants to custom widen this node.
1440  if (CustomWidenLowerNode(N, N->getValueType(ResNo)))
1441  return;
1442 
1443  SDValue Res = SDValue();
1444  switch (N->getOpcode()) {
1445  default:
1446 #ifndef NDEBUG
1447  dbgs() << "WidenVectorResult #" << ResNo << ": ";
1448  N->dump(&DAG);
1449  dbgs() << "\n";
1450 #endif
1451  llvm_unreachable("Do not know how to widen the result of this operator!");
1452 
1453  case ISD::MERGE_VALUES: Res = WidenVecRes_MERGE_VALUES(N, ResNo); break;
1454  case ISD::BITCAST: Res = WidenVecRes_BITCAST(N); break;
1455  case ISD::BUILD_VECTOR: Res = WidenVecRes_BUILD_VECTOR(N); break;
1456  case ISD::CONCAT_VECTORS: Res = WidenVecRes_CONCAT_VECTORS(N); break;
1457  case ISD::CONVERT_RNDSAT: Res = WidenVecRes_CONVERT_RNDSAT(N); break;
1458  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecRes_EXTRACT_SUBVECTOR(N); break;
1459  case ISD::FP_ROUND_INREG: Res = WidenVecRes_InregOp(N); break;
1460  case ISD::INSERT_VECTOR_ELT: Res = WidenVecRes_INSERT_VECTOR_ELT(N); break;
1461  case ISD::LOAD: Res = WidenVecRes_LOAD(N); break;
1462  case ISD::SCALAR_TO_VECTOR: Res = WidenVecRes_SCALAR_TO_VECTOR(N); break;
1463  case ISD::SIGN_EXTEND_INREG: Res = WidenVecRes_InregOp(N); break;
1464  case ISD::VSELECT:
1465  case ISD::SELECT: Res = WidenVecRes_SELECT(N); break;
1466  case ISD::SELECT_CC: Res = WidenVecRes_SELECT_CC(N); break;
1467  case ISD::SETCC: Res = WidenVecRes_SETCC(N); break;
1468  case ISD::UNDEF: Res = WidenVecRes_UNDEF(N); break;
1469  case ISD::VECTOR_SHUFFLE:
1470  Res = WidenVecRes_VECTOR_SHUFFLE(cast<ShuffleVectorSDNode>(N));
1471  break;
1472 
1473  case ISD::ADD:
1474  case ISD::AND:
1475  case ISD::BSWAP:
1476  case ISD::MUL:
1477  case ISD::MULHS:
1478  case ISD::MULHU:
1479  case ISD::OR:
1480  case ISD::SUB:
1481  case ISD::XOR:
1482  Res = WidenVecRes_Binary(N);
1483  break;
1484 
1485  case ISD::FADD:
1486  case ISD::FCOPYSIGN:
1487  case ISD::FMUL:
1488  case ISD::FPOW:
1489  case ISD::FSUB:
1490  case ISD::FDIV:
1491  case ISD::FREM:
1492  case ISD::SDIV:
1493  case ISD::UDIV:
1494  case ISD::SREM:
1495  case ISD::UREM:
1496  Res = WidenVecRes_BinaryCanTrap(N);
1497  break;
1498 
1499  case ISD::FPOWI:
1500  Res = WidenVecRes_POWI(N);
1501  break;
1502 
1503  case ISD::SHL:
1504  case ISD::SRA:
1505  case ISD::SRL:
1506  Res = WidenVecRes_Shift(N);
1507  break;
1508 
1509  case ISD::ANY_EXTEND:
1510  case ISD::FP_EXTEND:
1511  case ISD::FP_ROUND:
1512  case ISD::FP_TO_SINT:
1513  case ISD::FP_TO_UINT:
1514  case ISD::SIGN_EXTEND:
1515  case ISD::SINT_TO_FP:
1516  case ISD::TRUNCATE:
1517  case ISD::UINT_TO_FP:
1518  case ISD::ZERO_EXTEND:
1519  Res = WidenVecRes_Convert(N);
1520  break;
1521 
1522  case ISD::CTLZ:
1523  case ISD::CTPOP:
1524  case ISD::CTTZ:
1525  case ISD::FABS:
1526  case ISD::FCEIL:
1527  case ISD::FCOS:
1528  case ISD::FEXP:
1529  case ISD::FEXP2:
1530  case ISD::FFLOOR:
1531  case ISD::FLOG:
1532  case ISD::FLOG10:
1533  case ISD::FLOG2:
1534  case ISD::FNEARBYINT:
1535  case ISD::FNEG:
1536  case ISD::FRINT:
1537  case ISD::FROUND:
1538  case ISD::FSIN:
1539  case ISD::FSQRT:
1540  case ISD::FTRUNC:
1541  Res = WidenVecRes_Unary(N);
1542  break;
1543  case ISD::FMA:
1544  Res = WidenVecRes_Ternary(N);
1545  break;
1546  }
1547 
1548  // If Res is null, the sub-method took care of registering the result.
1549  if (Res.getNode())
1550  SetWidenedVector(SDValue(N, ResNo), Res);
1551 }
1552 
1553 SDValue DAGTypeLegalizer::WidenVecRes_Ternary(SDNode *N) {
1554  // Ternary op widening.
1555  SDLoc dl(N);
1556  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1557  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1558  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1559  SDValue InOp3 = GetWidenedVector(N->getOperand(2));
1560  return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2, InOp3);
1561 }
1562 
1563 SDValue DAGTypeLegalizer::WidenVecRes_Binary(SDNode *N) {
1564  // Binary op widening.
1565  SDLoc dl(N);
1566  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1567  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1568  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1569  return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
1570 }
1571 
1572 SDValue DAGTypeLegalizer::WidenVecRes_BinaryCanTrap(SDNode *N) {
1573  // Binary op widening for operations that can trap.
1574  unsigned Opcode = N->getOpcode();
1575  SDLoc dl(N);
1576  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1577  EVT WidenEltVT = WidenVT.getVectorElementType();
1578  EVT VT = WidenVT;
1579  unsigned NumElts = VT.getVectorNumElements();
1580  while (!TLI.isTypeLegal(VT) && NumElts != 1) {
1581  NumElts = NumElts / 2;
1582  VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
1583  }
1584 
1585  if (NumElts != 1 && !TLI.canOpTrap(N->getOpcode(), VT)) {
1586  // Operation doesn't trap so just widen as normal.
1587  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1588  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1589  return DAG.getNode(N->getOpcode(), dl, WidenVT, InOp1, InOp2);
1590  }
1591 
1592  // No legal vector version so unroll the vector operation and then widen.
1593  if (NumElts == 1)
1594  return DAG.UnrollVectorOp(N, WidenVT.getVectorNumElements());
1595 
1596  // Since the operation can trap, apply operation on the original vector.
1597  EVT MaxVT = VT;
1598  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
1599  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
1600  unsigned CurNumElts = N->getValueType(0).getVectorNumElements();
1601 
1602  SmallVector<SDValue, 16> ConcatOps(CurNumElts);
1603  unsigned ConcatEnd = 0; // Current ConcatOps index.
1604  int Idx = 0; // Current Idx into input vectors.
1605 
1606  // NumElts := greatest legal vector size (at most WidenVT)
1607  // while (orig. vector has unhandled elements) {
1608  // take munches of size NumElts from the beginning and add to ConcatOps
1609  // NumElts := next smaller supported vector size or 1
1610  // }
1611  while (CurNumElts != 0) {
1612  while (CurNumElts >= NumElts) {
1613  SDValue EOp1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp1,
1614  DAG.getConstant(Idx, TLI.getVectorIdxTy()));
1615  SDValue EOp2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, InOp2,
1616  DAG.getConstant(Idx, TLI.getVectorIdxTy()));
1617  ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, VT, EOp1, EOp2);
1618  Idx += NumElts;
1619  CurNumElts -= NumElts;
1620  }
1621  do {
1622  NumElts = NumElts / 2;
1623  VT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NumElts);
1624  } while (!TLI.isTypeLegal(VT) && NumElts != 1);
1625 
1626  if (NumElts == 1) {
1627  for (unsigned i = 0; i != CurNumElts; ++i, ++Idx) {
1628  SDValue EOp1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
1629  InOp1, DAG.getConstant(Idx,
1630  TLI.getVectorIdxTy()));
1631  SDValue EOp2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, WidenEltVT,
1632  InOp2, DAG.getConstant(Idx,
1633  TLI.getVectorIdxTy()));
1634  ConcatOps[ConcatEnd++] = DAG.getNode(Opcode, dl, WidenEltVT,
1635  EOp1, EOp2);
1636  }
1637  CurNumElts = 0;
1638  }
1639  }
1640 
1641  // Check to see if we have a single operation with the widen type.
1642  if (ConcatEnd == 1) {
1643  VT = ConcatOps[0].getValueType();
1644  if (VT == WidenVT)
1645  return ConcatOps[0];
1646  }
1647 
1648  // while (Some element of ConcatOps is not of type MaxVT) {
1649  // From the end of ConcatOps, collect elements of the same type and put
1650  // them into an op of the next larger supported type
1651  // }
1652  while (ConcatOps[ConcatEnd-1].getValueType() != MaxVT) {
1653  Idx = ConcatEnd - 1;
1654  VT = ConcatOps[Idx--].getValueType();
1655  while (Idx >= 0 && ConcatOps[Idx].getValueType() == VT)
1656  Idx--;
1657 
1658  int NextSize = VT.isVector() ? VT.getVectorNumElements() : 1;
1659  EVT NextVT;
1660  do {
1661  NextSize *= 2;
1662  NextVT = EVT::getVectorVT(*DAG.getContext(), WidenEltVT, NextSize);
1663  } while (!TLI.isTypeLegal(NextVT));
1664 
1665  if (!VT.isVector()) {
1666  // Scalar type, create an INSERT_VECTOR_ELEMENT of type NextVT
1667  SDValue VecOp = DAG.getUNDEF(NextVT);
1668  unsigned NumToInsert = ConcatEnd - Idx - 1;
1669  for (unsigned i = 0, OpIdx = Idx+1; i < NumToInsert; i++, OpIdx++) {
1670  VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NextVT, VecOp,
1671  ConcatOps[OpIdx], DAG.getConstant(i,
1672  TLI.getVectorIdxTy()));
1673  }
1674  ConcatOps[Idx+1] = VecOp;
1675  ConcatEnd = Idx + 2;
1676  } else {
1677  // Vector type, create a CONCAT_VECTORS of type NextVT
1678  SDValue undefVec = DAG.getUNDEF(VT);
1679  unsigned OpsToConcat = NextSize/VT.getVectorNumElements();
1680  SmallVector<SDValue, 16> SubConcatOps(OpsToConcat);
1681  unsigned RealVals = ConcatEnd - Idx - 1;
1682  unsigned SubConcatEnd = 0;
1683  unsigned SubConcatIdx = Idx + 1;
1684  while (SubConcatEnd < RealVals)
1685  SubConcatOps[SubConcatEnd++] = ConcatOps[++Idx];
1686  while (SubConcatEnd < OpsToConcat)
1687  SubConcatOps[SubConcatEnd++] = undefVec;
1688  ConcatOps[SubConcatIdx] = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1689  NextVT, &SubConcatOps[0],
1690  OpsToConcat);
1691  ConcatEnd = SubConcatIdx + 1;
1692  }
1693  }
1694 
1695  // Check to see if we have a single operation with the widen type.
1696  if (ConcatEnd == 1) {
1697  VT = ConcatOps[0].getValueType();
1698  if (VT == WidenVT)
1699  return ConcatOps[0];
1700  }
1701 
1702  // add undefs of size MaxVT until ConcatOps grows to length of WidenVT
1703  unsigned NumOps = WidenVT.getVectorNumElements()/MaxVT.getVectorNumElements();
1704  if (NumOps != ConcatEnd ) {
1705  SDValue UndefVal = DAG.getUNDEF(MaxVT);
1706  for (unsigned j = ConcatEnd; j < NumOps; ++j)
1707  ConcatOps[j] = UndefVal;
1708  }
1709  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0], NumOps);
1710 }
1711 
1712 SDValue DAGTypeLegalizer::WidenVecRes_Convert(SDNode *N) {
1713  SDValue InOp = N->getOperand(0);
1714  SDLoc DL(N);
1715 
1716  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1717  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1718 
1719  EVT InVT = InOp.getValueType();
1720  EVT InEltVT = InVT.getVectorElementType();
1721  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
1722 
1723  unsigned Opcode = N->getOpcode();
1724  unsigned InVTNumElts = InVT.getVectorNumElements();
1725 
1726  if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
1727  InOp = GetWidenedVector(N->getOperand(0));
1728  InVT = InOp.getValueType();
1729  InVTNumElts = InVT.getVectorNumElements();
1730  if (InVTNumElts == WidenNumElts) {
1731  if (N->getNumOperands() == 1)
1732  return DAG.getNode(Opcode, DL, WidenVT, InOp);
1733  return DAG.getNode(Opcode, DL, WidenVT, InOp, N->getOperand(1));
1734  }
1735  }
1736 
1737  if (TLI.isTypeLegal(InWidenVT)) {
1738  // Because the result and the input are different vector types, widening
1739  // the result could create a legal type but widening the input might make
1740  // it an illegal type that might lead to repeatedly splitting the input
1741  // and then widening it. To avoid this, we widen the input only if
1742  // it results in a legal type.
1743  if (WidenNumElts % InVTNumElts == 0) {
1744  // Widen the input and call convert on the widened input vector.
1745  unsigned NumConcat = WidenNumElts/InVTNumElts;
1746  SmallVector<SDValue, 16> Ops(NumConcat);
1747  Ops[0] = InOp;
1748  SDValue UndefVal = DAG.getUNDEF(InVT);
1749  for (unsigned i = 1; i != NumConcat; ++i)
1750  Ops[i] = UndefVal;
1751  SDValue InVec = DAG.getNode(ISD::CONCAT_VECTORS, DL, InWidenVT,
1752  &Ops[0], NumConcat);
1753  if (N->getNumOperands() == 1)
1754  return DAG.getNode(Opcode, DL, WidenVT, InVec);
1755  return DAG.getNode(Opcode, DL, WidenVT, InVec, N->getOperand(1));
1756  }
1757 
1758  if (InVTNumElts % WidenNumElts == 0) {
1759  SDValue InVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InWidenVT,
1760  InOp, DAG.getConstant(0,
1761  TLI.getVectorIdxTy()));
1762  // Extract the input and convert the shorten input vector.
1763  if (N->getNumOperands() == 1)
1764  return DAG.getNode(Opcode, DL, WidenVT, InVal);
1765  return DAG.getNode(Opcode, DL, WidenVT, InVal, N->getOperand(1));
1766  }
1767  }
1768 
1769  // Otherwise unroll into some nasty scalar code and rebuild the vector.
1770  SmallVector<SDValue, 16> Ops(WidenNumElts);
1771  EVT EltVT = WidenVT.getVectorElementType();
1772  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
1773  unsigned i;
1774  for (i=0; i < MinElts; ++i) {
1775  SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, InEltVT, InOp,
1776  DAG.getConstant(i, TLI.getVectorIdxTy()));
1777  if (N->getNumOperands() == 1)
1778  Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val);
1779  else
1780  Ops[i] = DAG.getNode(Opcode, DL, EltVT, Val, N->getOperand(1));
1781  }
1782 
1783  SDValue UndefVal = DAG.getUNDEF(EltVT);
1784  for (; i < WidenNumElts; ++i)
1785  Ops[i] = UndefVal;
1786 
1787  return DAG.getNode(ISD::BUILD_VECTOR, DL, WidenVT, &Ops[0], WidenNumElts);
1788 }
1789 
1790 SDValue DAGTypeLegalizer::WidenVecRes_POWI(SDNode *N) {
1791  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1792  SDValue InOp = GetWidenedVector(N->getOperand(0));
1793  SDValue ShOp = N->getOperand(1);
1794  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
1795 }
1796 
1797 SDValue DAGTypeLegalizer::WidenVecRes_Shift(SDNode *N) {
1798  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1799  SDValue InOp = GetWidenedVector(N->getOperand(0));
1800  SDValue ShOp = N->getOperand(1);
1801 
1802  EVT ShVT = ShOp.getValueType();
1803  if (getTypeAction(ShVT) == TargetLowering::TypeWidenVector) {
1804  ShOp = GetWidenedVector(ShOp);
1805  ShVT = ShOp.getValueType();
1806  }
1807  EVT ShWidenVT = EVT::getVectorVT(*DAG.getContext(),
1808  ShVT.getVectorElementType(),
1809  WidenVT.getVectorNumElements());
1810  if (ShVT != ShWidenVT)
1811  ShOp = ModifyToType(ShOp, ShWidenVT);
1812 
1813  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp, ShOp);
1814 }
1815 
1816 SDValue DAGTypeLegalizer::WidenVecRes_Unary(SDNode *N) {
1817  // Unary op widening.
1818  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1819  SDValue InOp = GetWidenedVector(N->getOperand(0));
1820  return DAG.getNode(N->getOpcode(), SDLoc(N), WidenVT, InOp);
1821 }
1822 
1823 SDValue DAGTypeLegalizer::WidenVecRes_InregOp(SDNode *N) {
1824  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1825  EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
1826  cast<VTSDNode>(N->getOperand(1))->getVT()
1827  .getVectorElementType(),
1828  WidenVT.getVectorNumElements());
1829  SDValue WidenLHS = GetWidenedVector(N->getOperand(0));
1830  return DAG.getNode(N->getOpcode(), SDLoc(N),
1831  WidenVT, WidenLHS, DAG.getValueType(ExtVT));
1832 }
1833 
1834 SDValue DAGTypeLegalizer::WidenVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo) {
1835  SDValue WidenVec = DisintegrateMERGE_VALUES(N, ResNo);
1836  return GetWidenedVector(WidenVec);
1837 }
1838 
1839 SDValue DAGTypeLegalizer::WidenVecRes_BITCAST(SDNode *N) {
1840  SDValue InOp = N->getOperand(0);
1841  EVT InVT = InOp.getValueType();
1842  EVT VT = N->getValueType(0);
1843  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1844  SDLoc dl(N);
1845 
1846  switch (getTypeAction(InVT)) {
1848  break;
1850  // If the incoming type is a vector that is being promoted, then
1851  // we know that the elements are arranged differently and that we
1852  // must perform the conversion using a stack slot.
1853  if (InVT.isVector())
1854  break;
1855 
1856  // If the InOp is promoted to the same size, convert it. Otherwise,
1857  // fall out of the switch and widen the promoted input.
1858  InOp = GetPromotedInteger(InOp);
1859  InVT = InOp.getValueType();
1860  if (WidenVT.bitsEq(InVT))
1861  return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
1862  break;
1868  break;
1870  // If the InOp is widened to the same size, convert it. Otherwise, fall
1871  // out of the switch and widen the widened input.
1872  InOp = GetWidenedVector(InOp);
1873  InVT = InOp.getValueType();
1874  if (WidenVT.bitsEq(InVT))
1875  // The input widens to the same size. Convert to the widen value.
1876  return DAG.getNode(ISD::BITCAST, dl, WidenVT, InOp);
1877  break;
1878  }
1879 
1880  unsigned WidenSize = WidenVT.getSizeInBits();
1881  unsigned InSize = InVT.getSizeInBits();
1882  // x86mmx is not an acceptable vector element type, so don't try.
1883  if (WidenSize % InSize == 0 && InVT != MVT::x86mmx) {
1884  // Determine new input vector type. The new input vector type will use
1885  // the same element type (if its a vector) or use the input type as a
1886  // vector. It is the same size as the type to widen to.
1887  EVT NewInVT;
1888  unsigned NewNumElts = WidenSize / InSize;
1889  if (InVT.isVector()) {
1890  EVT InEltVT = InVT.getVectorElementType();
1891  NewInVT = EVT::getVectorVT(*DAG.getContext(), InEltVT,
1892  WidenSize / InEltVT.getSizeInBits());
1893  } else {
1894  NewInVT = EVT::getVectorVT(*DAG.getContext(), InVT, NewNumElts);
1895  }
1896 
1897  if (TLI.isTypeLegal(NewInVT)) {
1898  // Because the result and the input are different vector types, widening
1899  // the result could create a legal type but widening the input might make
1900  // it an illegal type that might lead to repeatedly splitting the input
1901  // and then widening it. To avoid this, we widen the input only if
1902  // it results in a legal type.
1903  SmallVector<SDValue, 16> Ops(NewNumElts);
1904  SDValue UndefVal = DAG.getUNDEF(InVT);
1905  Ops[0] = InOp;
1906  for (unsigned i = 1; i < NewNumElts; ++i)
1907  Ops[i] = UndefVal;
1908 
1909  SDValue NewVec;
1910  if (InVT.isVector())
1911  NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl,
1912  NewInVT, &Ops[0], NewNumElts);
1913  else
1914  NewVec = DAG.getNode(ISD::BUILD_VECTOR, dl,
1915  NewInVT, &Ops[0], NewNumElts);
1916  return DAG.getNode(ISD::BITCAST, dl, WidenVT, NewVec);
1917  }
1918  }
1919 
1920  return CreateStackStoreLoad(InOp, WidenVT);
1921 }
1922 
1923 SDValue DAGTypeLegalizer::WidenVecRes_BUILD_VECTOR(SDNode *N) {
1924  SDLoc dl(N);
1925  // Build a vector with undefined for the new nodes.
1926  EVT VT = N->getValueType(0);
1927 
1928  // Integer BUILD_VECTOR operands may be larger than the node's vector element
1929  // type. The UNDEFs need to have the same type as the existing operands.
1930  EVT EltVT = N->getOperand(0).getValueType();
1931  unsigned NumElts = VT.getVectorNumElements();
1932 
1933  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1934  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1935 
1936  SmallVector<SDValue, 16> NewOps(N->op_begin(), N->op_end());
1937  assert(WidenNumElts >= NumElts && "Shrinking vector instead of widening!");
1938  NewOps.append(WidenNumElts - NumElts, DAG.getUNDEF(EltVT));
1939 
1940  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &NewOps[0], NewOps.size());
1941 }
1942 
1943 SDValue DAGTypeLegalizer::WidenVecRes_CONCAT_VECTORS(SDNode *N) {
1944  EVT InVT = N->getOperand(0).getValueType();
1945  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1946  SDLoc dl(N);
1947  unsigned WidenNumElts = WidenVT.getVectorNumElements();
1948  unsigned NumInElts = InVT.getVectorNumElements();
1949  unsigned NumOperands = N->getNumOperands();
1950 
1951  bool InputWidened = false; // Indicates we need to widen the input.
1952  if (getTypeAction(InVT) != TargetLowering::TypeWidenVector) {
1953  if (WidenVT.getVectorNumElements() % InVT.getVectorNumElements() == 0) {
1954  // Add undef vectors to widen to correct length.
1955  unsigned NumConcat = WidenVT.getVectorNumElements() /
1956  InVT.getVectorNumElements();
1957  SDValue UndefVal = DAG.getUNDEF(InVT);
1958  SmallVector<SDValue, 16> Ops(NumConcat);
1959  for (unsigned i=0; i < NumOperands; ++i)
1960  Ops[i] = N->getOperand(i);
1961  for (unsigned i = NumOperands; i != NumConcat; ++i)
1962  Ops[i] = UndefVal;
1963  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &Ops[0], NumConcat);
1964  }
1965  } else {
1966  InputWidened = true;
1967  if (WidenVT == TLI.getTypeToTransformTo(*DAG.getContext(), InVT)) {
1968  // The inputs and the result are widen to the same value.
1969  unsigned i;
1970  for (i=1; i < NumOperands; ++i)
1971  if (N->getOperand(i).getOpcode() != ISD::UNDEF)
1972  break;
1973 
1974  if (i == NumOperands)
1975  // Everything but the first operand is an UNDEF so just return the
1976  // widened first operand.
1977  return GetWidenedVector(N->getOperand(0));
1978 
1979  if (NumOperands == 2) {
1980  // Replace concat of two operands with a shuffle.
1981  SmallVector<int, 16> MaskOps(WidenNumElts, -1);
1982  for (unsigned i = 0; i < NumInElts; ++i) {
1983  MaskOps[i] = i;
1984  MaskOps[i + NumInElts] = i + WidenNumElts;
1985  }
1986  return DAG.getVectorShuffle(WidenVT, dl,
1987  GetWidenedVector(N->getOperand(0)),
1988  GetWidenedVector(N->getOperand(1)),
1989  &MaskOps[0]);
1990  }
1991  }
1992  }
1993 
1994  // Fall back to use extracts and build vector.
1995  EVT EltVT = WidenVT.getVectorElementType();
1996  SmallVector<SDValue, 16> Ops(WidenNumElts);
1997  unsigned Idx = 0;
1998  for (unsigned i=0; i < NumOperands; ++i) {
1999  SDValue InOp = N->getOperand(i);
2000  if (InputWidened)
2001  InOp = GetWidenedVector(InOp);
2002  for (unsigned j=0; j < NumInElts; ++j)
2003  Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2004  DAG.getConstant(j, TLI.getVectorIdxTy()));
2005  }
2006  SDValue UndefVal = DAG.getUNDEF(EltVT);
2007  for (; Idx < WidenNumElts; ++Idx)
2008  Ops[Idx] = UndefVal;
2009  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
2010 }
2011 
2012 SDValue DAGTypeLegalizer::WidenVecRes_CONVERT_RNDSAT(SDNode *N) {
2013  SDLoc dl(N);
2014  SDValue InOp = N->getOperand(0);
2015  SDValue RndOp = N->getOperand(3);
2016  SDValue SatOp = N->getOperand(4);
2017 
2018  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2019  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2020 
2021  EVT InVT = InOp.getValueType();
2022  EVT InEltVT = InVT.getVectorElementType();
2023  EVT InWidenVT = EVT::getVectorVT(*DAG.getContext(), InEltVT, WidenNumElts);
2024 
2025  SDValue DTyOp = DAG.getValueType(WidenVT);
2026  SDValue STyOp = DAG.getValueType(InWidenVT);
2027  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
2028 
2029  unsigned InVTNumElts = InVT.getVectorNumElements();
2030  if (getTypeAction(InVT) == TargetLowering::TypeWidenVector) {
2031  InOp = GetWidenedVector(InOp);
2032  InVT = InOp.getValueType();
2033  InVTNumElts = InVT.getVectorNumElements();
2034  if (InVTNumElts == WidenNumElts)
2035  return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2036  SatOp, CvtCode);
2037  }
2038 
2039  if (TLI.isTypeLegal(InWidenVT)) {
2040  // Because the result and the input are different vector types, widening
2041  // the result could create a legal type but widening the input might make
2042  // it an illegal type that might lead to repeatedly splitting the input
2043  // and then widening it. To avoid this, we widen the input only if
2044  // it results in a legal type.
2045  if (WidenNumElts % InVTNumElts == 0) {
2046  // Widen the input and call convert on the widened input vector.
2047  unsigned NumConcat = WidenNumElts/InVTNumElts;
2048  SmallVector<SDValue, 16> Ops(NumConcat);
2049  Ops[0] = InOp;
2050  SDValue UndefVal = DAG.getUNDEF(InVT);
2051  for (unsigned i = 1; i != NumConcat; ++i)
2052  Ops[i] = UndefVal;
2053 
2054  InOp = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWidenVT, &Ops[0],NumConcat);
2055  return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2056  SatOp, CvtCode);
2057  }
2058 
2059  if (InVTNumElts % WidenNumElts == 0) {
2060  // Extract the input and convert the shorten input vector.
2061  InOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InWidenVT, InOp,
2062  DAG.getConstant(0, TLI.getVectorIdxTy()));
2063  return DAG.getConvertRndSat(WidenVT, dl, InOp, DTyOp, STyOp, RndOp,
2064  SatOp, CvtCode);
2065  }
2066  }
2067 
2068  // Otherwise unroll into some nasty scalar code and rebuild the vector.
2069  SmallVector<SDValue, 16> Ops(WidenNumElts);
2070  EVT EltVT = WidenVT.getVectorElementType();
2071  DTyOp = DAG.getValueType(EltVT);
2072  STyOp = DAG.getValueType(InEltVT);
2073 
2074  unsigned MinElts = std::min(InVTNumElts, WidenNumElts);
2075  unsigned i;
2076  for (i=0; i < MinElts; ++i) {
2077  SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2078  DAG.getConstant(i, TLI.getVectorIdxTy()));
2079  Ops[i] = DAG.getConvertRndSat(WidenVT, dl, ExtVal, DTyOp, STyOp, RndOp,
2080  SatOp, CvtCode);
2081  }
2082 
2083  SDValue UndefVal = DAG.getUNDEF(EltVT);
2084  for (; i < WidenNumElts; ++i)
2085  Ops[i] = UndefVal;
2086 
2087  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
2088 }
2089 
2090 SDValue DAGTypeLegalizer::WidenVecRes_EXTRACT_SUBVECTOR(SDNode *N) {
2091  EVT VT = N->getValueType(0);
2092  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2093  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2094  SDValue InOp = N->getOperand(0);
2095  SDValue Idx = N->getOperand(1);
2096  SDLoc dl(N);
2097 
2098  if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2099  InOp = GetWidenedVector(InOp);
2100 
2101  EVT InVT = InOp.getValueType();
2102 
2103  // Check if we can just return the input vector after widening.
2104  uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
2105  if (IdxVal == 0 && InVT == WidenVT)
2106  return InOp;
2107 
2108  // Check if we can extract from the vector.
2109  unsigned InNumElts = InVT.getVectorNumElements();
2110  if (IdxVal % WidenNumElts == 0 && IdxVal + WidenNumElts < InNumElts)
2111  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, WidenVT, InOp, Idx);
2112 
2113  // We could try widening the input to the right length but for now, extract
2114  // the original elements, fill the rest with undefs and build a vector.
2115  SmallVector<SDValue, 16> Ops(WidenNumElts);
2116  EVT EltVT = VT.getVectorElementType();
2117  unsigned NumElts = VT.getVectorNumElements();
2118  unsigned i;
2119  for (i=0; i < NumElts; ++i)
2120  Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2121  DAG.getConstant(IdxVal+i, TLI.getVectorIdxTy()));
2122 
2123  SDValue UndefVal = DAG.getUNDEF(EltVT);
2124  for (; i < WidenNumElts; ++i)
2125  Ops[i] = UndefVal;
2126  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], WidenNumElts);
2127 }
2128 
2129 SDValue DAGTypeLegalizer::WidenVecRes_INSERT_VECTOR_ELT(SDNode *N) {
2130  SDValue InOp = GetWidenedVector(N->getOperand(0));
2131  return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N),
2132  InOp.getValueType(), InOp,
2133  N->getOperand(1), N->getOperand(2));
2134 }
2135 
2136 SDValue DAGTypeLegalizer::WidenVecRes_LOAD(SDNode *N) {
2137  LoadSDNode *LD = cast<LoadSDNode>(N);
2138  ISD::LoadExtType ExtType = LD->getExtensionType();
2139 
2140  SDValue Result;
2141  SmallVector<SDValue, 16> LdChain; // Chain for the series of load
2142  if (ExtType != ISD::NON_EXTLOAD)
2143  Result = GenWidenVectorExtLoads(LdChain, LD, ExtType);
2144  else
2145  Result = GenWidenVectorLoads(LdChain, LD);
2146 
2147  // If we generate a single load, we can use that for the chain. Otherwise,
2148  // build a factor node to remember the multiple loads are independent and
2149  // chain to that.
2150  SDValue NewChain;
2151  if (LdChain.size() == 1)
2152  NewChain = LdChain[0];
2153  else
2154  NewChain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
2155  &LdChain[0], LdChain.size());
2156 
2157  // Modified the chain - switch anything that used the old chain to use
2158  // the new one.
2159  ReplaceValueWith(SDValue(N, 1), NewChain);
2160 
2161  return Result;
2162 }
2163 
2164 SDValue DAGTypeLegalizer::WidenVecRes_SCALAR_TO_VECTOR(SDNode *N) {
2165  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2166  return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N),
2167  WidenVT, N->getOperand(0));
2168 }
2169 
2170 SDValue DAGTypeLegalizer::WidenVecRes_SELECT(SDNode *N) {
2171  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2172  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2173 
2174  SDValue Cond1 = N->getOperand(0);
2175  EVT CondVT = Cond1.getValueType();
2176  if (CondVT.isVector()) {
2177  EVT CondEltVT = CondVT.getVectorElementType();
2178  EVT CondWidenVT = EVT::getVectorVT(*DAG.getContext(),
2179  CondEltVT, WidenNumElts);
2180  if (getTypeAction(CondVT) == TargetLowering::TypeWidenVector)
2181  Cond1 = GetWidenedVector(Cond1);
2182 
2183  if (Cond1.getValueType() != CondWidenVT)
2184  Cond1 = ModifyToType(Cond1, CondWidenVT);
2185  }
2186 
2187  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2188  SDValue InOp2 = GetWidenedVector(N->getOperand(2));
2189  assert(InOp1.getValueType() == WidenVT && InOp2.getValueType() == WidenVT);
2190  return DAG.getNode(N->getOpcode(), SDLoc(N),
2191  WidenVT, Cond1, InOp1, InOp2);
2192 }
2193 
2194 SDValue DAGTypeLegalizer::WidenVecRes_SELECT_CC(SDNode *N) {
2195  SDValue InOp1 = GetWidenedVector(N->getOperand(2));
2196  SDValue InOp2 = GetWidenedVector(N->getOperand(3));
2197  return DAG.getNode(ISD::SELECT_CC, SDLoc(N),
2198  InOp1.getValueType(), N->getOperand(0),
2199  N->getOperand(1), InOp1, InOp2, N->getOperand(4));
2200 }
2201 
2202 SDValue DAGTypeLegalizer::WidenVecRes_SETCC(SDNode *N) {
2203  assert(N->getValueType(0).isVector() ==
2204  N->getOperand(0).getValueType().isVector() &&
2205  "Scalar/Vector type mismatch");
2206  if (N->getValueType(0).isVector()) return WidenVecRes_VSETCC(N);
2207 
2208  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2209  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2210  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2211  return DAG.getNode(ISD::SETCC, SDLoc(N), WidenVT,
2212  InOp1, InOp2, N->getOperand(2));
2213 }
2214 
2215 SDValue DAGTypeLegalizer::WidenVecRes_UNDEF(SDNode *N) {
2216  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2217  return DAG.getUNDEF(WidenVT);
2218 }
2219 
2220 SDValue DAGTypeLegalizer::WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N) {
2221  EVT VT = N->getValueType(0);
2222  SDLoc dl(N);
2223 
2224  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2225  unsigned NumElts = VT.getVectorNumElements();
2226  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2227 
2228  SDValue InOp1 = GetWidenedVector(N->getOperand(0));
2229  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2230 
2231  // Adjust mask based on new input vector length.
2232  SmallVector<int, 16> NewMask;
2233  for (unsigned i = 0; i != NumElts; ++i) {
2234  int Idx = N->getMaskElt(i);
2235  if (Idx < (int)NumElts)
2236  NewMask.push_back(Idx);
2237  else
2238  NewMask.push_back(Idx - NumElts + WidenNumElts);
2239  }
2240  for (unsigned i = NumElts; i != WidenNumElts; ++i)
2241  NewMask.push_back(-1);
2242  return DAG.getVectorShuffle(WidenVT, dl, InOp1, InOp2, &NewMask[0]);
2243 }
2244 
2245 SDValue DAGTypeLegalizer::WidenVecRes_VSETCC(SDNode *N) {
2246  assert(N->getValueType(0).isVector() &&
2247  N->getOperand(0).getValueType().isVector() &&
2248  "Operands must be vectors");
2249  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2250  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2251 
2252  SDValue InOp1 = N->getOperand(0);
2253  EVT InVT = InOp1.getValueType();
2254  assert(InVT.isVector() && "can not widen non vector type");
2255  EVT WidenInVT = EVT::getVectorVT(*DAG.getContext(),
2256  InVT.getVectorElementType(), WidenNumElts);
2257  InOp1 = GetWidenedVector(InOp1);
2258  SDValue InOp2 = GetWidenedVector(N->getOperand(1));
2259 
2260  // Assume that the input and output will be widen appropriately. If not,
2261  // we will have to unroll it at some point.
2262  assert(InOp1.getValueType() == WidenInVT &&
2263  InOp2.getValueType() == WidenInVT &&
2264  "Input not widened to expected type!");
2265  (void)WidenInVT;
2266  return DAG.getNode(ISD::SETCC, SDLoc(N),
2267  WidenVT, InOp1, InOp2, N->getOperand(2));
2268 }
2269 
2270 
2271 //===----------------------------------------------------------------------===//
2272 // Widen Vector Operand
2273 //===----------------------------------------------------------------------===//
2274 bool DAGTypeLegalizer::WidenVectorOperand(SDNode *N, unsigned OpNo) {
2275  DEBUG(dbgs() << "Widen node operand " << OpNo << ": ";
2276  N->dump(&DAG);
2277  dbgs() << "\n");
2278  SDValue Res = SDValue();
2279 
2280  // See if the target wants to custom widen this node.
2281  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2282  return false;
2283 
2284  switch (N->getOpcode()) {
2285  default:
2286 #ifndef NDEBUG
2287  dbgs() << "WidenVectorOperand op #" << OpNo << ": ";
2288  N->dump(&DAG);
2289  dbgs() << "\n";
2290 #endif
2291  llvm_unreachable("Do not know how to widen this operator's operand!");
2292 
2293  case ISD::BITCAST: Res = WidenVecOp_BITCAST(N); break;
2294  case ISD::CONCAT_VECTORS: Res = WidenVecOp_CONCAT_VECTORS(N); break;
2295  case ISD::EXTRACT_SUBVECTOR: Res = WidenVecOp_EXTRACT_SUBVECTOR(N); break;
2296  case ISD::EXTRACT_VECTOR_ELT: Res = WidenVecOp_EXTRACT_VECTOR_ELT(N); break;
2297  case ISD::STORE: Res = WidenVecOp_STORE(N); break;
2298  case ISD::SETCC: Res = WidenVecOp_SETCC(N); break;
2299 
2300  case ISD::FP_EXTEND:
2301  case ISD::FP_TO_SINT:
2302  case ISD::FP_TO_UINT:
2303  case ISD::SINT_TO_FP:
2304  case ISD::UINT_TO_FP:
2305  case ISD::TRUNCATE:
2306  case ISD::SIGN_EXTEND:
2307  case ISD::ZERO_EXTEND:
2308  case ISD::ANY_EXTEND:
2309  Res = WidenVecOp_Convert(N);
2310  break;
2311  }
2312 
2313  // If Res is null, the sub-method took care of registering the result.
2314  if (!Res.getNode()) return false;
2315 
2316  // If the result is N, the sub-method updated N in place. Tell the legalizer
2317  // core about this.
2318  if (Res.getNode() == N)
2319  return true;
2320 
2321 
2322  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2323  "Invalid operand expansion");
2324 
2325  ReplaceValueWith(SDValue(N, 0), Res);
2326  return false;
2327 }
2328 
2329 SDValue DAGTypeLegalizer::WidenVecOp_Convert(SDNode *N) {
2330  // Since the result is legal and the input is illegal, it is unlikely
2331  // that we can fix the input to a legal type so unroll the convert
2332  // into some scalar code and create a nasty build vector.
2333  EVT VT = N->getValueType(0);
2334  EVT EltVT = VT.getVectorElementType();
2335  SDLoc dl(N);
2336  unsigned NumElts = VT.getVectorNumElements();
2337  SDValue InOp = N->getOperand(0);
2338  if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2339  InOp = GetWidenedVector(InOp);
2340  EVT InVT = InOp.getValueType();
2341  EVT InEltVT = InVT.getVectorElementType();
2342 
2343  unsigned Opcode = N->getOpcode();
2344  SmallVector<SDValue, 16> Ops(NumElts);
2345  for (unsigned i=0; i < NumElts; ++i)
2346  Ops[i] = DAG.getNode(Opcode, dl, EltVT,
2347  DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, InOp,
2348  DAG.getConstant(i, TLI.getVectorIdxTy())));
2349 
2350  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
2351 }
2352 
2353 SDValue DAGTypeLegalizer::WidenVecOp_BITCAST(SDNode *N) {
2354  EVT VT = N->getValueType(0);
2355  SDValue InOp = GetWidenedVector(N->getOperand(0));
2356  EVT InWidenVT = InOp.getValueType();
2357  SDLoc dl(N);
2358 
2359  // Check if we can convert between two legal vector types and extract.
2360  unsigned InWidenSize = InWidenVT.getSizeInBits();
2361  unsigned Size = VT.getSizeInBits();
2362  // x86mmx is not an acceptable vector element type, so don't try.
2363  if (InWidenSize % Size == 0 && !VT.isVector() && VT != MVT::x86mmx) {
2364  unsigned NewNumElts = InWidenSize / Size;
2365  EVT NewVT = EVT::getVectorVT(*DAG.getContext(), VT, NewNumElts);
2366  if (TLI.isTypeLegal(NewVT)) {
2367  SDValue BitOp = DAG.getNode(ISD::BITCAST, dl, NewVT, InOp);
2368  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, BitOp,
2369  DAG.getConstant(0, TLI.getVectorIdxTy()));
2370  }
2371  }
2372 
2373  return CreateStackStoreLoad(InOp, VT);
2374 }
2375 
2376 SDValue DAGTypeLegalizer::WidenVecOp_CONCAT_VECTORS(SDNode *N) {
2377  // If the input vector is not legal, it is likely that we will not find a
2378  // legal vector of the same size. Replace the concatenate vector with a
2379  // nasty build vector.
2380  EVT VT = N->getValueType(0);
2381  EVT EltVT = VT.getVectorElementType();
2382  SDLoc dl(N);
2383  unsigned NumElts = VT.getVectorNumElements();
2384  SmallVector<SDValue, 16> Ops(NumElts);
2385 
2386  EVT InVT = N->getOperand(0).getValueType();
2387  unsigned NumInElts = InVT.getVectorNumElements();
2388 
2389  unsigned Idx = 0;
2390  unsigned NumOperands = N->getNumOperands();
2391  for (unsigned i=0; i < NumOperands; ++i) {
2392  SDValue InOp = N->getOperand(i);
2393  if (getTypeAction(InOp.getValueType()) == TargetLowering::TypeWidenVector)
2394  InOp = GetWidenedVector(InOp);
2395  for (unsigned j=0; j < NumInElts; ++j)
2396  Ops[Idx++] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2397  DAG.getConstant(j, TLI.getVectorIdxTy()));
2398  }
2399  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElts);
2400 }
2401 
2402 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N) {
2403  SDValue InOp = GetWidenedVector(N->getOperand(0));
2404  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N),
2405  N->getValueType(0), InOp, N->getOperand(1));
2406 }
2407 
2408 SDValue DAGTypeLegalizer::WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2409  SDValue InOp = GetWidenedVector(N->getOperand(0));
2410  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N),
2411  N->getValueType(0), InOp, N->getOperand(1));
2412 }
2413 
2414 SDValue DAGTypeLegalizer::WidenVecOp_STORE(SDNode *N) {
2415  // We have to widen the value but we want only to store the original
2416  // vector type.
2417  StoreSDNode *ST = cast<StoreSDNode>(N);
2418 
2419  SmallVector<SDValue, 16> StChain;
2420  if (ST->isTruncatingStore())
2421  GenWidenVectorTruncStores(StChain, ST);
2422  else
2423  GenWidenVectorStores(StChain, ST);
2424 
2425  if (StChain.size() == 1)
2426  return StChain[0];
2427  else
2428  return DAG.getNode(ISD::TokenFactor, SDLoc(ST),
2429  MVT::Other,&StChain[0],StChain.size());
2430 }
2431 
2432 SDValue DAGTypeLegalizer::WidenVecOp_SETCC(SDNode *N) {
2433  SDValue InOp0 = GetWidenedVector(N->getOperand(0));
2434  SDValue InOp1 = GetWidenedVector(N->getOperand(1));
2435  SDLoc dl(N);
2436 
2437  // WARNING: In this code we widen the compare instruction with garbage.
2438  // This garbage may contain denormal floats which may be slow. Is this a real
2439  // concern ? Should we zero the unused lanes if this is a float compare ?
2440 
2441  // Get a new SETCC node to compare the newly widened operands.
2442  // Only some of the compared elements are legal.
2443  EVT SVT = TLI.getSetCCResultType(*DAG.getContext(), InOp0.getValueType());
2444  SDValue WideSETCC = DAG.getNode(ISD::SETCC, SDLoc(N),
2445  SVT, InOp0, InOp1, N->getOperand(2));
2446 
2447  // Extract the needed results from the result vector.
2448  EVT ResVT = EVT::getVectorVT(*DAG.getContext(),
2449  SVT.getVectorElementType(),
2451  SDValue CC = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
2452  ResVT, WideSETCC, DAG.getConstant(0,
2453  TLI.getVectorIdxTy()));
2454 
2455  return PromoteTargetBoolean(CC, N->getValueType(0));
2456 }
2457 
2458 
2459 //===----------------------------------------------------------------------===//
2460 // Vector Widening Utilities
2461 //===----------------------------------------------------------------------===//
2462 
2463 // Utility function to find the type to chop up a widen vector for load/store
2464 // TLI: Target lowering used to determine legal types.
2465 // Width: Width left need to load/store.
2466 // WidenVT: The widen vector type to load to/store from
2467 // Align: If 0, don't allow use of a wider type
2468 // WidenEx: If Align is not 0, the amount additional we can load/store from.
2469 
2470 static EVT FindMemType(SelectionDAG& DAG, const TargetLowering &TLI,
2471  unsigned Width, EVT WidenVT,
2472  unsigned Align = 0, unsigned WidenEx = 0) {
2473  EVT WidenEltVT = WidenVT.getVectorElementType();
2474  unsigned WidenWidth = WidenVT.getSizeInBits();
2475  unsigned WidenEltWidth = WidenEltVT.getSizeInBits();
2476  unsigned AlignInBits = Align*8;
2477 
2478  // If we have one element to load/store, return it.
2479  EVT RetVT = WidenEltVT;
2480  if (Width == WidenEltWidth)
2481  return RetVT;
2482 
2483  // See if there is larger legal integer than the element type to load/store
2484  unsigned VT;
2485  for (VT = (unsigned)MVT::LAST_INTEGER_VALUETYPE;
2486  VT >= (unsigned)MVT::FIRST_INTEGER_VALUETYPE; --VT) {
2487  EVT MemVT((MVT::SimpleValueType) VT);
2488  unsigned MemVTWidth = MemVT.getSizeInBits();
2489  if (MemVT.getSizeInBits() <= WidenEltWidth)
2490  break;
2491  if (TLI.isTypeLegal(MemVT) && (WidenWidth % MemVTWidth) == 0 &&
2492  isPowerOf2_32(WidenWidth / MemVTWidth) &&
2493  (MemVTWidth <= Width ||
2494  (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
2495  RetVT = MemVT;
2496  break;
2497  }
2498  }
2499 
2500  // See if there is a larger vector type to load/store that has the same vector
2501  // element type and is evenly divisible with the WidenVT.
2502  for (VT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
2503  VT >= (unsigned)MVT::FIRST_VECTOR_VALUETYPE; --VT) {
2504  EVT MemVT = (MVT::SimpleValueType) VT;
2505  unsigned MemVTWidth = MemVT.getSizeInBits();
2506  if (TLI.isTypeLegal(MemVT) && WidenEltVT == MemVT.getVectorElementType() &&
2507  (WidenWidth % MemVTWidth) == 0 &&
2508  isPowerOf2_32(WidenWidth / MemVTWidth) &&
2509  (MemVTWidth <= Width ||
2510  (Align!=0 && MemVTWidth<=AlignInBits && MemVTWidth<=Width+WidenEx))) {
2511  if (RetVT.getSizeInBits() < MemVTWidth || MemVT == WidenVT)
2512  return MemVT;
2513  }
2514  }
2515 
2516  return RetVT;
2517 }
2518 
2519 // Builds a vector type from scalar loads
2520 // VecTy: Resulting Vector type
2521 // LDOps: Load operators to build a vector type
2522 // [Start,End) the list of loads to use.
2524  SmallVectorImpl<SDValue> &LdOps,
2525  unsigned Start, unsigned End) {
2526  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2527  SDLoc dl(LdOps[Start]);
2528  EVT LdTy = LdOps[Start].getValueType();
2529  unsigned Width = VecTy.getSizeInBits();
2530  unsigned NumElts = Width / LdTy.getSizeInBits();
2531  EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), LdTy, NumElts);
2532 
2533  unsigned Idx = 1;
2534  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT,LdOps[Start]);
2535 
2536  for (unsigned i = Start + 1; i != End; ++i) {
2537  EVT NewLdTy = LdOps[i].getValueType();
2538  if (NewLdTy != LdTy) {
2539  NumElts = Width / NewLdTy.getSizeInBits();
2540  NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewLdTy, NumElts);
2541  VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, VecOp);
2542  // Readjust position and vector position based on new load type
2543  Idx = Idx * LdTy.getSizeInBits() / NewLdTy.getSizeInBits();
2544  LdTy = NewLdTy;
2545  }
2546  VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NewVecVT, VecOp, LdOps[i],
2547  DAG.getConstant(Idx++, TLI.getVectorIdxTy()));
2548  }
2549  return DAG.getNode(ISD::BITCAST, dl, VecTy, VecOp);
2550 }
2551 
2552 SDValue DAGTypeLegalizer::GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
2553  LoadSDNode *LD) {
2554  // The strategy assumes that we can efficiently load powers of two widths.
2555  // The routines chops the vector into the largest vector loads with the same
2556  // element type or scalar loads and then recombines it to the widen vector
2557  // type.
2558  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
2559  unsigned WidenWidth = WidenVT.getSizeInBits();
2560  EVT LdVT = LD->getMemoryVT();
2561  SDLoc dl(LD);
2562  assert(LdVT.isVector() && WidenVT.isVector());
2563  assert(LdVT.getVectorElementType() == WidenVT.getVectorElementType());
2564 
2565  // Load information
2566  SDValue Chain = LD->getChain();
2567  SDValue BasePtr = LD->getBasePtr();
2568  unsigned Align = LD->getAlignment();
2569  bool isVolatile = LD->isVolatile();
2570  bool isNonTemporal = LD->isNonTemporal();
2571  bool isInvariant = LD->isInvariant();
2572  const MDNode *TBAAInfo = LD->getTBAAInfo();
2573 
2574  int LdWidth = LdVT.getSizeInBits();
2575  int WidthDiff = WidenWidth - LdWidth; // Difference
2576  unsigned LdAlign = (isVolatile) ? 0 : Align; // Allow wider loads
2577 
2578  // Find the vector type that can load from.
2579  EVT NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
2580  int NewVTWidth = NewVT.getSizeInBits();
2581  SDValue LdOp = DAG.getLoad(NewVT, dl, Chain, BasePtr, LD->getPointerInfo(),
2582  isVolatile, isNonTemporal, isInvariant, Align,
2583  TBAAInfo);
2584  LdChain.push_back(LdOp.getValue(1));
2585 
2586  // Check if we can load the element with one instruction
2587  if (LdWidth <= NewVTWidth) {
2588  if (!NewVT.isVector()) {
2589  unsigned NumElts = WidenWidth / NewVTWidth;
2590  EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
2591  SDValue VecOp = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NewVecVT, LdOp);
2592  return DAG.getNode(ISD::BITCAST, dl, WidenVT, VecOp);
2593  }
2594  if (NewVT == WidenVT)
2595  return LdOp;
2596 
2597  assert(WidenWidth % NewVTWidth == 0);
2598  unsigned NumConcat = WidenWidth / NewVTWidth;
2599  SmallVector<SDValue, 16> ConcatOps(NumConcat);
2600  SDValue UndefVal = DAG.getUNDEF(NewVT);
2601  ConcatOps[0] = LdOp;
2602  for (unsigned i = 1; i != NumConcat; ++i)
2603  ConcatOps[i] = UndefVal;
2604  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &ConcatOps[0],
2605  NumConcat);
2606  }
2607 
2608  // Load vector by using multiple loads from largest vector to scalar
2610  LdOps.push_back(LdOp);
2611 
2612  LdWidth -= NewVTWidth;
2613  unsigned Offset = 0;
2614 
2615  while (LdWidth > 0) {
2616  unsigned Increment = NewVTWidth / 8;
2617  Offset += Increment;
2618  BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2619  DAG.getConstant(Increment, BasePtr.getValueType()));
2620 
2621  SDValue L;
2622  if (LdWidth < NewVTWidth) {
2623  // Our current type we are using is too large, find a better size
2624  NewVT = FindMemType(DAG, TLI, LdWidth, WidenVT, LdAlign, WidthDiff);
2625  NewVTWidth = NewVT.getSizeInBits();
2626  L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
2627  LD->getPointerInfo().getWithOffset(Offset), isVolatile,
2628  isNonTemporal, isInvariant, MinAlign(Align, Increment),
2629  TBAAInfo);
2630  LdChain.push_back(L.getValue(1));
2631  if (L->getValueType(0).isVector()) {
2633  Loads.push_back(L);
2634  unsigned size = L->getValueSizeInBits(0);
2635  while (size < LdOp->getValueSizeInBits(0)) {
2636  Loads.push_back(DAG.getUNDEF(L->getValueType(0)));
2637  size += L->getValueSizeInBits(0);
2638  }
2639  L = DAG.getNode(ISD::CONCAT_VECTORS, dl, LdOp->getValueType(0),
2640  &Loads[0], Loads.size());
2641  }
2642  } else {
2643  L = DAG.getLoad(NewVT, dl, Chain, BasePtr,
2644  LD->getPointerInfo().getWithOffset(Offset), isVolatile,
2645  isNonTemporal, isInvariant, MinAlign(Align, Increment),
2646  TBAAInfo);
2647  LdChain.push_back(L.getValue(1));
2648  }
2649 
2650  LdOps.push_back(L);
2651 
2652 
2653  LdWidth -= NewVTWidth;
2654  }
2655 
2656  // Build the vector from the loads operations
2657  unsigned End = LdOps.size();
2658  if (!LdOps[0].getValueType().isVector())
2659  // All the loads are scalar loads.
2660  return BuildVectorFromScalar(DAG, WidenVT, LdOps, 0, End);
2661 
2662  // If the load contains vectors, build the vector using concat vector.
2663  // All of the vectors used to loads are power of 2 and the scalars load
2664  // can be combined to make a power of 2 vector.
2665  SmallVector<SDValue, 16> ConcatOps(End);
2666  int i = End - 1;
2667  int Idx = End;
2668  EVT LdTy = LdOps[i].getValueType();
2669  // First combine the scalar loads to a vector
2670  if (!LdTy.isVector()) {
2671  for (--i; i >= 0; --i) {
2672  LdTy = LdOps[i].getValueType();
2673  if (LdTy.isVector())
2674  break;
2675  }
2676  ConcatOps[--Idx] = BuildVectorFromScalar(DAG, LdTy, LdOps, i+1, End);
2677  }
2678  ConcatOps[--Idx] = LdOps[i];
2679  for (--i; i >= 0; --i) {
2680  EVT NewLdTy = LdOps[i].getValueType();
2681  if (NewLdTy != LdTy) {
2682  // Create a larger vector
2683  ConcatOps[End-1] = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewLdTy,
2684  &ConcatOps[Idx], End - Idx);
2685  Idx = End - 1;
2686  LdTy = NewLdTy;
2687  }
2688  ConcatOps[--Idx] = LdOps[i];
2689  }
2690 
2691  if (WidenWidth == LdTy.getSizeInBits()*(End - Idx))
2692  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT,
2693  &ConcatOps[Idx], End - Idx);
2694 
2695  // We need to fill the rest with undefs to build the vector
2696  unsigned NumOps = WidenWidth / LdTy.getSizeInBits();
2697  SmallVector<SDValue, 16> WidenOps(NumOps);
2698  SDValue UndefVal = DAG.getUNDEF(LdTy);
2699  {
2700  unsigned i = 0;
2701  for (; i != End-Idx; ++i)
2702  WidenOps[i] = ConcatOps[Idx+i];
2703  for (; i != NumOps; ++i)
2704  WidenOps[i] = UndefVal;
2705  }
2706  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WidenVT, &WidenOps[0],NumOps);
2707 }
2708 
2709 SDValue
2710 DAGTypeLegalizer::GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
2711  LoadSDNode *LD,
2712  ISD::LoadExtType ExtType) {
2713  // For extension loads, it may not be more efficient to chop up the vector
2714  // and then extended it. Instead, we unroll the load and build a new vector.
2715  EVT WidenVT = TLI.getTypeToTransformTo(*DAG.getContext(),LD->getValueType(0));
2716  EVT LdVT = LD->getMemoryVT();
2717  SDLoc dl(LD);
2718  assert(LdVT.isVector() && WidenVT.isVector());
2719 
2720  // Load information
2721  SDValue Chain = LD->getChain();
2722  SDValue BasePtr = LD->getBasePtr();
2723  unsigned Align = LD->getAlignment();
2724  bool isVolatile = LD->isVolatile();
2725  bool isNonTemporal = LD->isNonTemporal();
2726  const MDNode *TBAAInfo = LD->getTBAAInfo();
2727 
2728  EVT EltVT = WidenVT.getVectorElementType();
2729  EVT LdEltVT = LdVT.getVectorElementType();
2730  unsigned NumElts = LdVT.getVectorNumElements();
2731 
2732  // Load each element and widen
2733  unsigned WidenNumElts = WidenVT.getVectorNumElements();
2734  SmallVector<SDValue, 16> Ops(WidenNumElts);
2735  unsigned Increment = LdEltVT.getSizeInBits() / 8;
2736  Ops[0] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, BasePtr,
2737  LD->getPointerInfo(),
2738  LdEltVT, isVolatile, isNonTemporal, Align, TBAAInfo);
2739  LdChain.push_back(Ops[0].getValue(1));
2740  unsigned i = 0, Offset = Increment;
2741  for (i=1; i < NumElts; ++i, Offset += Increment) {
2742  SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
2743  BasePtr,
2744  DAG.getConstant(Offset,
2745  BasePtr.getValueType()));
2746  Ops[i] = DAG.getExtLoad(ExtType, dl, EltVT, Chain, NewBasePtr,
2747  LD->getPointerInfo().getWithOffset(Offset), LdEltVT,
2748  isVolatile, isNonTemporal, Align, TBAAInfo);
2749  LdChain.push_back(Ops[i].getValue(1));
2750  }
2751 
2752  // Fill the rest with undefs
2753  SDValue UndefVal = DAG.getUNDEF(EltVT);
2754  for (; i != WidenNumElts; ++i)
2755  Ops[i] = UndefVal;
2756 
2757  return DAG.getNode(ISD::BUILD_VECTOR, dl, WidenVT, &Ops[0], Ops.size());
2758 }
2759 
2760 
2761 void DAGTypeLegalizer::GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain,
2762  StoreSDNode *ST) {
2763  // The strategy assumes that we can efficiently store powers of two widths.
2764  // The routines chops the vector into the largest vector stores with the same
2765  // element type or scalar stores.
2766  SDValue Chain = ST->getChain();
2767  SDValue BasePtr = ST->getBasePtr();
2768  unsigned Align = ST->getAlignment();
2769  bool isVolatile = ST->isVolatile();
2770  bool isNonTemporal = ST->isNonTemporal();
2771  const MDNode *TBAAInfo = ST->getTBAAInfo();
2772  SDValue ValOp = GetWidenedVector(ST->getValue());
2773  SDLoc dl(ST);
2774 
2775  EVT StVT = ST->getMemoryVT();
2776  unsigned StWidth = StVT.getSizeInBits();
2777  EVT ValVT = ValOp.getValueType();
2778  unsigned ValWidth = ValVT.getSizeInBits();
2779  EVT ValEltVT = ValVT.getVectorElementType();
2780  unsigned ValEltWidth = ValEltVT.getSizeInBits();
2781  assert(StVT.getVectorElementType() == ValEltVT);
2782 
2783  int Idx = 0; // current index to store
2784  unsigned Offset = 0; // offset from base to store
2785  while (StWidth != 0) {
2786  // Find the largest vector type we can store with
2787  EVT NewVT = FindMemType(DAG, TLI, StWidth, ValVT);
2788  unsigned NewVTWidth = NewVT.getSizeInBits();
2789  unsigned Increment = NewVTWidth / 8;
2790  if (NewVT.isVector()) {
2791  unsigned NumVTElts = NewVT.getVectorNumElements();
2792  do {
2793  SDValue EOp = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NewVT, ValOp,
2794  DAG.getConstant(Idx, TLI.getVectorIdxTy()));
2795  StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
2796  ST->getPointerInfo().getWithOffset(Offset),
2797  isVolatile, isNonTemporal,
2798  MinAlign(Align, Offset), TBAAInfo));
2799  StWidth -= NewVTWidth;
2800  Offset += Increment;
2801  Idx += NumVTElts;
2802  BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2803  DAG.getConstant(Increment, BasePtr.getValueType()));
2804  } while (StWidth != 0 && StWidth >= NewVTWidth);
2805  } else {
2806  // Cast the vector to the scalar type we can store
2807  unsigned NumElts = ValWidth / NewVTWidth;
2808  EVT NewVecVT = EVT::getVectorVT(*DAG.getContext(), NewVT, NumElts);
2809  SDValue VecOp = DAG.getNode(ISD::BITCAST, dl, NewVecVT, ValOp);
2810  // Readjust index position based on new vector type
2811  Idx = Idx * ValEltWidth / NewVTWidth;
2812  do {
2813  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NewVT, VecOp,
2814  DAG.getConstant(Idx++, TLI.getVectorIdxTy()));
2815  StChain.push_back(DAG.getStore(Chain, dl, EOp, BasePtr,
2816  ST->getPointerInfo().getWithOffset(Offset),
2817  isVolatile, isNonTemporal,
2818  MinAlign(Align, Offset), TBAAInfo));
2819  StWidth -= NewVTWidth;
2820  Offset += Increment;
2821  BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
2822  DAG.getConstant(Increment, BasePtr.getValueType()));
2823  } while (StWidth != 0 && StWidth >= NewVTWidth);
2824  // Restore index back to be relative to the original widen element type
2825  Idx = Idx * NewVTWidth / ValEltWidth;
2826  }
2827  }
2828 }
2829 
2830 void
2831 DAGTypeLegalizer::GenWidenVectorTruncStores(SmallVectorImpl<SDValue> &StChain,
2832  StoreSDNode *ST) {
2833  // For extension loads, it may not be more efficient to truncate the vector
2834  // and then store it. Instead, we extract each element and then store it.
2835  SDValue Chain = ST->getChain();
2836  SDValue BasePtr = ST->getBasePtr();
2837  unsigned Align = ST->getAlignment();
2838  bool isVolatile = ST->isVolatile();
2839  bool isNonTemporal = ST->isNonTemporal();
2840  const MDNode *TBAAInfo = ST->getTBAAInfo();
2841  SDValue ValOp = GetWidenedVector(ST->getValue());
2842  SDLoc dl(ST);
2843 
2844  EVT StVT = ST->getMemoryVT();
2845  EVT ValVT = ValOp.getValueType();
2846 
2847  // It must be true that we the widen vector type is bigger than where
2848  // we need to store.
2849  assert(StVT.isVector() && ValOp.getValueType().isVector());
2850  assert(StVT.bitsLT(ValOp.getValueType()));
2851 
2852  // For truncating stores, we can not play the tricks of chopping legal
2853  // vector types and bit cast it to the right type. Instead, we unroll
2854  // the store.
2855  EVT StEltVT = StVT.getVectorElementType();
2856  EVT ValEltVT = ValVT.getVectorElementType();
2857  unsigned Increment = ValEltVT.getSizeInBits() / 8;
2858  unsigned NumElts = StVT.getVectorNumElements();
2859  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
2860  DAG.getConstant(0, TLI.getVectorIdxTy()));
2861  StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, BasePtr,
2862  ST->getPointerInfo(), StEltVT,
2863  isVolatile, isNonTemporal, Align,
2864  TBAAInfo));
2865  unsigned Offset = Increment;
2866  for (unsigned i=1; i < NumElts; ++i, Offset += Increment) {
2867  SDValue NewBasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
2868  BasePtr, DAG.getConstant(Offset,
2869  BasePtr.getValueType()));
2870  SDValue EOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ValEltVT, ValOp,
2871  DAG.getConstant(0, TLI.getVectorIdxTy()));
2872  StChain.push_back(DAG.getTruncStore(Chain, dl, EOp, NewBasePtr,
2873  ST->getPointerInfo().getWithOffset(Offset),
2874  StEltVT, isVolatile, isNonTemporal,
2875  MinAlign(Align, Offset), TBAAInfo));
2876  }
2877 }
2878 
2879 /// Modifies a vector input (widen or narrows) to a vector of NVT. The
2880 /// input vector must have the same element type as NVT.
2881 SDValue DAGTypeLegalizer::ModifyToType(SDValue InOp, EVT NVT) {
2882  // Note that InOp might have been widened so it might already have
2883  // the right width or it might need be narrowed.
2884  EVT InVT = InOp.getValueType();
2885  assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
2886  "input and widen element type must match");
2887  SDLoc dl(InOp);
2888 
2889  // Check if InOp already has the right width.
2890  if (InVT == NVT)
2891  return InOp;
2892 
2893  unsigned InNumElts = InVT.getVectorNumElements();
2894  unsigned WidenNumElts = NVT.getVectorNumElements();
2895  if (WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0) {
2896  unsigned NumConcat = WidenNumElts / InNumElts;
2897  SmallVector<SDValue, 16> Ops(NumConcat);
2898  SDValue UndefVal = DAG.getUNDEF(InVT);
2899  Ops[0] = InOp;
2900  for (unsigned i = 1; i != NumConcat; ++i)
2901  Ops[i] = UndefVal;
2902 
2903  return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, &Ops[0], NumConcat);
2904  }
2905 
2906  if (WidenNumElts < InNumElts && InNumElts % WidenNumElts)
2907  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, NVT, InOp,
2908  DAG.getConstant(0, TLI.getVectorIdxTy()));
2909 
2910  // Fall back to extract and build.
2911  SmallVector<SDValue, 16> Ops(WidenNumElts);
2912  EVT EltVT = NVT.getVectorElementType();
2913  unsigned MinNumElts = std::min(WidenNumElts, InNumElts);
2914  unsigned Idx;
2915  for (Idx = 0; Idx < MinNumElts; ++Idx)
2916  Ops[Idx] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InOp,
2917  DAG.getConstant(Idx, TLI.getVectorIdxTy()));
2918 
2919  SDValue UndefVal = DAG.getUNDEF(EltVT);
2920  for ( ; Idx < WidenNumElts; ++Idx)
2921  Ops[Idx] = UndefVal;
2922  return DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &Ops[0], WidenNumElts);
2923 }
unsigned getValueSizeInBits(unsigned ResNo) const
SDValue getConstant(uint64_t Val, EVT VT, bool isTarget=false)
SDValue getValue(unsigned R) const
LLVMContext * getContext() const
Definition: SelectionDAG.h:285
SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
void dump() const
dump - Dump this node, for debugging.
unsigned getPrefTypeAlignment(Type *Ty) const
Definition: DataLayout.cpp:600
std::pair< EVT, EVT > GetSplitDestVTs(const EVT &VT) const
unsigned getOpcode() const
static ISD::NodeType getExtendForContent(BooleanContent Content)
Type * getTypeForEVT(LLVMContext &Context) const
Definition: ValueTypes.cpp:180
bool isUnindexed() const
isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
unsigned getNumOperands() const
MDNode - a tuple of other values.
Definition: Metadata.h:69
const SDValue & getOperand(unsigned Num) const
const SDValue & getBasePtr() const
static SDValue BuildVectorFromScalar(SelectionDAG &DAG, EVT VecTy, SmallVectorImpl< SDValue > &LdOps, unsigned Start, unsigned End)
bool bitsLT(EVT VT) const
bitsLT - Return true if this has less bits than VT.
Definition: ValueTypes.h:735
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
SDValue getLoad(EVT VT, SDLoc dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, bool isVolatile, bool isNonTemporal, bool isInvariant, unsigned Alignment, const MDNode *TBAAInfo=0, const MDNode *Ranges=0)
bool isVector() const
isVector - Return true if this is a vector value type.
Definition: ValueTypes.h:661
virtual bool canOpTrap(unsigned Op, EVT VT) const
SDValue getStore(SDValue Chain, SDLoc dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, bool isVolatile, bool isNonTemporal, unsigned Alignment, const MDNode *TBAAInfo=0)
#define llvm_unreachable(msg)
EVT getValueType(unsigned ResNo) const
virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const
MachinePointerInfo getWithOffset(int64_t O) const
EVT getScalarType() const
Definition: ValueTypes.h:756
int getMaskElt(unsigned Idx) const
bool isInteger() const
isInteger - Return true if this is an integer, or a vector integer type.
Definition: ValueTypes.h:656
EVT getVectorElementType() const
Definition: ValueTypes.h:762
size_t array_lengthof(T(&)[N])
Find the length of an array.
Definition: STLExtras.h:250
unsigned getNumValues() const
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:176
SDValue getVectorShuffle(EVT VT, SDLoc dl, SDValue N1, SDValue N2, const int *MaskElts)
const SDValue & getBasePtr() const
SDValue getUNDEF(EVT VT)
getUNDEF - Return an UNDEF node. UNDEF does not have a useful SDLoc.
Definition: SelectionDAG.h:585
EVT getMemoryVT() const
getMemoryVT - Return the type of the in-memory value.
virtual MVT getVectorIdxTy() const
UNDEF - An undefined node.
Definition: ISDOpcodes.h:154
SDNode * getNode() const
get the SDNode which holds the desired result
bool isTypeLegal(EVT VT) const
static EVT FindMemType(SelectionDAG &DAG, const TargetLowering &TLI, unsigned Width, EVT WidenVT, unsigned Align=0, unsigned WidenEx=0)
const SDValue & getOperand(unsigned i) const
Simple binary floating point operators.
Definition: ISDOpcodes.h:222
bool isNonTemporal() const
std::pair< SDValue, SDValue > SplitVectorOperand(const SDNode *N, unsigned OpNo)
unsigned getOriginalAlignment() const
Returns alignment and volatility of the memory access.
const DataLayout * getDataLayout() const
unsigned getOpcode() const
bool isVolatile() const
const SDValue & getValue() const
Bit counting operators with an undefined result for zero inputs.
Definition: ISDOpcodes.h:312
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition: ISDOpcodes.h:411
bool bitsEq(EVT VT) const
bitsEq - Return true if this has the same number of bits as VT.
Definition: ValueTypes.h:717
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements)
Definition: ValueTypes.h:616
SDValue CreateStackTemporary(EVT VT, unsigned minAlign=1)
const MachinePointerInfo & getPointerInfo() const
bool isUNINDEXEDLoad(const SDNode *N)
SDValue getConvertRndSat(EVT VT, SDLoc dl, SDValue Val, SDValue DTy, SDValue STy, SDValue Rnd, SDValue Sat, ISD::CvtCode Code)
bool isInvariant() const
std::pair< SDValue, SDValue > SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT)
BooleanContent getBooleanContents(bool isVec) const
SDNode * UpdateNodeOperands(SDNode *N, SDValue Op)
SDValue getExtLoad(ISD::LoadExtType ExtType, SDLoc dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, bool isVolatile, bool isNonTemporal, unsigned Alignment, const MDNode *TBAAInfo=0)
const SDValue & getChain() const
Byte Swap and Counting operators.
Definition: ISDOpcodes.h:309
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
const MDNode * getTBAAInfo() const
Returns the TBAAInfo that describes the dereference.
ISD::LoadExtType getExtensionType() const
op_iterator op_begin() const
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:357
SDValue getNode(unsigned Opcode, SDLoc DL, EVT VT)
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:360
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
uint64_t MinAlign(uint64_t A, uint64_t B)
Definition: MathExtras.h:535
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:295
unsigned getSizeInBits() const
getSizeInBits - Return the size of the specified value type in bits.
Definition: ValueTypes.h:779
#define N
SDValue getTruncStore(SDValue Chain, SDLoc dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT TVT, bool isNonTemporal, bool isVolatile, unsigned Alignment, const MDNode *TBAAInfo=0)
op_iterator op_end() const
EVT getValueType() const
SDValue getSelect(SDLoc DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS)
Definition: SelectionDAG.h:666
EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
bool isTruncatingStore() const
SDValue getValueType(EVT)
const TargetLowering & getTargetLoweringInfo() const
Definition: SelectionDAG.h:282
#define DEBUG(X)
Definition: Debug.h:97
bool isPowerOf2_32(uint32_t Value)
Definition: MathExtras.h:354
BooleanContent
Enum that describes how the target represents true/false values.
SDValue getEntryNode() const
Definition: SelectionDAG.h:332
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:363
unsigned getAlignment() const
tier< T1, T2 > tie(T1 &f, T2 &s)
Definition: STLExtras.h:216
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Definition: ValueTypes.h:607
unsigned getVectorNumElements() const
Definition: ValueTypes.h:771