LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
MipsConstantIslandPass.cpp
Go to the documentation of this file.
1 //===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //
11 // This pass is used to make Pc relative loads of constants.
12 // For now, only Mips16 will use this.
13 //
14 // Loading constants inline is expensive on Mips16 and it's in general better
15 // to place the constant nearby in code space and then it can be loaded with a
16 // simple 16 bit load instruction.
17 //
18 // The constants can be not just numbers but addresses of functions and labels.
19 // This can be particularly helpful in static relocation mode for embedded
20 // non linux targets.
21 //
22 //
23 
24 #define DEBUG_TYPE "mips-constant-islands"
25 
26 #include "Mips.h"
28 #include "Mips16InstrInfo.h"
29 #include "MipsMachineFunction.h"
30 #include "MipsTargetMachine.h"
31 #include "llvm/ADT/Statistic.h"
36 #include "llvm/IR/Function.h"
38 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/Format.h"
46 #include <algorithm>
47 
48 using namespace llvm;
49 
50 STATISTIC(NumCPEs, "Number of constpool entries");
51 STATISTIC(NumSplit, "Number of uncond branches inserted");
52 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
53 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
54 
55 // FIXME: This option should be removed once it has received sufficient testing.
56 static cl::opt<bool>
57 AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
58  cl::desc("Align constant islands in code"));
59 
60 
61 // Rather than do make check tests with huge amounts of code, we force
62 // the test to use this amount.
63 //
65  "mips-constant-islands-small-offset",
66  cl::init(0),
67  cl::desc("Make small offsets be this amount for testing purposes"),
68  cl::Hidden);
69 
70 //
71 // For testing purposes we tell it to not use relaxed load forms so that it
72 // will split blocks.
73 //
75  "mips-constant-islands-no-load-relaxation",
76  cl::init(false),
77  cl::desc("Don't relax loads to long loads - for testing purposes"),
78  cl::Hidden);
79 
80 
81 namespace {
82 
83 
84  typedef MachineBasicBlock::iterator Iter;
85  typedef MachineBasicBlock::reverse_iterator ReverseIter;
86 
87  /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
88  /// requires constant pool entries to be scattered among the instructions
89  /// inside a function. To do this, it completely ignores the normal LLVM
90  /// constant pool; instead, it places constants wherever it feels like with
91  /// special instructions.
92  ///
93  /// The terminology used in this pass includes:
94  /// Islands - Clumps of constants placed in the function.
95  /// Water - Potential places where an island could be formed.
96  /// CPE - A constant pool entry that has been placed somewhere, which
97  /// tracks a list of users.
98 
99  class MipsConstantIslands : public MachineFunctionPass {
100 
101  /// BasicBlockInfo - Information about the offset and size of a single
102  /// basic block.
103  struct BasicBlockInfo {
104  /// Offset - Distance from the beginning of the function to the beginning
105  /// of this basic block.
106  ///
107  /// Offsets are computed assuming worst case padding before an aligned
108  /// block. This means that subtracting basic block offsets always gives a
109  /// conservative estimate of the real distance which may be smaller.
110  ///
111  /// Because worst case padding is used, the computed offset of an aligned
112  /// block may not actually be aligned.
113  unsigned Offset;
114 
115  /// Size - Size of the basic block in bytes. If the block contains
116  /// inline assembly, this is a worst case estimate.
117  ///
118  /// The size does not include any alignment padding whether from the
119  /// beginning of the block, or from an aligned jump table at the end.
120  unsigned Size;
121 
122  // FIXME: ignore LogAlign for this patch
123  //
124  unsigned postOffset(unsigned LogAlign = 0) const {
125  unsigned PO = Offset + Size;
126  return PO;
127  }
128 
129  BasicBlockInfo() : Offset(0), Size(0) {}
130 
131  };
132 
133  std::vector<BasicBlockInfo> BBInfo;
134 
135  /// WaterList - A sorted list of basic blocks where islands could be placed
136  /// (i.e. blocks that don't fall through to the following block, due
137  /// to a return, unreachable, or unconditional branch).
138  std::vector<MachineBasicBlock*> WaterList;
139 
140  /// NewWaterList - The subset of WaterList that was created since the
141  /// previous iteration by inserting unconditional branches.
142  SmallSet<MachineBasicBlock*, 4> NewWaterList;
143 
144  typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
145 
146  /// CPUser - One user of a constant pool, keeping the machine instruction
147  /// pointer, the constant pool being referenced, and the max displacement
148  /// allowed from the instruction to the CP. The HighWaterMark records the
149  /// highest basic block where a new CPEntry can be placed. To ensure this
150  /// pass terminates, the CP entries are initially placed at the end of the
151  /// function and then move monotonically to lower addresses. The
152  /// exception to this rule is when the current CP entry for a particular
153  /// CPUser is out of range, but there is another CP entry for the same
154  /// constant value in range. We want to use the existing in-range CP
155  /// entry, but if it later moves out of range, the search for new water
156  /// should resume where it left off. The HighWaterMark is used to record
157  /// that point.
158  struct CPUser {
159  MachineInstr *MI;
160  MachineInstr *CPEMI;
161  MachineBasicBlock *HighWaterMark;
162  private:
163  unsigned MaxDisp;
164  unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
165  // with different displacements
166  unsigned LongFormOpcode;
167  public:
168  bool NegOk;
169  CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
170  bool neg,
171  unsigned longformmaxdisp, unsigned longformopcode)
172  : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
173  LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
174  NegOk(neg){
175  HighWaterMark = CPEMI->getParent();
176  }
177  /// getMaxDisp - Returns the maximum displacement supported by MI.
178  unsigned getMaxDisp() const {
179  unsigned xMaxDisp = ConstantIslandsSmallOffset?
181  return xMaxDisp;
182  }
183  void setMaxDisp(unsigned val) {
184  MaxDisp = val;
185  }
186  unsigned getLongFormMaxDisp() const {
187  return LongFormMaxDisp;
188  }
189  unsigned getLongFormOpcode() const {
190  return LongFormOpcode;
191  }
192  };
193 
194  /// CPUsers - Keep track of all of the machine instructions that use various
195  /// constant pools and their max displacement.
196  std::vector<CPUser> CPUsers;
197 
198  /// CPEntry - One per constant pool entry, keeping the machine instruction
199  /// pointer, the constpool index, and the number of CPUser's which
200  /// reference this entry.
201  struct CPEntry {
202  MachineInstr *CPEMI;
203  unsigned CPI;
204  unsigned RefCount;
205  CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
206  : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
207  };
208 
209  /// CPEntries - Keep track of all of the constant pool entry machine
210  /// instructions. For each original constpool index (i.e. those that
211  /// existed upon entry to this pass), it keeps a vector of entries.
212  /// Original elements are cloned as we go along; the clones are
213  /// put in the vector of the original element, but have distinct CPIs.
214  std::vector<std::vector<CPEntry> > CPEntries;
215 
216  /// ImmBranch - One per immediate branch, keeping the machine instruction
217  /// pointer, conditional or unconditional, the max displacement,
218  /// and (if isCond is true) the corresponding unconditional branch
219  /// opcode.
220  struct ImmBranch {
221  MachineInstr *MI;
222  unsigned MaxDisp : 31;
223  bool isCond : 1;
224  int UncondBr;
225  ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
226  : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
227  };
228 
229  /// ImmBranches - Keep track of all the immediate branch instructions.
230  ///
231  std::vector<ImmBranch> ImmBranches;
232 
233  /// HasFarJump - True if any far jump instruction has been emitted during
234  /// the branch fix up pass.
235  bool HasFarJump;
236 
237  const TargetMachine &TM;
238  bool IsPIC;
239  unsigned ABI;
240  const MipsSubtarget *STI;
241  const Mips16InstrInfo *TII;
242  MipsFunctionInfo *MFI;
243  MachineFunction *MF;
244  MachineConstantPool *MCP;
245 
246  unsigned PICLabelUId;
247  bool PrescannedForConstants;
248 
249  void initPICLabelUId(unsigned UId) {
250  PICLabelUId = UId;
251  }
252 
253 
254  unsigned createPICLabelUId() {
255  return PICLabelUId++;
256  }
257 
258  public:
259  static char ID;
260  MipsConstantIslands(TargetMachine &tm)
261  : MachineFunctionPass(ID), TM(tm),
262  IsPIC(TM.getRelocationModel() == Reloc::PIC_),
263  ABI(TM.getSubtarget<MipsSubtarget>().getTargetABI()),
264  STI(&TM.getSubtarget<MipsSubtarget>()), MF(0), MCP(0),
265  PrescannedForConstants(false){}
266 
267  virtual const char *getPassName() const {
268  return "Mips Constant Islands";
269  }
270 
271  bool runOnMachineFunction(MachineFunction &F);
272 
273  void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
274  CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
275  unsigned getCPELogAlign(const MachineInstr *CPEMI);
276  void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
277  unsigned getOffsetOf(MachineInstr *MI) const;
278  unsigned getUserOffset(CPUser&) const;
279  void dumpBBs();
280  void verify();
281 
282  bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
283  unsigned Disp, bool NegativeOK);
284  bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
285  const CPUser &U);
286 
287  bool isLongFormOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
288  const CPUser &U);
289 
290  void computeBlockSize(MachineBasicBlock *MBB);
291  MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
292  void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
293  void adjustBBOffsetsAfter(MachineBasicBlock *BB);
294  bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
295  int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
296  int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
297  bool findAvailableWater(CPUser&U, unsigned UserOffset,
298  water_iterator &WaterIter);
299  void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
300  MachineBasicBlock *&NewMBB);
301  bool handleConstantPoolUser(unsigned CPUserIndex);
302  void removeDeadCPEMI(MachineInstr *CPEMI);
303  bool removeUnusedCPEntries();
304  bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
305  MachineInstr *CPEMI, unsigned Disp, bool NegOk,
306  bool DoDump = false);
307  bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
308  CPUser &U, unsigned &Growth);
309  bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
310  bool fixupImmediateBr(ImmBranch &Br);
311  bool fixupConditionalBr(ImmBranch &Br);
312  bool fixupUnconditionalBr(ImmBranch &Br);
313 
314  void prescanForConstants();
315 
316  private:
317 
318  };
319 
320  char MipsConstantIslands::ID = 0;
321 } // end of anonymous namespace
322 
323 
324 bool MipsConstantIslands::isLongFormOffsetInRange
325  (unsigned UserOffset, unsigned TrialOffset,
326  const CPUser &U) {
327  return isOffsetInRange(UserOffset, TrialOffset,
328  U.getLongFormMaxDisp(), U.NegOk);
329 }
330 
331 bool MipsConstantIslands::isOffsetInRange
332  (unsigned UserOffset, unsigned TrialOffset,
333  const CPUser &U) {
334  return isOffsetInRange(UserOffset, TrialOffset,
335  U.getMaxDisp(), U.NegOk);
336 }
337 /// print block size and offset information - debugging
338 void MipsConstantIslands::dumpBBs() {
339  DEBUG({
340  for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
341  const BasicBlockInfo &BBI = BBInfo[J];
342  dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
343  << format(" size=%#x\n", BBInfo[J].Size);
344  }
345  });
346 }
347 /// createMipsLongBranchPass - Returns a pass that converts branches to long
348 /// branches.
350  return new MipsConstantIslands(tm);
351 }
352 
353 bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
354  // The intention is for this to be a mips16 only pass for now
355  // FIXME:
356  MF = &mf;
357  MCP = mf.getConstantPool();
358  DEBUG(dbgs() << "constant island machine function " << "\n");
359  if (!TM.getSubtarget<MipsSubtarget>().inMips16Mode() ||
361  return false;
362  }
363  TII = (const Mips16InstrInfo*)MF->getTarget().getInstrInfo();
364  MFI = MF->getInfo<MipsFunctionInfo>();
365  DEBUG(dbgs() << "constant island processing " << "\n");
366  //
367  // will need to make predermination if there is any constants we need to
368  // put in constant islands. TBD.
369  //
370  if (!PrescannedForConstants) prescanForConstants();
371 
372  HasFarJump = false;
373  // This pass invalidates liveness information when it splits basic blocks.
374  MF->getRegInfo().invalidateLiveness();
375 
376  // Renumber all of the machine basic blocks in the function, guaranteeing that
377  // the numbers agree with the position of the block in the function.
378  MF->RenumberBlocks();
379 
380  bool MadeChange = false;
381 
382  // Perform the initial placement of the constant pool entries. To start with,
383  // we put them all at the end of the function.
384  std::vector<MachineInstr*> CPEMIs;
385  if (!MCP->isEmpty())
386  doInitialPlacement(CPEMIs);
387 
388  /// The next UID to take is the first unused one.
389  initPICLabelUId(CPEMIs.size());
390 
391  // Do the initial scan of the function, building up information about the
392  // sizes of each block, the location of all the water, and finding all of the
393  // constant pool users.
394  initializeFunctionInfo(CPEMIs);
395  CPEMIs.clear();
396  DEBUG(dumpBBs());
397 
398  /// Remove dead constant pool entries.
399  MadeChange |= removeUnusedCPEntries();
400 
401  // Iteratively place constant pool entries and fix up branches until there
402  // is no change.
403  unsigned NoCPIters = 0, NoBRIters = 0;
404  (void)NoBRIters;
405  while (true) {
406  DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
407  bool CPChange = false;
408  for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
409  CPChange |= handleConstantPoolUser(i);
410  if (CPChange && ++NoCPIters > 30)
411  report_fatal_error("Constant Island pass failed to converge!");
412  DEBUG(dumpBBs());
413 
414  // Clear NewWaterList now. If we split a block for branches, it should
415  // appear as "new water" for the next iteration of constant pool placement.
416  NewWaterList.clear();
417 
418  DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
419  bool BRChange = false;
420  for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
421  BRChange |= fixupImmediateBr(ImmBranches[i]);
422  if (BRChange && ++NoBRIters > 30)
423  report_fatal_error("Branch Fix Up pass failed to converge!");
424  DEBUG(dumpBBs());
425  if (!CPChange && !BRChange)
426  break;
427  MadeChange = true;
428  }
429 
430  DEBUG(dbgs() << '\n'; dumpBBs());
431 
432  BBInfo.clear();
433  WaterList.clear();
434  CPUsers.clear();
435  CPEntries.clear();
436  ImmBranches.clear();
437  return MadeChange;
438 }
439 
440 /// doInitialPlacement - Perform the initial placement of the constant pool
441 /// entries. To start with, we put them all at the end of the function.
442 void
443 MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
444  // Create the basic block to hold the CPE's.
445  MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
446  MF->push_back(BB);
447 
448 
449  // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
450  unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
451 
452  // Mark the basic block as required by the const-pool.
453  // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
454  BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
455 
456  // The function needs to be as aligned as the basic blocks. The linker may
457  // move functions around based on their alignment.
458  MF->ensureAlignment(BB->getAlignment());
459 
460  // Order the entries in BB by descending alignment. That ensures correct
461  // alignment of all entries as long as BB is sufficiently aligned. Keep
462  // track of the insertion point for each alignment. We are going to bucket
463  // sort the entries as they are created.
464  SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
465 
466  // Add all of the constants from the constant pool to the end block, use an
467  // identity mapping of CPI's to CPE's.
468  const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
469 
470  const DataLayout &TD = *MF->getTarget().getDataLayout();
471  for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
472  unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
473  assert(Size >= 4 && "Too small constant pool entry");
474  unsigned Align = CPs[i].getAlignment();
475  assert(isPowerOf2_32(Align) && "Invalid alignment");
476  // Verify that all constant pool entries are a multiple of their alignment.
477  // If not, we would have to pad them out so that instructions stay aligned.
478  assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
479 
480  // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
481  unsigned LogAlign = Log2_32(Align);
482  MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
483 
484  MachineInstr *CPEMI =
485  BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
486  .addImm(i).addConstantPoolIndex(i).addImm(Size);
487 
488  CPEMIs.push_back(CPEMI);
489 
490  // Ensure that future entries with higher alignment get inserted before
491  // CPEMI. This is bucket sort with iterators.
492  for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
493  if (InsPoint[a] == InsAt)
494  InsPoint[a] = CPEMI;
495  // Add a new CPEntry, but no corresponding CPUser yet.
496  std::vector<CPEntry> CPEs;
497  CPEs.push_back(CPEntry(CPEMI, i));
498  CPEntries.push_back(CPEs);
499  ++NumCPEs;
500  DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
501  << Size << ", align = " << Align <<'\n');
502  }
503  DEBUG(BB->dump());
504 }
505 
506 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
507 /// into the block immediately after it.
509  // Get the next machine basic block in the function.
510  MachineFunction::iterator MBBI = MBB;
511  // Can't fall off end of function.
512  if (llvm::next(MBBI) == MBB->getParent()->end())
513  return false;
514 
515  MachineBasicBlock *NextBB = llvm::next(MBBI);
517  E = MBB->succ_end(); I != E; ++I)
518  if (*I == NextBB)
519  return true;
520 
521  return false;
522 }
523 
524 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
525 /// look up the corresponding CPEntry.
526 MipsConstantIslands::CPEntry
527 *MipsConstantIslands::findConstPoolEntry(unsigned CPI,
528  const MachineInstr *CPEMI) {
529  std::vector<CPEntry> &CPEs = CPEntries[CPI];
530  // Number of entries per constpool index should be small, just do a
531  // linear search.
532  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
533  if (CPEs[i].CPEMI == CPEMI)
534  return &CPEs[i];
535  }
536  return NULL;
537 }
538 
539 /// getCPELogAlign - Returns the required alignment of the constant pool entry
540 /// represented by CPEMI. Alignment is measured in log2(bytes) units.
541 unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
542  assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY);
543 
544  // Everything is 4-byte aligned unless AlignConstantIslands is set.
546  return 2;
547 
548  unsigned CPI = CPEMI->getOperand(1).getIndex();
549  assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
550  unsigned Align = MCP->getConstants()[CPI].getAlignment();
551  assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
552  return Log2_32(Align);
553 }
554 
555 /// initializeFunctionInfo - Do the initial scan of the function, building up
556 /// information about the sizes of each block, the location of all the water,
557 /// and finding all of the constant pool users.
558 void MipsConstantIslands::
559 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
560  BBInfo.clear();
561  BBInfo.resize(MF->getNumBlockIDs());
562 
563  // First thing, compute the size of all basic blocks, and see if the function
564  // has any inline assembly in it. If so, we have to be conservative about
565  // alignment assumptions, as we don't know for sure the size of any
566  // instructions in the inline assembly.
567  for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
568  computeBlockSize(I);
569 
570 
571  // Compute block offsets.
572  adjustBBOffsetsAfter(MF->begin());
573 
574  // Now go back through the instructions and build up our data structures.
575  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
576  MBBI != E; ++MBBI) {
577  MachineBasicBlock &MBB = *MBBI;
578 
579  // If this block doesn't fall through into the next MBB, then this is
580  // 'water' that a constant pool island could be placed.
581  if (!BBHasFallthrough(&MBB))
582  WaterList.push_back(&MBB);
583  for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
584  I != E; ++I) {
585  if (I->isDebugValue())
586  continue;
587 
588  int Opc = I->getOpcode();
589  if (I->isBranch()) {
590  bool isCond = false;
591  unsigned Bits = 0;
592  unsigned Scale = 1;
593  int UOpc = Opc;
594  switch (Opc) {
595  default:
596  continue; // Ignore other branches for now
597  case Mips::Bimm16:
598  Bits = 11;
599  Scale = 2;
600  isCond = false;
601  break;
602  case Mips::BimmX16:
603  Bits = 16;
604  Scale = 2;
605  isCond = false;
606  }
607  // Record this immediate branch.
608  unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
609  ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
610  }
611 
612  if (Opc == Mips::CONSTPOOL_ENTRY)
613  continue;
614 
615 
616  // Scan the instructions for constant pool operands.
617  for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
618  if (I->getOperand(op).isCPI()) {
619 
620  // We found one. The addressing mode tells us the max displacement
621  // from the PC that this instruction permits.
622 
623  // Basic size info comes from the TSFlags field.
624  unsigned Bits = 0;
625  unsigned Scale = 1;
626  bool NegOk = false;
627  unsigned LongFormBits = 0;
628  unsigned LongFormScale = 0;
629  unsigned LongFormOpcode = 0;
630  switch (Opc) {
631  default:
632  llvm_unreachable("Unknown addressing mode for CP reference!");
633  case Mips::LwRxPcTcp16:
634  Bits = 8;
635  Scale = 4;
636  LongFormOpcode = Mips::LwRxPcTcpX16;
637  LongFormBits = 16;
638  LongFormScale = 1;
639  break;
640  case Mips::LwRxPcTcpX16:
641  Bits = 16;
642  Scale = 1;
643  NegOk = true;
644  break;
645  }
646  // Remember that this is a user of a CP entry.
647  unsigned CPI = I->getOperand(op).getIndex();
648  MachineInstr *CPEMI = CPEMIs[CPI];
649  unsigned MaxOffs = ((1 << Bits)-1) * Scale;
650  unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
651  CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk,
652  LongFormMaxOffs, LongFormOpcode));
653 
654  // Increment corresponding CPEntry reference count.
655  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
656  assert(CPE && "Cannot find a corresponding CPEntry!");
657  CPE->RefCount++;
658 
659  // Instructions can only use one CP entry, don't bother scanning the
660  // rest of the operands.
661  break;
662 
663  }
664 
665  }
666  }
667 
668 }
669 
670 /// computeBlockSize - Compute the size and some alignment information for MBB.
671 /// This function updates BBInfo directly.
672 void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
673  BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
674  BBI.Size = 0;
675 
676  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
677  ++I)
678  BBI.Size += TII->GetInstSizeInBytes(I);
679 
680 }
681 
682 /// getOffsetOf - Return the current offset of the specified machine instruction
683 /// from the start of the function. This offset changes as stuff is moved
684 /// around inside the function.
685 unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
686  MachineBasicBlock *MBB = MI->getParent();
687 
688  // The offset is composed of two things: the sum of the sizes of all MBB's
689  // before this instruction's block, and the offset from the start of the block
690  // it is in.
691  unsigned Offset = BBInfo[MBB->getNumber()].Offset;
692 
693  // Sum instructions before MI in MBB.
694  for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
695  assert(I != MBB->end() && "Didn't find MI in its own basic block?");
696  Offset += TII->GetInstSizeInBytes(I);
697  }
698  return Offset;
699 }
700 
701 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
702 /// ID.
703 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
704  const MachineBasicBlock *RHS) {
705  return LHS->getNumber() < RHS->getNumber();
706 }
707 
708 /// updateForInsertedWaterBlock - When a block is newly inserted into the
709 /// machine function, it upsets all of the block numbers. Renumber the blocks
710 /// and update the arrays that parallel this numbering.
711 void MipsConstantIslands::updateForInsertedWaterBlock
712  (MachineBasicBlock *NewBB) {
713  // Renumber the MBB's to keep them consecutive.
714  NewBB->getParent()->RenumberBlocks(NewBB);
715 
716  // Insert an entry into BBInfo to align it properly with the (newly
717  // renumbered) block numbers.
718  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
719 
720  // Next, update WaterList. Specifically, we need to add NewMBB as having
721  // available water after it.
722  water_iterator IP =
723  std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
725  WaterList.insert(IP, NewBB);
726 }
727 
728 unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
729  return getOffsetOf(U.MI);
730 }
731 
732 /// Split the basic block containing MI into two blocks, which are joined by
733 /// an unconditional branch. Update data structures and renumber blocks to
734 /// account for this change and returns the newly created block.
735 MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr
736  (MachineInstr *MI) {
737  MachineBasicBlock *OrigBB = MI->getParent();
738 
739  // Create a new MBB for the code after the OrigBB.
740  MachineBasicBlock *NewBB =
741  MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
742  MachineFunction::iterator MBBI = OrigBB; ++MBBI;
743  MF->insert(MBBI, NewBB);
744 
745  // Splice the instructions starting with MI over to NewBB.
746  NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
747 
748  // Add an unconditional branch from OrigBB to NewBB.
749  // Note the new unconditional branch is not being recorded.
750  // There doesn't seem to be meaningful DebugInfo available; this doesn't
751  // correspond to anything in the source.
752  BuildMI(OrigBB, DebugLoc(), TII->get(Mips::Bimm16)).addMBB(NewBB);
753  ++NumSplit;
754 
755  // Update the CFG. All succs of OrigBB are now succs of NewBB.
756  NewBB->transferSuccessors(OrigBB);
757 
758  // OrigBB branches to NewBB.
759  OrigBB->addSuccessor(NewBB);
760 
761  // Update internal data structures to account for the newly inserted MBB.
762  // This is almost the same as updateForInsertedWaterBlock, except that
763  // the Water goes after OrigBB, not NewBB.
764  MF->RenumberBlocks(NewBB);
765 
766  // Insert an entry into BBInfo to align it properly with the (newly
767  // renumbered) block numbers.
768  BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
769 
770  // Next, update WaterList. Specifically, we need to add OrigMBB as having
771  // available water after it (but not if it's already there, which happens
772  // when splitting before a conditional branch that is followed by an
773  // unconditional branch - in that case we want to insert NewBB).
774  water_iterator IP =
775  std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
777  MachineBasicBlock* WaterBB = *IP;
778  if (WaterBB == OrigBB)
779  WaterList.insert(llvm::next(IP), NewBB);
780  else
781  WaterList.insert(IP, OrigBB);
782  NewWaterList.insert(OrigBB);
783 
784  // Figure out how large the OrigBB is. As the first half of the original
785  // block, it cannot contain a tablejump. The size includes
786  // the new jump we added. (It should be possible to do this without
787  // recounting everything, but it's very confusing, and this is rarely
788  // executed.)
789  computeBlockSize(OrigBB);
790 
791  // Figure out how large the NewMBB is. As the second half of the original
792  // block, it may contain a tablejump.
793  computeBlockSize(NewBB);
794 
795  // All BBOffsets following these blocks must be modified.
796  adjustBBOffsetsAfter(OrigBB);
797 
798  return NewBB;
799 }
800 
801 
802 
803 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
804 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
805 /// constant pool entry).
806 bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
807  unsigned TrialOffset, unsigned MaxDisp,
808  bool NegativeOK) {
809  if (UserOffset <= TrialOffset) {
810  // User before the Trial.
811  if (TrialOffset - UserOffset <= MaxDisp)
812  return true;
813  } else if (NegativeOK) {
814  if (UserOffset - TrialOffset <= MaxDisp)
815  return true;
816  }
817  return false;
818 }
819 
820 /// isWaterInRange - Returns true if a CPE placed after the specified
821 /// Water (a basic block) will be in range for the specific MI.
822 ///
823 /// Compute how much the function will grow by inserting a CPE after Water.
824 bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
825  MachineBasicBlock* Water, CPUser &U,
826  unsigned &Growth) {
827  unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
828  unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
829  unsigned NextBlockOffset, NextBlockAlignment;
830  MachineFunction::const_iterator NextBlock = Water;
831  if (++NextBlock == MF->end()) {
832  NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
833  NextBlockAlignment = 0;
834  } else {
835  NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
836  NextBlockAlignment = NextBlock->getAlignment();
837  }
838  unsigned Size = U.CPEMI->getOperand(2).getImm();
839  unsigned CPEEnd = CPEOffset + Size;
840 
841  // The CPE may be able to hide in the alignment padding before the next
842  // block. It may also cause more padding to be required if it is more aligned
843  // that the next block.
844  if (CPEEnd > NextBlockOffset) {
845  Growth = CPEEnd - NextBlockOffset;
846  // Compute the padding that would go at the end of the CPE to align the next
847  // block.
848  Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
849 
850  // If the CPE is to be inserted before the instruction, that will raise
851  // the offset of the instruction. Also account for unknown alignment padding
852  // in blocks between CPE and the user.
853  if (CPEOffset < UserOffset)
854  UserOffset += Growth;
855  } else
856  // CPE fits in existing padding.
857  Growth = 0;
858 
859  return isOffsetInRange(UserOffset, CPEOffset, U);
860 }
861 
862 /// isCPEntryInRange - Returns true if the distance between specific MI and
863 /// specific ConstPool entry instruction can fit in MI's displacement field.
864 bool MipsConstantIslands::isCPEntryInRange
865  (MachineInstr *MI, unsigned UserOffset,
866  MachineInstr *CPEMI, unsigned MaxDisp,
867  bool NegOk, bool DoDump) {
868  unsigned CPEOffset = getOffsetOf(CPEMI);
869 
870  if (DoDump) {
871  DEBUG({
872  unsigned Block = MI->getParent()->getNumber();
873  const BasicBlockInfo &BBI = BBInfo[Block];
874  dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
875  << " max delta=" << MaxDisp
876  << format(" insn address=%#x", UserOffset)
877  << " in BB#" << Block << ": "
878  << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
879  << format("CPE address=%#x offset=%+d: ", CPEOffset,
880  int(CPEOffset-UserOffset));
881  });
882  }
883 
884  return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
885 }
886 
887 #ifndef NDEBUG
888 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
889 /// unconditionally branches to its only successor.
891  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
892  return false;
893  MachineBasicBlock *Succ = *MBB->succ_begin();
894  MachineBasicBlock *Pred = *MBB->pred_begin();
895  MachineInstr *PredMI = &Pred->back();
896  if (PredMI->getOpcode() == Mips::Bimm16)
897  return PredMI->getOperand(0).getMBB() == Succ;
898  return false;
899 }
900 #endif
901 
902 void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
903  unsigned BBNum = BB->getNumber();
904  for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
905  // Get the offset and known bits at the end of the layout predecessor.
906  // Include the alignment of the current block.
907  unsigned Offset = BBInfo[i - 1].Offset + BBInfo[i - 1].Size;
908  BBInfo[i].Offset = Offset;
909  }
910 }
911 
912 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
913 /// and instruction CPEMI, and decrement its refcount. If the refcount
914 /// becomes 0 remove the entry and instruction. Returns true if we removed
915 /// the entry, false if we didn't.
916 
917 bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
918  MachineInstr *CPEMI) {
919  // Find the old entry. Eliminate it if it is no longer used.
920  CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
921  assert(CPE && "Unexpected!");
922  if (--CPE->RefCount == 0) {
923  removeDeadCPEMI(CPEMI);
924  CPE->CPEMI = NULL;
925  --NumCPEs;
926  return true;
927  }
928  return false;
929 }
930 
931 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
932 /// if not, see if an in-range clone of the CPE is in range, and if so,
933 /// change the data structures so the user references the clone. Returns:
934 /// 0 = no existing entry found
935 /// 1 = entry found, and there were no code insertions or deletions
936 /// 2 = entry found, and there were code insertions or deletions
937 int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
938 {
939  MachineInstr *UserMI = U.MI;
940  MachineInstr *CPEMI = U.CPEMI;
941 
942  // Check to see if the CPE is already in-range.
943  if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
944  true)) {
945  DEBUG(dbgs() << "In range\n");
946  return 1;
947  }
948 
949  // No. Look for previously created clones of the CPE that are in range.
950  unsigned CPI = CPEMI->getOperand(1).getIndex();
951  std::vector<CPEntry> &CPEs = CPEntries[CPI];
952  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
953  // We already tried this one
954  if (CPEs[i].CPEMI == CPEMI)
955  continue;
956  // Removing CPEs can leave empty entries, skip
957  if (CPEs[i].CPEMI == NULL)
958  continue;
959  if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
960  U.NegOk)) {
961  DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
962  << CPEs[i].CPI << "\n");
963  // Point the CPUser node to the replacement
964  U.CPEMI = CPEs[i].CPEMI;
965  // Change the CPI in the instruction operand to refer to the clone.
966  for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
967  if (UserMI->getOperand(j).isCPI()) {
968  UserMI->getOperand(j).setIndex(CPEs[i].CPI);
969  break;
970  }
971  // Adjust the refcount of the clone...
972  CPEs[i].RefCount++;
973  // ...and the original. If we didn't remove the old entry, none of the
974  // addresses changed, so we don't need another pass.
975  return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
976  }
977  }
978  return 0;
979 }
980 
981 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
982 /// This version checks if the longer form of the instruction can be used to
983 /// to satisfy things.
984 /// if not, see if an in-range clone of the CPE is in range, and if so,
985 /// change the data structures so the user references the clone. Returns:
986 /// 0 = no existing entry found
987 /// 1 = entry found, and there were no code insertions or deletions
988 /// 2 = entry found, and there were code insertions or deletions
989 int MipsConstantIslands::findLongFormInRangeCPEntry
990  (CPUser& U, unsigned UserOffset)
991 {
992  MachineInstr *UserMI = U.MI;
993  MachineInstr *CPEMI = U.CPEMI;
994 
995  // Check to see if the CPE is already in-range.
996  if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
997  U.getLongFormMaxDisp(), U.NegOk,
998  true)) {
999  DEBUG(dbgs() << "In range\n");
1000  UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1001  U.setMaxDisp(U.getLongFormMaxDisp());
1002  return 2; // instruction is longer length now
1003  }
1004 
1005  // No. Look for previously created clones of the CPE that are in range.
1006  unsigned CPI = CPEMI->getOperand(1).getIndex();
1007  std::vector<CPEntry> &CPEs = CPEntries[CPI];
1008  for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1009  // We already tried this one
1010  if (CPEs[i].CPEMI == CPEMI)
1011  continue;
1012  // Removing CPEs can leave empty entries, skip
1013  if (CPEs[i].CPEMI == NULL)
1014  continue;
1015  if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1016  U.getLongFormMaxDisp(), U.NegOk)) {
1017  DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1018  << CPEs[i].CPI << "\n");
1019  // Point the CPUser node to the replacement
1020  U.CPEMI = CPEs[i].CPEMI;
1021  // Change the CPI in the instruction operand to refer to the clone.
1022  for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1023  if (UserMI->getOperand(j).isCPI()) {
1024  UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1025  break;
1026  }
1027  // Adjust the refcount of the clone...
1028  CPEs[i].RefCount++;
1029  // ...and the original. If we didn't remove the old entry, none of the
1030  // addresses changed, so we don't need another pass.
1031  return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1032  }
1033  }
1034  return 0;
1035 }
1036 
1037 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1038 /// the specific unconditional branch instruction.
1039 static inline unsigned getUnconditionalBrDisp(int Opc) {
1040  switch (Opc) {
1041  case Mips::Bimm16:
1042  return ((1<<10)-1)*2;
1043  case Mips::BimmX16:
1044  return ((1<<16)-1)*2;
1045  default:
1046  break;
1047  }
1048  return ((1<<16)-1)*2;
1049 }
1050 
1051 /// findAvailableWater - Look for an existing entry in the WaterList in which
1052 /// we can place the CPE referenced from U so it's within range of U's MI.
1053 /// Returns true if found, false if not. If it returns true, WaterIter
1054 /// is set to the WaterList entry.
1055 /// To ensure that this pass
1056 /// terminates, the CPE location for a particular CPUser is only allowed to
1057 /// move to a lower address, so search backward from the end of the list and
1058 /// prefer the first water that is in range.
1059 bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1060  water_iterator &WaterIter) {
1061  if (WaterList.empty())
1062  return false;
1063 
1064  unsigned BestGrowth = ~0u;
1065  for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
1066  --IP) {
1067  MachineBasicBlock* WaterBB = *IP;
1068  // Check if water is in range and is either at a lower address than the
1069  // current "high water mark" or a new water block that was created since
1070  // the previous iteration by inserting an unconditional branch. In the
1071  // latter case, we want to allow resetting the high water mark back to
1072  // this new water since we haven't seen it before. Inserting branches
1073  // should be relatively uncommon and when it does happen, we want to be
1074  // sure to take advantage of it for all the CPEs near that block, so that
1075  // we don't insert more branches than necessary.
1076  unsigned Growth;
1077  if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1078  (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1079  NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1080  // This is the least amount of required padding seen so far.
1081  BestGrowth = Growth;
1082  WaterIter = IP;
1083  DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1084  << " Growth=" << Growth << '\n');
1085 
1086  // Keep looking unless it is perfect.
1087  if (BestGrowth == 0)
1088  return true;
1089  }
1090  if (IP == B)
1091  break;
1092  }
1093  return BestGrowth != ~0u;
1094 }
1095 
1096 /// createNewWater - No existing WaterList entry will work for
1097 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1098 /// block is used if in range, and the conditional branch munged so control
1099 /// flow is correct. Otherwise the block is split to create a hole with an
1100 /// unconditional branch around it. In either case NewMBB is set to a
1101 /// block following which the new island can be inserted (the WaterList
1102 /// is not adjusted).
1103 void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1104  unsigned UserOffset,
1105  MachineBasicBlock *&NewMBB) {
1106  CPUser &U = CPUsers[CPUserIndex];
1107  MachineInstr *UserMI = U.MI;
1108  MachineInstr *CPEMI = U.CPEMI;
1109  unsigned CPELogAlign = getCPELogAlign(CPEMI);
1110  MachineBasicBlock *UserMBB = UserMI->getParent();
1111  const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1112 
1113  // If the block does not end in an unconditional branch already, and if the
1114  // end of the block is within range, make new water there.
1115  if (BBHasFallthrough(UserMBB)) {
1116  // Size of branch to insert.
1117  unsigned Delta = 2;
1118  // Compute the offset where the CPE will begin.
1119  unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1120 
1121  if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1122  DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1123  << format(", expected CPE offset %#x\n", CPEOffset));
1124  NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1125  // Add an unconditional branch from UserMBB to fallthrough block. Record
1126  // it for branch lengthening; this new branch will not get out of range,
1127  // but if the preceding conditional branch is out of range, the targets
1128  // will be exchanged, and the altered branch may be out of range, so the
1129  // machinery has to know about it.
1130  int UncondBr = Mips::Bimm16;
1131  BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1132  unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1133  ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1134  MaxDisp, false, UncondBr));
1135  BBInfo[UserMBB->getNumber()].Size += Delta;
1136  adjustBBOffsetsAfter(UserMBB);
1137  return;
1138  }
1139  }
1140 
1141  // What a big block. Find a place within the block to split it.
1142 
1143  // Try to split the block so it's fully aligned. Compute the latest split
1144  // point where we can add a 4-byte branch instruction, and then align to
1145  // LogAlign which is the largest possible alignment in the function.
1146  unsigned LogAlign = MF->getAlignment();
1147  assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1148  unsigned BaseInsertOffset = UserOffset + U.getMaxDisp();
1149  DEBUG(dbgs() << format("Split in middle of big block before %#x",
1150  BaseInsertOffset));
1151 
1152  // The 4 in the following is for the unconditional branch we'll be inserting
1153  // Alignment of the island is handled
1154  // inside isOffsetInRange.
1155  BaseInsertOffset -= 4;
1156 
1157  DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1158  << " la=" << LogAlign << '\n');
1159 
1160  // This could point off the end of the block if we've already got constant
1161  // pool entries following this block; only the last one is in the water list.
1162  // Back past any possible branches (allow for a conditional and a maximally
1163  // long unconditional).
1164  if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1165  BaseInsertOffset = UserBBI.postOffset() - 8;
1166  DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1167  }
1168  unsigned EndInsertOffset = BaseInsertOffset + 4 +
1169  CPEMI->getOperand(2).getImm();
1170  MachineBasicBlock::iterator MI = UserMI;
1171  ++MI;
1172  unsigned CPUIndex = CPUserIndex+1;
1173  unsigned NumCPUsers = CPUsers.size();
1174  //MachineInstr *LastIT = 0;
1175  for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1176  Offset < BaseInsertOffset;
1177  Offset += TII->GetInstSizeInBytes(MI),
1178  MI = llvm::next(MI)) {
1179  assert(MI != UserMBB->end() && "Fell off end of block");
1180  if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1181  CPUser &U = CPUsers[CPUIndex];
1182  if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1183  // Shift intertion point by one unit of alignment so it is within reach.
1184  BaseInsertOffset -= 1u << LogAlign;
1185  EndInsertOffset -= 1u << LogAlign;
1186  }
1187  // This is overly conservative, as we don't account for CPEMIs being
1188  // reused within the block, but it doesn't matter much. Also assume CPEs
1189  // are added in order with alignment padding. We may eventually be able
1190  // to pack the aligned CPEs better.
1191  EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1192  CPUIndex++;
1193  }
1194  }
1195 
1196  --MI;
1197  NewMBB = splitBlockBeforeInstr(MI);
1198 }
1199 
1200 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1201 /// is out-of-range. If so, pick up the constant pool value and move it some
1202 /// place in-range. Return true if we changed any addresses (thus must run
1203 /// another pass of branch lengthening), false otherwise.
1204 bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1205  CPUser &U = CPUsers[CPUserIndex];
1206  MachineInstr *UserMI = U.MI;
1207  MachineInstr *CPEMI = U.CPEMI;
1208  unsigned CPI = CPEMI->getOperand(1).getIndex();
1209  unsigned Size = CPEMI->getOperand(2).getImm();
1210  // Compute this only once, it's expensive.
1211  unsigned UserOffset = getUserOffset(U);
1212 
1213  // See if the current entry is within range, or there is a clone of it
1214  // in range.
1215  int result = findInRangeCPEntry(U, UserOffset);
1216  if (result==1) return false;
1217  else if (result==2) return true;
1218 
1219 
1220  // Look for water where we can place this CPE.
1221  MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1222  MachineBasicBlock *NewMBB;
1223  water_iterator IP;
1224  if (findAvailableWater(U, UserOffset, IP)) {
1225  DEBUG(dbgs() << "Found water in range\n");
1226  MachineBasicBlock *WaterBB = *IP;
1227 
1228  // If the original WaterList entry was "new water" on this iteration,
1229  // propagate that to the new island. This is just keeping NewWaterList
1230  // updated to match the WaterList, which will be updated below.
1231  if (NewWaterList.erase(WaterBB))
1232  NewWaterList.insert(NewIsland);
1233 
1234  // The new CPE goes before the following block (NewMBB).
1235  NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1236 
1237  } else {
1238  // No water found.
1239  // we first see if a longer form of the instrucion could have reached
1240  // the constant. in that case we won't bother to split
1241  if (!NoLoadRelaxation) {
1242  result = findLongFormInRangeCPEntry(U, UserOffset);
1243  if (result != 0) return true;
1244  }
1245  DEBUG(dbgs() << "No water found\n");
1246  createNewWater(CPUserIndex, UserOffset, NewMBB);
1247 
1248  // splitBlockBeforeInstr adds to WaterList, which is important when it is
1249  // called while handling branches so that the water will be seen on the
1250  // next iteration for constant pools, but in this context, we don't want
1251  // it. Check for this so it will be removed from the WaterList.
1252  // Also remove any entry from NewWaterList.
1254  IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1255  if (IP != WaterList.end())
1256  NewWaterList.erase(WaterBB);
1257 
1258  // We are adding new water. Update NewWaterList.
1259  NewWaterList.insert(NewIsland);
1260  }
1261 
1262  // Remove the original WaterList entry; we want subsequent insertions in
1263  // this vicinity to go after the one we're about to insert. This
1264  // considerably reduces the number of times we have to move the same CPE
1265  // more than once and is also important to ensure the algorithm terminates.
1266  if (IP != WaterList.end())
1267  WaterList.erase(IP);
1268 
1269  // Okay, we know we can put an island before NewMBB now, do it!
1270  MF->insert(NewMBB, NewIsland);
1271 
1272  // Update internal data structures to account for the newly inserted MBB.
1273  updateForInsertedWaterBlock(NewIsland);
1274 
1275  // Decrement the old entry, and remove it if refcount becomes 0.
1276  decrementCPEReferenceCount(CPI, CPEMI);
1277 
1278  // Now that we have an island to add the CPE to, clone the original CPE and
1279  // add it to the island.
1280  U.HighWaterMark = NewIsland;
1281  U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1282  .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1283  CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1284  ++NumCPEs;
1285 
1286  // Mark the basic block as aligned as required by the const-pool entry.
1287  NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1288 
1289  // Increase the size of the island block to account for the new entry.
1290  BBInfo[NewIsland->getNumber()].Size += Size;
1291  adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
1292 
1293  // No existing clone of this CPE is within range.
1294  // We will be generating a new clone. Get a UID for it.
1295  unsigned ID = createPICLabelUId();
1296 
1297  // Finally, change the CPI in the instruction operand to be ID.
1298  for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1299  if (UserMI->getOperand(i).isCPI()) {
1300  UserMI->getOperand(i).setIndex(ID);
1301  break;
1302  }
1303 
1304  DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1305  << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1306 
1307  return true;
1308 }
1309 
1310 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1311 /// sizes and offsets of impacted basic blocks.
1312 void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1313  MachineBasicBlock *CPEBB = CPEMI->getParent();
1314  unsigned Size = CPEMI->getOperand(2).getImm();
1315  CPEMI->eraseFromParent();
1316  BBInfo[CPEBB->getNumber()].Size -= Size;
1317  // All succeeding offsets have the current size value added in, fix this.
1318  if (CPEBB->empty()) {
1319  BBInfo[CPEBB->getNumber()].Size = 0;
1320 
1321  // This block no longer needs to be aligned.
1322  CPEBB->setAlignment(0);
1323  } else
1324  // Entries are sorted by descending alignment, so realign from the front.
1325  CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1326 
1327  adjustBBOffsetsAfter(CPEBB);
1328  // An island has only one predecessor BB and one successor BB. Check if
1329  // this BB's predecessor jumps directly to this BB's successor. This
1330  // shouldn't happen currently.
1331  assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1332  // FIXME: remove the empty blocks after all the work is done?
1333 }
1334 
1335 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1336 /// are zero.
1337 bool MipsConstantIslands::removeUnusedCPEntries() {
1338  unsigned MadeChange = false;
1339  for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1340  std::vector<CPEntry> &CPEs = CPEntries[i];
1341  for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1342  if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1343  removeDeadCPEMI(CPEs[j].CPEMI);
1344  CPEs[j].CPEMI = NULL;
1345  MadeChange = true;
1346  }
1347  }
1348  }
1349  return MadeChange;
1350 }
1351 
1352 /// isBBInRange - Returns true if the distance between specific MI and
1353 /// specific BB can fit in MI's displacement field.
1354 bool MipsConstantIslands::isBBInRange
1355  (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1356 
1357 unsigned PCAdj = 4;
1358 
1359  unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1360  unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1361 
1362  DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1363  << " from BB#" << MI->getParent()->getNumber()
1364  << " max delta=" << MaxDisp
1365  << " from " << getOffsetOf(MI) << " to " << DestOffset
1366  << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1367 
1368  if (BrOffset <= DestOffset) {
1369  // Branch before the Dest.
1370  if (DestOffset-BrOffset <= MaxDisp)
1371  return true;
1372  } else {
1373  if (BrOffset-DestOffset <= MaxDisp)
1374  return true;
1375  }
1376  return false;
1377 }
1378 
1379 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1380 /// away to fit in its displacement field.
1381 bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1382  MachineInstr *MI = Br.MI;
1383  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1384 
1385  // Check to see if the DestBB is already in-range.
1386  if (isBBInRange(MI, DestBB, Br.MaxDisp))
1387  return false;
1388 
1389  if (!Br.isCond)
1390  return fixupUnconditionalBr(Br);
1391  return fixupConditionalBr(Br);
1392 }
1393 
1394 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1395 /// too far away to fit in its displacement field. If the LR register has been
1396 /// spilled in the epilogue, then we can use BL to implement a far jump.
1397 /// Otherwise, add an intermediate branch instruction to a branch.
1398 bool
1399 MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1400  MachineInstr *MI = Br.MI;
1401  MachineBasicBlock *MBB = MI->getParent();
1402  // Use BL to implement far jump.
1403  Br.MaxDisp = ((1 << 16)-1) * 2;
1404  MI->setDesc(TII->get(Mips::BimmX16));
1405  BBInfo[MBB->getNumber()].Size += 2;
1406  adjustBBOffsetsAfter(MBB);
1407  HasFarJump = true;
1408  ++NumUBrFixed;
1409 
1410  DEBUG(dbgs() << " Changed B to long jump " << *MI);
1411 
1412  return true;
1413 }
1414 
1415 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1416 /// far away to fit in its displacement field. It is converted to an inverse
1417 /// conditional branch + an unconditional branch to the destination.
1418 bool
1419 MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1420  MachineInstr *MI = Br.MI;
1421  MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1422 
1423  // Add an unconditional branch to the destination and invert the branch
1424  // condition to jump over it:
1425  // blt L1
1426  // =>
1427  // bge L2
1428  // b L1
1429  // L2:
1430  unsigned CCReg = 0; // FIXME
1431  unsigned CC=0; //FIXME
1432 
1433  // If the branch is at the end of its MBB and that has a fall-through block,
1434  // direct the updated conditional branch to the fall-through block. Otherwise,
1435  // split the MBB before the next instruction.
1436  MachineBasicBlock *MBB = MI->getParent();
1437  MachineInstr *BMI = &MBB->back();
1438  bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1439 
1440  ++NumCBrFixed;
1441  if (BMI != MI) {
1442  if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1443  BMI->getOpcode() == Br.UncondBr) {
1444  // Last MI in the BB is an unconditional branch. Can we simply invert the
1445  // condition and swap destinations:
1446  // beq L1
1447  // b L2
1448  // =>
1449  // bne L2
1450  // b L1
1451  MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1452  if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1453  DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
1454  << *BMI);
1455  BMI->getOperand(0).setMBB(DestBB);
1456  MI->getOperand(0).setMBB(NewDest);
1457  return true;
1458  }
1459  }
1460  }
1461 
1462  if (NeedSplit) {
1463  splitBlockBeforeInstr(MI);
1464  // No need for the branch to the next block. We're adding an unconditional
1465  // branch to the destination.
1466  int delta = TII->GetInstSizeInBytes(&MBB->back());
1467  BBInfo[MBB->getNumber()].Size -= delta;
1468  MBB->back().eraseFromParent();
1469  // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1470  }
1472 
1473  DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber()
1474  << " also invert condition and change dest. to BB#"
1475  << NextBB->getNumber() << "\n");
1476 
1477  // Insert a new conditional branch and a new unconditional branch.
1478  // Also update the ImmBranch as well as adding a new entry for the new branch.
1479  BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1480  .addMBB(NextBB).addImm(CC).addReg(CCReg);
1481  Br.MI = &MBB->back();
1482  BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1483  BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1484  BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1485  unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1486  ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1487 
1488  // Remove the old conditional branch. It may or may not still be in MBB.
1489  BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1490  MI->eraseFromParent();
1491  adjustBBOffsetsAfter(MBB);
1492  return true;
1493 }
1494 
1495 
1496 void MipsConstantIslands::prescanForConstants() {
1497  unsigned J = 0;
1498  (void)J;
1499  PrescannedForConstants = true;
1500  for (MachineFunction::iterator B =
1501  MF->begin(), E = MF->end(); B != E; ++B) {
1503  B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1504  switch(I->getDesc().getOpcode()) {
1505  case Mips::LwConstant32: {
1506  DEBUG(dbgs() << "constant island constant " << *I << "\n");
1507  J = I->getNumOperands();
1508  DEBUG(dbgs() << "num operands " << J << "\n");
1509  MachineOperand& Literal = I->getOperand(1);
1510  if (Literal.isImm()) {
1511  int64_t V = Literal.getImm();
1512  DEBUG(dbgs() << "literal " << V << "\n");
1513  Type *Int32Ty =
1514  Type::getInt32Ty(MF->getFunction()->getContext());
1515  const Constant *C = ConstantInt::get(Int32Ty, V);
1516  unsigned index = MCP->getConstantPoolIndex(C, 4);
1517  I->getOperand(2).ChangeToImmediate(index);
1518  DEBUG(dbgs() << "constant island constant " << *I << "\n");
1519  I->setDesc(TII->get(Mips::LwRxPcTcp16));
1520  I->RemoveOperand(1);
1521  I->RemoveOperand(1);
1522  I->addOperand(MachineOperand::CreateCPI(index, 0));
1523  I->addOperand(MachineOperand::CreateImm(4));
1524  }
1525  break;
1526  }
1527  default:
1528  break;
1529  }
1530  }
1531  }
1532 }
1533 
unsigned succ_size() const
const MachineFunction * getParent() const
The machine constant pool.
static bool CompareMBBNumbers(const MachineBasicBlock *LHS, const MachineBasicBlock *RHS)
MachineBasicBlock * getMBB() const
F(f)
FunctionType * getType(LLVMContext &Context, ID id, ArrayRef< Type * > Tys=None)
Definition: Function.cpp:657
Instructions::iterator instr_iterator
void setAlignment(unsigned Align)
LLVM_ATTRIBUTE_NORETURN void report_fatal_error(const char *reason, bool gen_crash_diag=true)
const HexagonInstrInfo * TII
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
#define llvm_unreachable(msg)
static bool BBHasFallthrough(MachineBasicBlock *MBB)
std::vector< MachineBasicBlock * >::iterator succ_iterator
void setIndex(int Idx)
static cl::opt< bool > AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true), cl::desc("Align constant islands in code"))
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
#define false
Definition: ConvertUTF.c:64
const MachineInstrBuilder & addImm(int64_t Val) const
unsigned getNumOperands() const
Definition: MachineInstr.h:265
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
format_object1< T > format(const char *Fmt, const T &Val)
Definition: Format.h:180
void transferSuccessors(MachineBasicBlock *fromMBB)
int getOpcode() const
Definition: MachineInstr.h:261
STATISTIC(NumCPEs,"Number of constpool entries")
void RenumberBlocks(MachineBasicBlock *MBBFrom=0)
int64_t getImm() const
const BasicBlock * getBasicBlock() const
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:119
static cl::opt< int > ConstantIslandsSmallOffset("mips-constant-islands-small-offset", cl::init(0), cl::desc("Make small offsets be this amount for testing purposes"), cl::Hidden)
bundle_iterator< MachineInstr, instr_iterator > iterator
static cl::opt< bool > NoLoadRelaxation("mips-constant-islands-no-load-relaxation", cl::init(false), cl::desc("Don't relax loads to long loads - for testing purposes"), cl::Hidden)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:314
static MachineOperand CreateCPI(unsigned Idx, int Offset, unsigned char TargetFlags=0)
static bool BBIsJumpedOver(MachineBasicBlock *MBB)
Type * Int32Ty
LLVM Constant Representation.
Definition: Constant.h:41
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:267
void setMBB(MachineBasicBlock *MBB)
ItTy next(ItTy it, Dist n)
Definition: STLExtras.h:154
MachineConstantPool * getConstantPool()
bool inMips16Mode() const
MachineInstrBuilder BuildMI(MachineFunction &MF, DebugLoc DL, const MCInstrDesc &MCID)
static unsigned getUnconditionalBrDisp(int Opc)
static bool useConstantIslands()
void setDesc(const MCInstrDesc &tid)
Definition: MachineInstr.h:984
uint64_t getTypeAllocSize(Type *Ty) const
Definition: DataLayout.h:326
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
unsigned Log2_32(uint32_t Value)
Definition: MathExtras.h:443
static cl::opt< AlignMode > Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values(clEnumValN(DefaultAlign,"arm-default-align","Generate unaligned accesses only on hardware/OS ""combinations that are known to support them"), clEnumValN(StrictAlign,"arm-strict-align","Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign,"arm-no-strict-align","Allow unaligned memory accesses"), clEnumValEnd))
FunctionPass * createMipsConstantIslandPass(MipsTargetMachine &tm)
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
static IntegerType * getInt32Ty(LLVMContext &C)
Definition: Type.cpp:241
const MachineInstrBuilder & addConstantPoolIndex(unsigned Idx, int Offset=0, unsigned char TargetFlags=0) const
static MachineOperand CreateImm(int64_t Val)
void push_back(MachineInstr *MI)
#define I(x, y, z)
Definition: MD5.cpp:54
instr_iterator insert(instr_iterator I, MachineInstr *M)
std::reverse_iterator< iterator > reverse_iterator
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned char TargetFlags=0) const
uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align)
Definition: MathExtras.h:572
BasicBlockListType::iterator iterator
ItTy prior(ItTy it, Dist n)
Definition: STLExtras.h:167
#define DEBUG(X)
Definition: Debug.h:97
bool isPowerOf2_32(uint32_t Value)
Definition: MathExtras.h:354
ppc ctr loops verify
const MachineInstrBuilder & addReg(unsigned RegNo, unsigned flags=0, unsigned SubReg=0) const
void addSuccessor(MachineBasicBlock *succ, uint32_t weight=0)
unsigned pred_size() const
INITIALIZE_PASS(GlobalMerge,"global-merge","Global Merge", false, false) bool GlobalMerge const DataLayout * TD
unsigned getAlignment() const