LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
LoopRotation.cpp
Go to the documentation of this file.
1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements Loop Rotation Pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "loop-rotate"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CFG.h"
26 #include "llvm/Support/Debug.h"
31 using namespace llvm;
32 
33 #define MAX_HEADER_SIZE 16
34 
35 STATISTIC(NumRotated, "Number of loops rotated");
36 namespace {
37 
38  class LoopRotate : public LoopPass {
39  public:
40  static char ID; // Pass ID, replacement for typeid
41  LoopRotate() : LoopPass(ID) {
43  }
44 
45  // LCSSA form makes instruction renaming easier.
46  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
48  AU.addRequired<LoopInfo>();
49  AU.addPreserved<LoopInfo>();
56  }
57 
58  bool runOnLoop(Loop *L, LPPassManager &LPM);
59  bool simplifyLoopLatch(Loop *L);
60  bool rotateLoop(Loop *L, bool SimplifiedLatch);
61 
62  private:
63  LoopInfo *LI;
64  const TargetTransformInfo *TTI;
65  };
66 }
67 
68 char LoopRotate::ID = 0;
69 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
72 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
74 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
75 
76 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
77 
78 /// Rotate Loop L as many times as possible. Return true if
79 /// the loop is rotated at least once.
80 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
81  LI = &getAnalysis<LoopInfo>();
82  TTI = &getAnalysis<TargetTransformInfo>();
83 
84  // Simplify the loop latch before attempting to rotate the header
85  // upward. Rotation may not be needed if the loop tail can be folded into the
86  // loop exit.
87  bool SimplifiedLatch = simplifyLoopLatch(L);
88 
89  // One loop can be rotated multiple times.
90  bool MadeChange = false;
91  while (rotateLoop(L, SimplifiedLatch)) {
92  MadeChange = true;
93  SimplifiedLatch = false;
94  }
95  return MadeChange;
96 }
97 
98 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
99 /// old header into the preheader. If there were uses of the values produced by
100 /// these instruction that were outside of the loop, we have to insert PHI nodes
101 /// to merge the two values. Do this now.
103  BasicBlock *OrigPreheader,
105  // Remove PHI node entries that are no longer live.
106  BasicBlock::iterator I, E = OrigHeader->end();
107  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
108  PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
109 
110  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
111  // as necessary.
112  SSAUpdater SSA;
113  for (I = OrigHeader->begin(); I != E; ++I) {
114  Value *OrigHeaderVal = I;
115 
116  // If there are no uses of the value (e.g. because it returns void), there
117  // is nothing to rewrite.
118  if (OrigHeaderVal->use_empty())
119  continue;
120 
121  Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
122 
123  // The value now exits in two versions: the initial value in the preheader
124  // and the loop "next" value in the original header.
125  SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
126  SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
127  SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
128 
129  // Visit each use of the OrigHeader instruction.
130  for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
131  UE = OrigHeaderVal->use_end(); UI != UE; ) {
132  // Grab the use before incrementing the iterator.
133  Use &U = UI.getUse();
134 
135  // Increment the iterator before removing the use from the list.
136  ++UI;
137 
138  // SSAUpdater can't handle a non-PHI use in the same block as an
139  // earlier def. We can easily handle those cases manually.
140  Instruction *UserInst = cast<Instruction>(U.getUser());
141  if (!isa<PHINode>(UserInst)) {
142  BasicBlock *UserBB = UserInst->getParent();
143 
144  // The original users in the OrigHeader are already using the
145  // original definitions.
146  if (UserBB == OrigHeader)
147  continue;
148 
149  // Users in the OrigPreHeader need to use the value to which the
150  // original definitions are mapped.
151  if (UserBB == OrigPreheader) {
152  U = OrigPreHeaderVal;
153  continue;
154  }
155  }
156 
157  // Anything else can be handled by SSAUpdater.
158  SSA.RewriteUse(U);
159  }
160  }
161 }
162 
163 /// Determine whether the instructions in this range my be safely and cheaply
164 /// speculated. This is not an important enough situation to develop complex
165 /// heuristics. We handle a single arithmetic instruction along with any type
166 /// conversions.
168  BasicBlock::iterator End) {
169  bool seenIncrement = false;
170  for (BasicBlock::iterator I = Begin; I != End; ++I) {
171 
173  return false;
174 
175  if (isa<DbgInfoIntrinsic>(I))
176  continue;
177 
178  switch (I->getOpcode()) {
179  default:
180  return false;
181  case Instruction::GetElementPtr:
182  // GEPs are cheap if all indices are constant.
183  if (!cast<GEPOperator>(I)->hasAllConstantIndices())
184  return false;
185  // fall-thru to increment case
186  case Instruction::Add:
187  case Instruction::Sub:
188  case Instruction::And:
189  case Instruction::Or:
190  case Instruction::Xor:
191  case Instruction::Shl:
192  case Instruction::LShr:
193  case Instruction::AShr:
194  if (seenIncrement)
195  return false;
196  seenIncrement = true;
197  break;
198  case Instruction::Trunc:
199  case Instruction::ZExt:
200  case Instruction::SExt:
201  // ignore type conversions
202  break;
203  }
204  }
205  return true;
206 }
207 
208 /// Fold the loop tail into the loop exit by speculating the loop tail
209 /// instructions. Typically, this is a single post-increment. In the case of a
210 /// simple 2-block loop, hoisting the increment can be much better than
211 /// duplicating the entire loop header. In the cast of loops with early exits,
212 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
213 /// canonical form so downstream passes can handle it.
214 ///
215 /// I don't believe this invalidates SCEV.
216 bool LoopRotate::simplifyLoopLatch(Loop *L) {
217  BasicBlock *Latch = L->getLoopLatch();
218  if (!Latch || Latch->hasAddressTaken())
219  return false;
220 
221  BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
222  if (!Jmp || !Jmp->isUnconditional())
223  return false;
224 
225  BasicBlock *LastExit = Latch->getSinglePredecessor();
226  if (!LastExit || !L->isLoopExiting(LastExit))
227  return false;
228 
229  BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
230  if (!BI)
231  return false;
232 
233  if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
234  return false;
235 
236  DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
237  << LastExit->getName() << "\n");
238 
239  // Hoist the instructions from Latch into LastExit.
240  LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
241 
242  unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
243  BasicBlock *Header = Jmp->getSuccessor(0);
244  assert(Header == L->getHeader() && "expected a backward branch");
245 
246  // Remove Latch from the CFG so that LastExit becomes the new Latch.
247  BI->setSuccessor(FallThruPath, Header);
248  Latch->replaceSuccessorsPhiUsesWith(LastExit);
249  Jmp->eraseFromParent();
250 
251  // Nuke the Latch block.
252  assert(Latch->empty() && "unable to evacuate Latch");
253  LI->removeBlock(Latch);
254  if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
255  DT->eraseNode(Latch);
256  Latch->eraseFromParent();
257  return true;
258 }
259 
260 /// Rotate loop LP. Return true if the loop is rotated.
261 ///
262 /// \param SimplifiedLatch is true if the latch was just folded into the final
263 /// loop exit. In this case we may want to rotate even though the new latch is
264 /// now an exiting branch. This rotation would have happened had the latch not
265 /// been simplified. However, if SimplifiedLatch is false, then we avoid
266 /// rotating loops in which the latch exits to avoid excessive or endless
267 /// rotation. LoopRotate should be repeatable and converge to a canonical
268 /// form. This property is satisfied because simplifying the loop latch can only
269 /// happen once across multiple invocations of the LoopRotate pass.
270 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
271  // If the loop has only one block then there is not much to rotate.
272  if (L->getBlocks().size() == 1)
273  return false;
274 
275  BasicBlock *OrigHeader = L->getHeader();
276  BasicBlock *OrigLatch = L->getLoopLatch();
277 
278  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
279  if (BI == 0 || BI->isUnconditional())
280  return false;
281 
282  // If the loop header is not one of the loop exiting blocks then
283  // either this loop is already rotated or it is not
284  // suitable for loop rotation transformations.
285  if (!L->isLoopExiting(OrigHeader))
286  return false;
287 
288  // If the loop latch already contains a branch that leaves the loop then the
289  // loop is already rotated.
290  if (OrigLatch == 0)
291  return false;
292 
293  // Rotate if either the loop latch does *not* exit the loop, or if the loop
294  // latch was just simplified.
295  if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch)
296  return false;
297 
298  // Check size of original header and reject loop if it is very big or we can't
299  // duplicate blocks inside it.
300  {
302  Metrics.analyzeBasicBlock(OrigHeader, *TTI);
303  if (Metrics.notDuplicatable) {
304  DEBUG(dbgs() << "LoopRotation: NOT rotating - contains non duplicatable"
305  << " instructions: "; L->dump());
306  return false;
307  }
308  if (Metrics.NumInsts > MAX_HEADER_SIZE)
309  return false;
310  }
311 
312  // Now, this loop is suitable for rotation.
313  BasicBlock *OrigPreheader = L->getLoopPreheader();
314 
315  // If the loop could not be converted to canonical form, it must have an
316  // indirectbr in it, just give up.
317  if (OrigPreheader == 0)
318  return false;
319 
320  // Anything ScalarEvolution may know about this loop or the PHI nodes
321  // in its header will soon be invalidated.
322  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
323  SE->forgetLoop(L);
324 
325  DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
326 
327  // Find new Loop header. NewHeader is a Header's one and only successor
328  // that is inside loop. Header's other successor is outside the
329  // loop. Otherwise loop is not suitable for rotation.
330  BasicBlock *Exit = BI->getSuccessor(0);
331  BasicBlock *NewHeader = BI->getSuccessor(1);
332  if (L->contains(Exit))
333  std::swap(Exit, NewHeader);
334  assert(NewHeader && "Unable to determine new loop header");
335  assert(L->contains(NewHeader) && !L->contains(Exit) &&
336  "Unable to determine loop header and exit blocks");
337 
338  // This code assumes that the new header has exactly one predecessor.
339  // Remove any single-entry PHI nodes in it.
340  assert(NewHeader->getSinglePredecessor() &&
341  "New header doesn't have one pred!");
342  FoldSingleEntryPHINodes(NewHeader);
343 
344  // Begin by walking OrigHeader and populating ValueMap with an entry for
345  // each Instruction.
346  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
348 
349  // For PHI nodes, the value available in OldPreHeader is just the
350  // incoming value from OldPreHeader.
351  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
352  ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
353 
354  // For the rest of the instructions, either hoist to the OrigPreheader if
355  // possible or create a clone in the OldPreHeader if not.
356  TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
357  while (I != E) {
358  Instruction *Inst = I++;
359 
360  // If the instruction's operands are invariant and it doesn't read or write
361  // memory, then it is safe to hoist. Doing this doesn't change the order of
362  // execution in the preheader, but does prevent the instruction from
363  // executing in each iteration of the loop. This means it is safe to hoist
364  // something that might trap, but isn't safe to hoist something that reads
365  // memory (without proving that the loop doesn't write).
366  if (L->hasLoopInvariantOperands(Inst) &&
367  !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
368  !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
369  !isa<AllocaInst>(Inst)) {
370  Inst->moveBefore(LoopEntryBranch);
371  continue;
372  }
373 
374  // Otherwise, create a duplicate of the instruction.
375  Instruction *C = Inst->clone();
376 
377  // Eagerly remap the operands of the instruction.
378  RemapInstruction(C, ValueMap,
380 
381  // With the operands remapped, see if the instruction constant folds or is
382  // otherwise simplifyable. This commonly occurs because the entry from PHI
383  // nodes allows icmps and other instructions to fold.
384  Value *V = SimplifyInstruction(C);
385  if (V && LI->replacementPreservesLCSSAForm(C, V)) {
386  // If so, then delete the temporary instruction and stick the folded value
387  // in the map.
388  delete C;
389  ValueMap[Inst] = V;
390  } else {
391  // Otherwise, stick the new instruction into the new block!
392  C->setName(Inst->getName());
393  C->insertBefore(LoopEntryBranch);
394  ValueMap[Inst] = C;
395  }
396  }
397 
398  // Along with all the other instructions, we just cloned OrigHeader's
399  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
400  // successors by duplicating their incoming values for OrigHeader.
401  TerminatorInst *TI = OrigHeader->getTerminator();
402  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
403  for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
404  PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
405  PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
406 
407  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
408  // OrigPreHeader's old terminator (the original branch into the loop), and
409  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
410  LoopEntryBranch->eraseFromParent();
411 
412  // If there were any uses of instructions in the duplicated block outside the
413  // loop, update them, inserting PHI nodes as required
414  RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
415 
416  // NewHeader is now the header of the loop.
417  L->moveToHeader(NewHeader);
418  assert(L->getHeader() == NewHeader && "Latch block is our new header");
419 
420 
421  // At this point, we've finished our major CFG changes. As part of cloning
422  // the loop into the preheader we've simplified instructions and the
423  // duplicated conditional branch may now be branching on a constant. If it is
424  // branching on a constant and if that constant means that we enter the loop,
425  // then we fold away the cond branch to an uncond branch. This simplifies the
426  // loop in cases important for nested loops, and it also means we don't have
427  // to split as many edges.
428  BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
429  assert(PHBI->isConditional() && "Should be clone of BI condbr!");
430  if (!isa<ConstantInt>(PHBI->getCondition()) ||
431  PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
432  != NewHeader) {
433  // The conditional branch can't be folded, handle the general case.
434  // Update DominatorTree to reflect the CFG change we just made. Then split
435  // edges as necessary to preserve LoopSimplify form.
436  if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
437  // Everything that was dominated by the old loop header is now dominated
438  // by the original loop preheader. Conceptually the header was merged
439  // into the preheader, even though we reuse the actual block as a new
440  // loop latch.
441  DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
442  SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
443  OrigHeaderNode->end());
444  DomTreeNode *OrigPreheaderNode = DT->getNode(OrigPreheader);
445  for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I)
446  DT->changeImmediateDominator(HeaderChildren[I], OrigPreheaderNode);
447 
448  assert(DT->getNode(Exit)->getIDom() == OrigPreheaderNode);
449  assert(DT->getNode(NewHeader)->getIDom() == OrigPreheaderNode);
450 
451  // Update OrigHeader to be dominated by the new header block.
452  DT->changeImmediateDominator(OrigHeader, OrigLatch);
453  }
454 
455  // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
456  // thus is not a preheader anymore.
457  // Split the edge to form a real preheader.
458  BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
459  NewPH->setName(NewHeader->getName() + ".lr.ph");
460 
461  // Preserve canonical loop form, which means that 'Exit' should have only
462  // one predecessor.
463  BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
464  ExitSplit->moveBefore(Exit);
465  } else {
466  // We can fold the conditional branch in the preheader, this makes things
467  // simpler. The first step is to remove the extra edge to the Exit block.
468  Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
469  BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
470  NewBI->setDebugLoc(PHBI->getDebugLoc());
471  PHBI->eraseFromParent();
472 
473  // With our CFG finalized, update DomTree if it is available.
474  if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
475  // Update OrigHeader to be dominated by the new header block.
476  DT->changeImmediateDominator(NewHeader, OrigPreheader);
477  DT->changeImmediateDominator(OrigHeader, OrigLatch);
478 
479  // Brute force incremental dominator tree update. Call
480  // findNearestCommonDominator on all CFG predecessors of each child of the
481  // original header.
482  DomTreeNode *OrigHeaderNode = DT->getNode(OrigHeader);
483  SmallVector<DomTreeNode *, 8> HeaderChildren(OrigHeaderNode->begin(),
484  OrigHeaderNode->end());
485  bool Changed;
486  do {
487  Changed = false;
488  for (unsigned I = 0, E = HeaderChildren.size(); I != E; ++I) {
489  DomTreeNode *Node = HeaderChildren[I];
490  BasicBlock *BB = Node->getBlock();
491 
492  pred_iterator PI = pred_begin(BB);
493  BasicBlock *NearestDom = *PI;
494  for (pred_iterator PE = pred_end(BB); PI != PE; ++PI)
495  NearestDom = DT->findNearestCommonDominator(NearestDom, *PI);
496 
497  // Remember if this changes the DomTree.
498  if (Node->getIDom()->getBlock() != NearestDom) {
499  DT->changeImmediateDominator(BB, NearestDom);
500  Changed = true;
501  }
502  }
503 
504  // If the dominator changed, this may have an effect on other
505  // predecessors, continue until we reach a fixpoint.
506  } while (Changed);
507  }
508  }
509 
510  assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
511  assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
512 
513  // Now that the CFG and DomTree are in a consistent state again, try to merge
514  // the OrigHeader block into OrigLatch. This will succeed if they are
515  // connected by an unconditional branch. This is just a cleanup so the
516  // emitted code isn't too gross in this common case.
517  MergeBlockIntoPredecessor(OrigHeader, this);
518 
519  DEBUG(dbgs() << "LoopRotation: into "; L->dump());
520 
521  ++NumRotated;
522  return true;
523 }
use_iterator use_end()
Definition: Value.h:152
void FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P=0)
AnalysisUsage & addPreserved()
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:37
void addIncoming(Value *V, BasicBlock *BB)
static PassRegistry * getPassRegistry()
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Definition: SSAUpdater.cpp:45
BasicBlock * SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P=0, bool MergeIdenticalEdges=false, bool DontDeleteUselessPHIs=false, bool SplitLandingPads=false)
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value...
Definition: SSAUpdater.cpp:58
bool isLoopExiting(const BlockT *BB) const
Definition: LoopInfo.h:151
void dump() const
Definition: LoopInfo.cpp:411
bool notDuplicatable
True if this function cannot be duplicated.
Definition: CodeMetrics.h:51
Pass * createLoopRotatePass()
const std::vector< BlockT * > & getBlocks() const
Definition: LoopInfo.h:138
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=0, ValueMaterializer *Materializer=0)
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
BlockT * getHeader() const
Definition: LoopInfo.h:95
LoopInfoBase< BlockT, LoopT > * LI
Definition: LoopInfoImpl.h:411
StringRef getName() const
Definition: Value.cpp:167
BlockT * getLoopLatch() const
Definition: LoopInfoImpl.h:154
iterator begin()
Definition: BasicBlock.h:193
DomTreeNodeBase< NodeT > * getIDom() const
Definition: Dominators.h:83
STATISTIC(NumRotated,"Number of loops rotated")
AnalysisUsage & addRequired()
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:167
Hexagon Hardware Loops
bool isUnconditional() const
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
void analyzeBasicBlock(const BasicBlock *BB, const TargetTransformInfo &TTI)
Add information about a block to the current state.
Definition: CodeMetrics.cpp:25
Definition: Use.h:60
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:172
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=0)
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches, switches, etc. to it.
Definition: BasicBlock.h:268
bool hasLoopInvariantOperands(Instruction *I) const
Definition: LoopInfo.cpp:70
bool MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P=0)
void setName(const Twine &Name)
Definition: Value.cpp:175
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
Instruction * clone() const
#define false
Definition: ConvertUTF.c:64
bool mayReadFromMemory() const
bool empty() const
Definition: BasicBlock.h:204
BasicBlock * getSuccessor(unsigned i) const
uint64_t rotate(uint64_t val, size_t shift)
Bitwise right rotate. Normally this will compile to a single instruction, especially if the shift is ...
Definition: Hashing.h:176
void initializeLoopRotatePass(PassRegistry &)
AnalysisUsage & addPreservedID(const void *ID)
NodeT * getBlock() const
Definition: Dominators.h:82
unsigned getNumSuccessors() const
Definition: InstrTypes.h:59
void replaceSuccessorsPhiUsesWith(BasicBlock *New)
Update all phi nodes in this basic block's successors to refer to basic block New instead of to it...
Definition: BasicBlock.cpp:337
BlockT * getLoopPreheader() const
Definition: LoopInfoImpl.h:106
void insertBefore(Instruction *InsertPos)
Definition: Instruction.cpp:78
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
BasicBlock * getSuccessor(unsigned idx) const
Definition: InstrTypes.h:65
static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader, BasicBlock *OrigPreheader, ValueToValueMapTy &ValueMap)
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
char & LCSSAID
Definition: LCSSA.cpp:94
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
Interval::pred_iterator pred_begin(Interval *I)
Definition: Interval.h:117
bool contains(const LoopT *L) const
Definition: LoopInfo.h:104
const InstListType & getInstList() const
Return the underlying instruction list container.
Definition: BasicBlock.h:214
User * getUser() const
Definition: Use.cpp:137
Interval::pred_iterator pred_end(Interval *I)
Definition: Interval.h:120
static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, BasicBlock::iterator End)
#define INITIALIZE_AG_DEPENDENCY(depName)
Definition: PassSupport.h:169
Value * SimplifyInstruction(Instruction *I, const DataLayout *TD=0, const TargetLibraryInfo *TLI=0, const DominatorTree *DT=0)
bool mayWriteToMemory() const
void setSuccessor(unsigned idx, BasicBlock *NewSucc)
char & LoopSimplifyID
bool isSafeToSpeculativelyExecute(const Value *V, const DataLayout *TD=0)
static bool isZero(Value *V, DataLayout *DL)
Definition: Lint.cpp:507
machine trace Machine Trace Metrics
See the file comment.
Definition: ValueMap.h:75
iterator end()
Definition: BasicBlock.h:195
AnalysisUsage & addRequiredID(const void *ID)
Definition: Pass.cpp:262
Type * getType() const
Definition: Value.h:111
void eraseFromParent()
Unlink 'this' from the containing function and delete it.
Definition: BasicBlock.cpp:100
Utility to calculate the size and a few similar metrics for a set of basic blocks.
Definition: CodeMetrics.h:39
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:164
#define MAX_HEADER_SIZE
void splice(iterator where, iplist &L2)
Definition: ilist.h:570
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getSinglePredecessor()
Return this block if it has a single predecessor block. Otherwise return a null pointer.
Definition: BasicBlock.cpp:183
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
use_iterator use_begin()
Definition: Value.h:150
void moveToHeader(BlockT *BB)
Definition: LoopInfo.h:291
#define I(x, y, z)
Definition: MD5.cpp:54
TerminatorInst * getTerminator()
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.cpp:120
bool use_empty() const
Definition: Value.h:149
LLVM Value Representation.
Definition: Value.h:66
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
#define DEBUG(X)
Definition: Debug.h:97
unsigned NumInsts
Number of instructions in the analyzed blocks.
Definition: CodeMetrics.h:57
void RewriteUse(Use &U)
Rewrite a use of the symbolic value.
Definition: SSAUpdater.cpp:177
int getBasicBlockIndex(const BasicBlock *BB) const
void moveBefore(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it into the function that MovePos lives ...
Definition: BasicBlock.cpp:106
const BasicBlock * getParent() const
Definition: Instruction.h:52