LLVM API Documentation

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
Reassociate.cpp
Go to the documentation of this file.
1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass reassociates commutative expressions in an order that is designed
11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
12 //
13 // For example: 4 + (x + 5) -> x + (4 + 5)
14 //
15 // In the implementation of this algorithm, constants are assigned rank = 0,
16 // function arguments are rank = 1, and other values are assigned ranks
17 // corresponding to the reverse post order traversal of current function
18 // (starting at 2), which effectively gives values in deep loops higher rank
19 // than values not in loops.
20 //
21 //===----------------------------------------------------------------------===//
22 
23 #define DEBUG_TYPE "reassociate"
24 #include "llvm/Transforms/Scalar.h"
25 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Assembly/Writer.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CFG.h"
39 #include "llvm/Support/Debug.h"
43 #include <algorithm>
44 using namespace llvm;
45 
46 STATISTIC(NumChanged, "Number of insts reassociated");
47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48 STATISTIC(NumFactor , "Number of multiplies factored");
49 
50 namespace {
51  struct ValueEntry {
52  unsigned Rank;
53  Value *Op;
54  ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55  };
56  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57  return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58  }
59 }
60 
61 #ifndef NDEBUG
62 /// PrintOps - Print out the expression identified in the Ops list.
63 ///
65  Module *M = I->getParent()->getParent()->getParent();
66  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
67  << *Ops[0].Op->getType() << '\t';
68  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
69  dbgs() << "[ ";
70  WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71  dbgs() << ", #" << Ops[i].Rank << "] ";
72  }
73 }
74 #endif
75 
76 namespace {
77  /// \brief Utility class representing a base and exponent pair which form one
78  /// factor of some product.
79  struct Factor {
80  Value *Base;
81  unsigned Power;
82 
83  Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84 
85  /// \brief Sort factors by their Base.
86  struct BaseSorter {
87  bool operator()(const Factor &LHS, const Factor &RHS) {
88  return LHS.Base < RHS.Base;
89  }
90  };
91 
92  /// \brief Compare factors for equal bases.
93  struct BaseEqual {
94  bool operator()(const Factor &LHS, const Factor &RHS) {
95  return LHS.Base == RHS.Base;
96  }
97  };
98 
99  /// \brief Sort factors in descending order by their power.
100  struct PowerDescendingSorter {
101  bool operator()(const Factor &LHS, const Factor &RHS) {
102  return LHS.Power > RHS.Power;
103  }
104  };
105 
106  /// \brief Compare factors for equal powers.
107  struct PowerEqual {
108  bool operator()(const Factor &LHS, const Factor &RHS) {
109  return LHS.Power == RHS.Power;
110  }
111  };
112  };
113 
114  /// Utility class representing a non-constant Xor-operand. We classify
115  /// non-constant Xor-Operands into two categories:
116  /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
117  /// C2)
118  /// C2.1) The operand is in the form of "X | C", where C is a non-zero
119  /// constant.
120  /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121  /// operand as "E | 0"
122  class XorOpnd {
123  public:
124  XorOpnd(Value *V);
125 
126  bool isInvalid() const { return SymbolicPart == 0; }
127  bool isOrExpr() const { return isOr; }
128  Value *getValue() const { return OrigVal; }
129  Value *getSymbolicPart() const { return SymbolicPart; }
130  unsigned getSymbolicRank() const { return SymbolicRank; }
131  const APInt &getConstPart() const { return ConstPart; }
132 
133  void Invalidate() { SymbolicPart = OrigVal = 0; }
134  void setSymbolicRank(unsigned R) { SymbolicRank = R; }
135 
136  // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
137  // The purpose is twofold:
138  // 1) Cluster together the operands sharing the same symbolic-value.
139  // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
140  // could potentially shorten crital path, and expose more loop-invariants.
141  // Note that values' rank are basically defined in RPO order (FIXME).
142  // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
143  // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
144  // "z" in the order of X-Y-Z is better than any other orders.
145  struct PtrSortFunctor {
146  bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
147  return LHS->getSymbolicRank() < RHS->getSymbolicRank();
148  }
149  };
150  private:
151  Value *OrigVal;
152  Value *SymbolicPart;
153  APInt ConstPart;
154  unsigned SymbolicRank;
155  bool isOr;
156  };
157 }
158 
159 namespace {
160  class Reassociate : public FunctionPass {
162  DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
164  bool MadeChange;
165  public:
166  static char ID; // Pass identification, replacement for typeid
167  Reassociate() : FunctionPass(ID) {
169  }
170 
171  bool runOnFunction(Function &F);
172 
173  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174  AU.setPreservesCFG();
175  }
176  private:
177  void BuildRankMap(Function &F);
178  unsigned getRank(Value *V);
179  void ReassociateExpression(BinaryOperator *I);
180  void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
181  Value *OptimizeExpression(BinaryOperator *I,
183  Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
184  Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
185  bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
186  Value *&Res);
187  bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
188  APInt &ConstOpnd, Value *&Res);
189  bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
190  SmallVectorImpl<Factor> &Factors);
191  Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
192  SmallVectorImpl<Factor> &Factors);
193  Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
194  Value *RemoveFactorFromExpression(Value *V, Value *Factor);
195  void EraseInst(Instruction *I);
196  void OptimizeInst(Instruction *I);
197  };
198 }
199 
200 XorOpnd::XorOpnd(Value *V) {
201  assert(!isa<ConstantInt>(V) && "No ConstantInt");
202  OrigVal = V;
204  SymbolicRank = 0;
205 
206  if (I && (I->getOpcode() == Instruction::Or ||
207  I->getOpcode() == Instruction::And)) {
208  Value *V0 = I->getOperand(0);
209  Value *V1 = I->getOperand(1);
210  if (isa<ConstantInt>(V0))
211  std::swap(V0, V1);
212 
213  if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
214  ConstPart = C->getValue();
215  SymbolicPart = V0;
216  isOr = (I->getOpcode() == Instruction::Or);
217  return;
218  }
219  }
220 
221  // view the operand as "V | 0"
222  SymbolicPart = V;
223  ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
224  isOr = true;
225 }
226 
227 char Reassociate::ID = 0;
228 INITIALIZE_PASS(Reassociate, "reassociate",
229  "Reassociate expressions", false, false)
230 
231 // Public interface to the Reassociate pass
232 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
233 
234 /// isReassociableOp - Return true if V is an instruction of the specified
235 /// opcode and if it only has one use.
236 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
237  if (V->hasOneUse() && isa<Instruction>(V) &&
238  cast<Instruction>(V)->getOpcode() == Opcode)
239  return cast<BinaryOperator>(V);
240  return 0;
241 }
242 
244  switch (I->getOpcode()) {
245  case Instruction::PHI:
246  case Instruction::LandingPad:
247  case Instruction::Alloca:
248  case Instruction::Load:
249  case Instruction::Invoke:
250  case Instruction::UDiv:
251  case Instruction::SDiv:
252  case Instruction::FDiv:
253  case Instruction::URem:
254  case Instruction::SRem:
255  case Instruction::FRem:
256  return true;
257  case Instruction::Call:
258  return !isa<DbgInfoIntrinsic>(I);
259  default:
260  return false;
261  }
262 }
263 
264 void Reassociate::BuildRankMap(Function &F) {
265  unsigned i = 2;
266 
267  // Assign distinct ranks to function arguments
268  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
269  ValueRankMap[&*I] = ++i;
270 
273  E = RPOT.end(); I != E; ++I) {
274  BasicBlock *BB = *I;
275  unsigned BBRank = RankMap[BB] = ++i << 16;
276 
277  // Walk the basic block, adding precomputed ranks for any instructions that
278  // we cannot move. This ensures that the ranks for these instructions are
279  // all different in the block.
280  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
281  if (isUnmovableInstruction(I))
282  ValueRankMap[&*I] = ++BBRank;
283  }
284 }
285 
286 unsigned Reassociate::getRank(Value *V) {
288  if (I == 0) {
289  if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
290  return 0; // Otherwise it's a global or constant, rank 0.
291  }
292 
293  if (unsigned Rank = ValueRankMap[I])
294  return Rank; // Rank already known?
295 
296  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
297  // we can reassociate expressions for code motion! Since we do not recurse
298  // for PHI nodes, we cannot have infinite recursion here, because there
299  // cannot be loops in the value graph that do not go through PHI nodes.
300  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
301  for (unsigned i = 0, e = I->getNumOperands();
302  i != e && Rank != MaxRank; ++i)
303  Rank = std::max(Rank, getRank(I->getOperand(i)));
304 
305  // If this is a not or neg instruction, do not count it for rank. This
306  // assures us that X and ~X will have the same rank.
307  if (!I->getType()->isIntegerTy() ||
309  ++Rank;
310 
311  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
312  // << Rank << "\n");
313 
314  return ValueRankMap[I] = Rank;
315 }
316 
317 /// LowerNegateToMultiply - Replace 0-X with X*-1.
318 ///
321 
322  BinaryOperator *Res =
323  BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
324  Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
325  Res->takeName(Neg);
326  Neg->replaceAllUsesWith(Res);
327  Res->setDebugLoc(Neg->getDebugLoc());
328  return Res;
329 }
330 
331 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
332 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
333 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
334 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
335 /// even x in Bitwidth-bit arithmetic.
336 static unsigned CarmichaelShift(unsigned Bitwidth) {
337  if (Bitwidth < 3)
338  return Bitwidth - 1;
339  return Bitwidth - 2;
340 }
341 
342 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
343 /// reducing the combined weight using any special properties of the operation.
344 /// The existing weight LHS represents the computation X op X op ... op X where
345 /// X occurs LHS times. The combined weight represents X op X op ... op X with
346 /// X occurring LHS + RHS times. If op is "Xor" for example then the combined
347 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
348 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
349 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
350  // If we were working with infinite precision arithmetic then the combined
351  // weight would be LHS + RHS. But we are using finite precision arithmetic,
352  // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
353  // for nilpotent operations and addition, but not for idempotent operations
354  // and multiplication), so it is important to correctly reduce the combined
355  // weight back into range if wrapping would be wrong.
356 
357  // If RHS is zero then the weight didn't change.
358  if (RHS.isMinValue())
359  return;
360  // If LHS is zero then the combined weight is RHS.
361  if (LHS.isMinValue()) {
362  LHS = RHS;
363  return;
364  }
365  // From this point on we know that neither LHS nor RHS is zero.
366 
367  if (Instruction::isIdempotent(Opcode)) {
368  // Idempotent means X op X === X, so any non-zero weight is equivalent to a
369  // weight of 1. Keeping weights at zero or one also means that wrapping is
370  // not a problem.
371  assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
372  return; // Return a weight of 1.
373  }
374  if (Instruction::isNilpotent(Opcode)) {
375  // Nilpotent means X op X === 0, so reduce weights modulo 2.
376  assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
377  LHS = 0; // 1 + 1 === 0 modulo 2.
378  return;
379  }
380  if (Opcode == Instruction::Add) {
381  // TODO: Reduce the weight by exploiting nsw/nuw?
382  LHS += RHS;
383  return;
384  }
385 
386  assert(Opcode == Instruction::Mul && "Unknown associative operation!");
387  unsigned Bitwidth = LHS.getBitWidth();
388  // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
389  // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
390  // bit number x, since either x is odd in which case x^CM = 1, or x is even in
391  // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
392  // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
393  // which by a happy accident means that they can always be represented using
394  // Bitwidth bits.
395  // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
396  // the Carmichael number).
397  if (Bitwidth > 3) {
398  /// CM - The value of Carmichael's lambda function.
399  APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
400  // Any weight W >= Threshold can be replaced with W - CM.
401  APInt Threshold = CM + Bitwidth;
402  assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
403  // For Bitwidth 4 or more the following sum does not overflow.
404  LHS += RHS;
405  while (LHS.uge(Threshold))
406  LHS -= CM;
407  } else {
408  // To avoid problems with overflow do everything the same as above but using
409  // a larger type.
410  unsigned CM = 1U << CarmichaelShift(Bitwidth);
411  unsigned Threshold = CM + Bitwidth;
412  assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
413  "Weights not reduced!");
414  unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
415  while (Total >= Threshold)
416  Total -= CM;
417  LHS = Total;
418  }
419 }
420 
421 typedef std::pair<Value*, APInt> RepeatedValue;
422 
423 /// LinearizeExprTree - Given an associative binary expression, return the leaf
424 /// nodes in Ops along with their weights (how many times the leaf occurs). The
425 /// original expression is the same as
426 /// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
427 /// op
428 /// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
429 /// op
430 /// ...
431 /// op
432 /// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
433 ///
434 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
435 ///
436 /// This routine may modify the function, in which case it returns 'true'. The
437 /// changes it makes may well be destructive, changing the value computed by 'I'
438 /// to something completely different. Thus if the routine returns 'true' then
439 /// you MUST either replace I with a new expression computed from the Ops array,
440 /// or use RewriteExprTree to put the values back in.
441 ///
442 /// A leaf node is either not a binary operation of the same kind as the root
443 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
444 /// opcode), or is the same kind of binary operator but has a use which either
445 /// does not belong to the expression, or does belong to the expression but is
446 /// a leaf node. Every leaf node has at least one use that is a non-leaf node
447 /// of the expression, while for non-leaf nodes (except for the root 'I') every
448 /// use is a non-leaf node of the expression.
449 ///
450 /// For example:
451 /// expression graph node names
452 ///
453 /// + | I
454 /// / \ |
455 /// + + | A, B
456 /// / \ / \ |
457 /// * + * | C, D, E
458 /// / \ / \ / \ |
459 /// + * | F, G
460 ///
461 /// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
462 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
463 ///
464 /// The expression is maximal: if some instruction is a binary operator of the
465 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
466 /// then the instruction also belongs to the expression, is not a leaf node of
467 /// it, and its operands also belong to the expression (but may be leaf nodes).
468 ///
469 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
470 /// order to ensure that every non-root node in the expression has *exactly one*
471 /// use by a non-leaf node of the expression. This destruction means that the
472 /// caller MUST either replace 'I' with a new expression or use something like
473 /// RewriteExprTree to put the values back in if the routine indicates that it
474 /// made a change by returning 'true'.
475 ///
476 /// In the above example either the right operand of A or the left operand of B
477 /// will be replaced by undef. If it is B's operand then this gives:
478 ///
479 /// + | I
480 /// / \ |
481 /// + + | A, B - operand of B replaced with undef
482 /// / \ \ |
483 /// * + * | C, D, E
484 /// / \ / \ / \ |
485 /// + * | F, G
486 ///
487 /// Note that such undef operands can only be reached by passing through 'I'.
488 /// For example, if you visit operands recursively starting from a leaf node
489 /// then you will never see such an undef operand unless you get back to 'I',
490 /// which requires passing through a phi node.
491 ///
492 /// Note that this routine may also mutate binary operators of the wrong type
493 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
494 /// of the expression) if it can turn them into binary operators of the right
495 /// type and thus make the expression bigger.
496 
499  DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
500  unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
501  unsigned Opcode = I->getOpcode();
502  assert(Instruction::isAssociative(Opcode) &&
503  Instruction::isCommutative(Opcode) &&
504  "Expected an associative and commutative operation!");
505 
506  // Visit all operands of the expression, keeping track of their weight (the
507  // number of paths from the expression root to the operand, or if you like
508  // the number of times that operand occurs in the linearized expression).
509  // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
510  // while A has weight two.
511 
512  // Worklist of non-leaf nodes (their operands are in the expression too) along
513  // with their weights, representing a certain number of paths to the operator.
514  // If an operator occurs in the worklist multiple times then we found multiple
515  // ways to get to it.
516  SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
517  Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
518  bool MadeChange = false;
519 
520  // Leaves of the expression are values that either aren't the right kind of
521  // operation (eg: a constant, or a multiply in an add tree), or are, but have
522  // some uses that are not inside the expression. For example, in I = X + X,
523  // X = A + B, the value X has two uses (by I) that are in the expression. If
524  // X has any other uses, for example in a return instruction, then we consider
525  // X to be a leaf, and won't analyze it further. When we first visit a value,
526  // if it has more than one use then at first we conservatively consider it to
527  // be a leaf. Later, as the expression is explored, we may discover some more
528  // uses of the value from inside the expression. If all uses turn out to be
529  // from within the expression (and the value is a binary operator of the right
530  // kind) then the value is no longer considered to be a leaf, and its operands
531  // are explored.
532 
533  // Leaves - Keeps track of the set of putative leaves as well as the number of
534  // paths to each leaf seen so far.
535  typedef DenseMap<Value*, APInt> LeafMap;
536  LeafMap Leaves; // Leaf -> Total weight so far.
537  SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
538 
539 #ifndef NDEBUG
540  SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
541 #endif
542  while (!Worklist.empty()) {
543  std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
544  I = P.first; // We examine the operands of this binary operator.
545 
546  for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
547  Value *Op = I->getOperand(OpIdx);
548  APInt Weight = P.second; // Number of paths to this operand.
549  DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
550  assert(!Op->use_empty() && "No uses, so how did we get to it?!");
551 
552  // If this is a binary operation of the right kind with only one use then
553  // add its operands to the expression.
554  if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
555  assert(Visited.insert(Op) && "Not first visit!");
556  DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
557  Worklist.push_back(std::make_pair(BO, Weight));
558  continue;
559  }
560 
561  // Appears to be a leaf. Is the operand already in the set of leaves?
562  LeafMap::iterator It = Leaves.find(Op);
563  if (It == Leaves.end()) {
564  // Not in the leaf map. Must be the first time we saw this operand.
565  assert(Visited.insert(Op) && "Not first visit!");
566  if (!Op->hasOneUse()) {
567  // This value has uses not accounted for by the expression, so it is
568  // not safe to modify. Mark it as being a leaf.
569  DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
570  LeafOrder.push_back(Op);
571  Leaves[Op] = Weight;
572  continue;
573  }
574  // No uses outside the expression, try morphing it.
575  } else if (It != Leaves.end()) {
576  // Already in the leaf map.
577  assert(Visited.count(Op) && "In leaf map but not visited!");
578 
579  // Update the number of paths to the leaf.
580  IncorporateWeight(It->second, Weight, Opcode);
581 
582 #if 0 // TODO: Re-enable once PR13021 is fixed.
583  // The leaf already has one use from inside the expression. As we want
584  // exactly one such use, drop this new use of the leaf.
585  assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
586  I->setOperand(OpIdx, UndefValue::get(I->getType()));
587  MadeChange = true;
588 
589  // If the leaf is a binary operation of the right kind and we now see
590  // that its multiple original uses were in fact all by nodes belonging
591  // to the expression, then no longer consider it to be a leaf and add
592  // its operands to the expression.
593  if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
594  DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
595  Worklist.push_back(std::make_pair(BO, It->second));
596  Leaves.erase(It);
597  continue;
598  }
599 #endif
600 
601  // If we still have uses that are not accounted for by the expression
602  // then it is not safe to modify the value.
603  if (!Op->hasOneUse())
604  continue;
605 
606  // No uses outside the expression, try morphing it.
607  Weight = It->second;
608  Leaves.erase(It); // Since the value may be morphed below.
609  }
610 
611  // At this point we have a value which, first of all, is not a binary
612  // expression of the right kind, and secondly, is only used inside the
613  // expression. This means that it can safely be modified. See if we
614  // can usefully morph it into an expression of the right kind.
615  assert((!isa<Instruction>(Op) ||
616  cast<Instruction>(Op)->getOpcode() != Opcode) &&
617  "Should have been handled above!");
618  assert(Op->hasOneUse() && "Has uses outside the expression tree!");
619 
620  // If this is a multiply expression, turn any internal negations into
621  // multiplies by -1 so they can be reassociated.
623  if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
624  DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
625  BO = LowerNegateToMultiply(BO);
626  DEBUG(dbgs() << *BO << 'n');
627  Worklist.push_back(std::make_pair(BO, Weight));
628  MadeChange = true;
629  continue;
630  }
631 
632  // Failed to morph into an expression of the right type. This really is
633  // a leaf.
634  DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
635  assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
636  LeafOrder.push_back(Op);
637  Leaves[Op] = Weight;
638  }
639  }
640 
641  // The leaves, repeated according to their weights, represent the linearized
642  // form of the expression.
643  for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
644  Value *V = LeafOrder[i];
645  LeafMap::iterator It = Leaves.find(V);
646  if (It == Leaves.end())
647  // Node initially thought to be a leaf wasn't.
648  continue;
649  assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
650  APInt Weight = It->second;
651  if (Weight.isMinValue())
652  // Leaf already output or weight reduction eliminated it.
653  continue;
654  // Ensure the leaf is only output once.
655  It->second = 0;
656  Ops.push_back(std::make_pair(V, Weight));
657  }
658 
659  // For nilpotent operations or addition there may be no operands, for example
660  // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
661  // in both cases the weight reduces to 0 causing the value to be skipped.
662  if (Ops.empty()) {
663  Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
664  assert(Identity && "Associative operation without identity!");
665  Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
666  }
667 
668  return MadeChange;
669 }
670 
671 // RewriteExprTree - Now that the operands for this expression tree are
672 // linearized and optimized, emit them in-order.
673 void Reassociate::RewriteExprTree(BinaryOperator *I,
675  assert(Ops.size() > 1 && "Single values should be used directly!");
676 
677  // Since our optimizations should never increase the number of operations, the
678  // new expression can usually be written reusing the existing binary operators
679  // from the original expression tree, without creating any new instructions,
680  // though the rewritten expression may have a completely different topology.
681  // We take care to not change anything if the new expression will be the same
682  // as the original. If more than trivial changes (like commuting operands)
683  // were made then we are obliged to clear out any optional subclass data like
684  // nsw flags.
685 
686  /// NodesToRewrite - Nodes from the original expression available for writing
687  /// the new expression into.
688  SmallVector<BinaryOperator*, 8> NodesToRewrite;
689  unsigned Opcode = I->getOpcode();
690  BinaryOperator *Op = I;
691 
692  /// NotRewritable - The operands being written will be the leaves of the new
693  /// expression and must not be used as inner nodes (via NodesToRewrite) by
694  /// mistake. Inner nodes are always reassociable, and usually leaves are not
695  /// (if they were they would have been incorporated into the expression and so
696  /// would not be leaves), so most of the time there is no danger of this. But
697  /// in rare cases a leaf may become reassociable if an optimization kills uses
698  /// of it, or it may momentarily become reassociable during rewriting (below)
699  /// due it being removed as an operand of one of its uses. Ensure that misuse
700  /// of leaf nodes as inner nodes cannot occur by remembering all of the future
701  /// leaves and refusing to reuse any of them as inner nodes.
702  SmallPtrSet<Value*, 8> NotRewritable;
703  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
704  NotRewritable.insert(Ops[i].Op);
705 
706  // ExpressionChanged - Non-null if the rewritten expression differs from the
707  // original in some non-trivial way, requiring the clearing of optional flags.
708  // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
709  BinaryOperator *ExpressionChanged = 0;
710  for (unsigned i = 0; ; ++i) {
711  // The last operation (which comes earliest in the IR) is special as both
712  // operands will come from Ops, rather than just one with the other being
713  // a subexpression.
714  if (i+2 == Ops.size()) {
715  Value *NewLHS = Ops[i].Op;
716  Value *NewRHS = Ops[i+1].Op;
717  Value *OldLHS = Op->getOperand(0);
718  Value *OldRHS = Op->getOperand(1);
719 
720  if (NewLHS == OldLHS && NewRHS == OldRHS)
721  // Nothing changed, leave it alone.
722  break;
723 
724  if (NewLHS == OldRHS && NewRHS == OldLHS) {
725  // The order of the operands was reversed. Swap them.
726  DEBUG(dbgs() << "RA: " << *Op << '\n');
727  Op->swapOperands();
728  DEBUG(dbgs() << "TO: " << *Op << '\n');
729  MadeChange = true;
730  ++NumChanged;
731  break;
732  }
733 
734  // The new operation differs non-trivially from the original. Overwrite
735  // the old operands with the new ones.
736  DEBUG(dbgs() << "RA: " << *Op << '\n');
737  if (NewLHS != OldLHS) {
738  BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
739  if (BO && !NotRewritable.count(BO))
740  NodesToRewrite.push_back(BO);
741  Op->setOperand(0, NewLHS);
742  }
743  if (NewRHS != OldRHS) {
744  BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
745  if (BO && !NotRewritable.count(BO))
746  NodesToRewrite.push_back(BO);
747  Op->setOperand(1, NewRHS);
748  }
749  DEBUG(dbgs() << "TO: " << *Op << '\n');
750 
751  ExpressionChanged = Op;
752  MadeChange = true;
753  ++NumChanged;
754 
755  break;
756  }
757 
758  // Not the last operation. The left-hand side will be a sub-expression
759  // while the right-hand side will be the current element of Ops.
760  Value *NewRHS = Ops[i].Op;
761  if (NewRHS != Op->getOperand(1)) {
762  DEBUG(dbgs() << "RA: " << *Op << '\n');
763  if (NewRHS == Op->getOperand(0)) {
764  // The new right-hand side was already present as the left operand. If
765  // we are lucky then swapping the operands will sort out both of them.
766  Op->swapOperands();
767  } else {
768  // Overwrite with the new right-hand side.
769  BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
770  if (BO && !NotRewritable.count(BO))
771  NodesToRewrite.push_back(BO);
772  Op->setOperand(1, NewRHS);
773  ExpressionChanged = Op;
774  }
775  DEBUG(dbgs() << "TO: " << *Op << '\n');
776  MadeChange = true;
777  ++NumChanged;
778  }
779 
780  // Now deal with the left-hand side. If this is already an operation node
781  // from the original expression then just rewrite the rest of the expression
782  // into it.
783  BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
784  if (BO && !NotRewritable.count(BO)) {
785  Op = BO;
786  continue;
787  }
788 
789  // Otherwise, grab a spare node from the original expression and use that as
790  // the left-hand side. If there are no nodes left then the optimizers made
791  // an expression with more nodes than the original! This usually means that
792  // they did something stupid but it might mean that the problem was just too
793  // hard (finding the mimimal number of multiplications needed to realize a
794  // multiplication expression is NP-complete). Whatever the reason, smart or
795  // stupid, create a new node if there are none left.
796  BinaryOperator *NewOp;
797  if (NodesToRewrite.empty()) {
800  Undef, Undef, "", I);
801  } else {
802  NewOp = NodesToRewrite.pop_back_val();
803  }
804 
805  DEBUG(dbgs() << "RA: " << *Op << '\n');
806  Op->setOperand(0, NewOp);
807  DEBUG(dbgs() << "TO: " << *Op << '\n');
808  ExpressionChanged = Op;
809  MadeChange = true;
810  ++NumChanged;
811  Op = NewOp;
812  }
813 
814  // If the expression changed non-trivially then clear out all subclass data
815  // starting from the operator specified in ExpressionChanged, and compactify
816  // the operators to just before the expression root to guarantee that the
817  // expression tree is dominated by all of Ops.
818  if (ExpressionChanged)
819  do {
820  ExpressionChanged->clearSubclassOptionalData();
821  if (ExpressionChanged == I)
822  break;
823  ExpressionChanged->moveBefore(I);
824  ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
825  } while (1);
826 
827  // Throw away any left over nodes from the original expression.
828  for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
829  RedoInsts.insert(NodesToRewrite[i]);
830 }
831 
832 /// NegateValue - Insert instructions before the instruction pointed to by BI,
833 /// that computes the negative version of the value specified. The negative
834 /// version of the value is returned, and BI is left pointing at the instruction
835 /// that should be processed next by the reassociation pass.
836 static Value *NegateValue(Value *V, Instruction *BI) {
837  if (Constant *C = dyn_cast<Constant>(V))
838  return ConstantExpr::getNeg(C);
839 
840  // We are trying to expose opportunity for reassociation. One of the things
841  // that we want to do to achieve this is to push a negation as deep into an
842  // expression chain as possible, to expose the add instructions. In practice,
843  // this means that we turn this:
844  // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
845  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
846  // the constants. We assume that instcombine will clean up the mess later if
847  // we introduce tons of unnecessary negation instructions.
848  //
849  if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
850  // Push the negates through the add.
851  I->setOperand(0, NegateValue(I->getOperand(0), BI));
852  I->setOperand(1, NegateValue(I->getOperand(1), BI));
853 
854  // We must move the add instruction here, because the neg instructions do
855  // not dominate the old add instruction in general. By moving it, we are
856  // assured that the neg instructions we just inserted dominate the
857  // instruction we are about to insert after them.
858  //
859  I->moveBefore(BI);
860  I->setName(I->getName()+".neg");
861  return I;
862  }
863 
864  // Okay, we need to materialize a negated version of V with an instruction.
865  // Scan the use lists of V to see if we have one already.
866  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
867  User *U = *UI;
868  if (!BinaryOperator::isNeg(U)) continue;
869 
870  // We found one! Now we have to make sure that the definition dominates
871  // this use. We do this by moving it to the entry block (if it is a
872  // non-instruction value) or right after the definition. These negates will
873  // be zapped by reassociate later, so we don't need much finesse here.
874  BinaryOperator *TheNeg = cast<BinaryOperator>(U);
875 
876  // Verify that the negate is in this function, V might be a constant expr.
877  if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
878  continue;
879 
880  BasicBlock::iterator InsertPt;
881  if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
882  if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
883  InsertPt = II->getNormalDest()->begin();
884  } else {
885  InsertPt = InstInput;
886  ++InsertPt;
887  }
888  while (isa<PHINode>(InsertPt)) ++InsertPt;
889  } else {
890  InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
891  }
892  TheNeg->moveBefore(InsertPt);
893  return TheNeg;
894  }
895 
896  // Insert a 'neg' instruction that subtracts the value from zero to get the
897  // negation.
898  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
899 }
900 
901 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
902 /// X-Y into (X + -Y).
904  // If this is a negation, we can't split it up!
905  if (BinaryOperator::isNeg(Sub))
906  return false;
907 
908  // Don't bother to break this up unless either the LHS is an associable add or
909  // subtract or if this is only used by one.
910  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
911  isReassociableOp(Sub->getOperand(0), Instruction::Sub))
912  return true;
913  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
914  isReassociableOp(Sub->getOperand(1), Instruction::Sub))
915  return true;
916  if (Sub->hasOneUse() &&
917  (isReassociableOp(Sub->use_back(), Instruction::Add) ||
918  isReassociableOp(Sub->use_back(), Instruction::Sub)))
919  return true;
920 
921  return false;
922 }
923 
924 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
925 /// only used by an add, transform this into (X+(0-Y)) to promote better
926 /// reassociation.
928  // Convert a subtract into an add and a neg instruction. This allows sub
929  // instructions to be commuted with other add instructions.
930  //
931  // Calculate the negative value of Operand 1 of the sub instruction,
932  // and set it as the RHS of the add instruction we just made.
933  //
934  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
935  BinaryOperator *New =
936  BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
937  Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
938  Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
939  New->takeName(Sub);
940 
941  // Everyone now refers to the add instruction.
942  Sub->replaceAllUsesWith(New);
943  New->setDebugLoc(Sub->getDebugLoc());
944 
945  DEBUG(dbgs() << "Negated: " << *New << '\n');
946  return New;
947 }
948 
949 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
950 /// by one, change this into a multiply by a constant to assist with further
951 /// reassociation.
953  Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
954  MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
955 
956  BinaryOperator *Mul =
957  BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
958  Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
959  Mul->takeName(Shl);
960  Shl->replaceAllUsesWith(Mul);
961  Mul->setDebugLoc(Shl->getDebugLoc());
962  return Mul;
963 }
964 
965 /// FindInOperandList - Scan backwards and forwards among values with the same
966 /// rank as element i to see if X exists. If X does not exist, return i. This
967 /// is useful when scanning for 'x' when we see '-x' because they both get the
968 /// same rank.
969 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
970  Value *X) {
971  unsigned XRank = Ops[i].Rank;
972  unsigned e = Ops.size();
973  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
974  if (Ops[j].Op == X)
975  return j;
976  // Scan backwards.
977  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
978  if (Ops[j].Op == X)
979  return j;
980  return i;
981 }
982 
983 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
984 /// and returning the result. Insert the tree before I.
987  if (Ops.size() == 1) return Ops.back();
988 
989  Value *V1 = Ops.back();
990  Ops.pop_back();
991  Value *V2 = EmitAddTreeOfValues(I, Ops);
992  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
993 }
994 
995 /// RemoveFactorFromExpression - If V is an expression tree that is a
996 /// multiplication sequence, and if this sequence contains a multiply by Factor,
997 /// remove Factor from the tree and return the new tree.
998 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
999  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1000  if (!BO) return 0;
1001 
1003  MadeChange |= LinearizeExprTree(BO, Tree);
1005  Factors.reserve(Tree.size());
1006  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1007  RepeatedValue E = Tree[i];
1008  Factors.append(E.second.getZExtValue(),
1009  ValueEntry(getRank(E.first), E.first));
1010  }
1011 
1012  bool FoundFactor = false;
1013  bool NeedsNegate = false;
1014  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1015  if (Factors[i].Op == Factor) {
1016  FoundFactor = true;
1017  Factors.erase(Factors.begin()+i);
1018  break;
1019  }
1020 
1021  // If this is a negative version of this factor, remove it.
1022  if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1023  if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1024  if (FC1->getValue() == -FC2->getValue()) {
1025  FoundFactor = NeedsNegate = true;
1026  Factors.erase(Factors.begin()+i);
1027  break;
1028  }
1029  }
1030 
1031  if (!FoundFactor) {
1032  // Make sure to restore the operands to the expression tree.
1033  RewriteExprTree(BO, Factors);
1034  return 0;
1035  }
1036 
1037  BasicBlock::iterator InsertPt = BO; ++InsertPt;
1038 
1039  // If this was just a single multiply, remove the multiply and return the only
1040  // remaining operand.
1041  if (Factors.size() == 1) {
1042  RedoInsts.insert(BO);
1043  V = Factors[0].Op;
1044  } else {
1045  RewriteExprTree(BO, Factors);
1046  V = BO;
1047  }
1048 
1049  if (NeedsNegate)
1050  V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
1051 
1052  return V;
1053 }
1054 
1055 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1056 /// add its operands as factors, otherwise add V to the list of factors.
1057 ///
1058 /// Ops is the top-level list of add operands we're trying to factor.
1060  SmallVectorImpl<Value*> &Factors,
1061  const SmallVectorImpl<ValueEntry> &Ops) {
1062  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1063  if (!BO) {
1064  Factors.push_back(V);
1065  return;
1066  }
1067 
1068  // Otherwise, add the LHS and RHS to the list of factors.
1069  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1070  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
1071 }
1072 
1073 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1074 /// instruction. This optimizes based on identities. If it can be reduced to
1075 /// a single Value, it is returned, otherwise the Ops list is mutated as
1076 /// necessary.
1077 static Value *OptimizeAndOrXor(unsigned Opcode,
1079  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1080  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1081  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1082  // First, check for X and ~X in the operand list.
1083  assert(i < Ops.size());
1084  if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1085  Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1086  unsigned FoundX = FindInOperandList(Ops, i, X);
1087  if (FoundX != i) {
1088  if (Opcode == Instruction::And) // ...&X&~X = 0
1089  return Constant::getNullValue(X->getType());
1090 
1091  if (Opcode == Instruction::Or) // ...|X|~X = -1
1092  return Constant::getAllOnesValue(X->getType());
1093  }
1094  }
1095 
1096  // Next, check for duplicate pairs of values, which we assume are next to
1097  // each other, due to our sorting criteria.
1098  assert(i < Ops.size());
1099  if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1100  if (Opcode == Instruction::And || Opcode == Instruction::Or) {
1101  // Drop duplicate values for And and Or.
1102  Ops.erase(Ops.begin()+i);
1103  --i; --e;
1104  ++NumAnnihil;
1105  continue;
1106  }
1107 
1108  // Drop pairs of values for Xor.
1109  assert(Opcode == Instruction::Xor);
1110  if (e == 2)
1111  return Constant::getNullValue(Ops[0].Op->getType());
1112 
1113  // Y ^ X^X -> Y
1114  Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1115  i -= 1; e -= 2;
1116  ++NumAnnihil;
1117  }
1118  }
1119  return 0;
1120 }
1121 
1122 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1123 /// instruction with the given two operands, and return the resulting
1124 /// instruction. There are two special cases: 1) if the constant operand is 0,
1125 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1126 /// be returned.
1127 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1128  const APInt &ConstOpnd) {
1129  if (ConstOpnd != 0) {
1130  if (!ConstOpnd.isAllOnesValue()) {
1131  LLVMContext &Ctx = Opnd->getType()->getContext();
1132  Instruction *I;
1133  I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1134  "and.ra", InsertBefore);
1135  I->setDebugLoc(InsertBefore->getDebugLoc());
1136  return I;
1137  }
1138  return Opnd;
1139  }
1140  return 0;
1141 }
1142 
1143 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1144 // into "R ^ C", where C would be 0, and R is a symbolic value.
1145 //
1146 // If it was successful, true is returned, and the "R" and "C" is returned
1147 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1148 // and both "Res" and "ConstOpnd" remain unchanged.
1149 //
1150 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1151  APInt &ConstOpnd, Value *&Res) {
1152  // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1153  // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1154  // = (x & ~c1) ^ (c1 ^ c2)
1155  // It is useful only when c1 == c2.
1156  if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1157  if (!Opnd1->getValue()->hasOneUse())
1158  return false;
1159 
1160  const APInt &C1 = Opnd1->getConstPart();
1161  if (C1 != ConstOpnd)
1162  return false;
1163 
1164  Value *X = Opnd1->getSymbolicPart();
1165  Res = createAndInstr(I, X, ~C1);
1166  // ConstOpnd was C2, now C1 ^ C2.
1167  ConstOpnd ^= C1;
1168 
1169  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1170  RedoInsts.insert(T);
1171  return true;
1172  }
1173  return false;
1174 }
1175 
1176 
1177 // Helper function of OptimizeXor(). It tries to simplify
1178 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1179 // symbolic value.
1180 //
1181 // If it was successful, true is returned, and the "R" and "C" is returned
1182 // via "Res" and "ConstOpnd", respectively (If the entire expression is
1183 // evaluated to a constant, the Res is set to NULL); otherwise, false is
1184 // returned, and both "Res" and "ConstOpnd" remain unchanged.
1185 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1186  APInt &ConstOpnd, Value *&Res) {
1187  Value *X = Opnd1->getSymbolicPart();
1188  if (X != Opnd2->getSymbolicPart())
1189  return false;
1190 
1191  // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1192  int DeadInstNum = 1;
1193  if (Opnd1->getValue()->hasOneUse())
1194  DeadInstNum++;
1195  if (Opnd2->getValue()->hasOneUse())
1196  DeadInstNum++;
1197 
1198  // Xor-Rule 2:
1199  // (x | c1) ^ (x & c2)
1200  // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1201  // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1202  // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1203  //
1204  if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1205  if (Opnd2->isOrExpr())
1206  std::swap(Opnd1, Opnd2);
1207 
1208  const APInt &C1 = Opnd1->getConstPart();
1209  const APInt &C2 = Opnd2->getConstPart();
1210  APInt C3((~C1) ^ C2);
1211 
1212  // Do not increase code size!
1213  if (C3 != 0 && !C3.isAllOnesValue()) {
1214  int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1215  if (NewInstNum > DeadInstNum)
1216  return false;
1217  }
1218 
1219  Res = createAndInstr(I, X, C3);
1220  ConstOpnd ^= C1;
1221 
1222  } else if (Opnd1->isOrExpr()) {
1223  // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1224  //
1225  const APInt &C1 = Opnd1->getConstPart();
1226  const APInt &C2 = Opnd2->getConstPart();
1227  APInt C3 = C1 ^ C2;
1228 
1229  // Do not increase code size
1230  if (C3 != 0 && !C3.isAllOnesValue()) {
1231  int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1232  if (NewInstNum > DeadInstNum)
1233  return false;
1234  }
1235 
1236  Res = createAndInstr(I, X, C3);
1237  ConstOpnd ^= C3;
1238  } else {
1239  // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1240  //
1241  const APInt &C1 = Opnd1->getConstPart();
1242  const APInt &C2 = Opnd2->getConstPart();
1243  APInt C3 = C1 ^ C2;
1244  Res = createAndInstr(I, X, C3);
1245  }
1246 
1247  // Put the original operands in the Redo list; hope they will be deleted
1248  // as dead code.
1249  if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1250  RedoInsts.insert(T);
1251  if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1252  RedoInsts.insert(T);
1253 
1254  return true;
1255 }
1256 
1257 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1258 /// to a single Value, it is returned, otherwise the Ops list is mutated as
1259 /// necessary.
1260 Value *Reassociate::OptimizeXor(Instruction *I,
1262  if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1263  return V;
1264 
1265  if (Ops.size() == 1)
1266  return 0;
1267 
1269  SmallVector<XorOpnd*, 8> OpndPtrs;
1270  Type *Ty = Ops[0].Op->getType();
1271  APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1272 
1273  // Step 1: Convert ValueEntry to XorOpnd
1274  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1275  Value *V = Ops[i].Op;
1276  if (!isa<ConstantInt>(V)) {
1277  XorOpnd O(V);
1278  O.setSymbolicRank(getRank(O.getSymbolicPart()));
1279  Opnds.push_back(O);
1280  } else
1281  ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1282  }
1283 
1284  // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1285  // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1286  // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1287  // with the previous loop --- the iterator of the "Opnds" may be invalidated
1288  // when new elements are added to the vector.
1289  for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1290  OpndPtrs.push_back(&Opnds[i]);
1291 
1292  // Step 2: Sort the Xor-Operands in a way such that the operands containing
1293  // the same symbolic value cluster together. For instance, the input operand
1294  // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1295  // ("x | 123", "x & 789", "y & 456").
1296  std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1297 
1298  // Step 3: Combine adjacent operands
1299  XorOpnd *PrevOpnd = 0;
1300  bool Changed = false;
1301  for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1302  XorOpnd *CurrOpnd = OpndPtrs[i];
1303  // The combined value
1304  Value *CV;
1305 
1306  // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1307  if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1308  Changed = true;
1309  if (CV)
1310  *CurrOpnd = XorOpnd(CV);
1311  else {
1312  CurrOpnd->Invalidate();
1313  continue;
1314  }
1315  }
1316 
1317  if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1318  PrevOpnd = CurrOpnd;
1319  continue;
1320  }
1321 
1322  // step 3.2: When previous and current operands share the same symbolic
1323  // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1324  //
1325  if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1326  // Remove previous operand
1327  PrevOpnd->Invalidate();
1328  if (CV) {
1329  *CurrOpnd = XorOpnd(CV);
1330  PrevOpnd = CurrOpnd;
1331  } else {
1332  CurrOpnd->Invalidate();
1333  PrevOpnd = 0;
1334  }
1335  Changed = true;
1336  }
1337  }
1338 
1339  // Step 4: Reassemble the Ops
1340  if (Changed) {
1341  Ops.clear();
1342  for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1343  XorOpnd &O = Opnds[i];
1344  if (O.isInvalid())
1345  continue;
1346  ValueEntry VE(getRank(O.getValue()), O.getValue());
1347  Ops.push_back(VE);
1348  }
1349  if (ConstOpnd != 0) {
1350  Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1351  ValueEntry VE(getRank(C), C);
1352  Ops.push_back(VE);
1353  }
1354  int Sz = Ops.size();
1355  if (Sz == 1)
1356  return Ops.back().Op;
1357  else if (Sz == 0) {
1358  assert(ConstOpnd == 0);
1359  return ConstantInt::get(Ty->getContext(), ConstOpnd);
1360  }
1361  }
1362 
1363  return 0;
1364 }
1365 
1366 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1367 /// optimizes based on identities. If it can be reduced to a single Value, it
1368 /// is returned, otherwise the Ops list is mutated as necessary.
1369 Value *Reassociate::OptimizeAdd(Instruction *I,
1371  // Scan the operand lists looking for X and -X pairs. If we find any, we
1372  // can simplify the expression. X+-X == 0. While we're at it, scan for any
1373  // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
1374  //
1375  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1376  //
1377  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1378  Value *TheOp = Ops[i].Op;
1379  // Check to see if we've seen this operand before. If so, we factor all
1380  // instances of the operand together. Due to our sorting criteria, we know
1381  // that these need to be next to each other in the vector.
1382  if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1383  // Rescan the list, remove all instances of this operand from the expr.
1384  unsigned NumFound = 0;
1385  do {
1386  Ops.erase(Ops.begin()+i);
1387  ++NumFound;
1388  } while (i != Ops.size() && Ops[i].Op == TheOp);
1389 
1390  DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
1391  ++NumFactor;
1392 
1393  // Insert a new multiply.
1394  Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1395  Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
1396 
1397  // Now that we have inserted a multiply, optimize it. This allows us to
1398  // handle cases that require multiple factoring steps, such as this:
1399  // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
1400  RedoInsts.insert(cast<Instruction>(Mul));
1401 
1402  // If every add operand was a duplicate, return the multiply.
1403  if (Ops.empty())
1404  return Mul;
1405 
1406  // Otherwise, we had some input that didn't have the dupe, such as
1407  // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1408  // things being added by this operation.
1409  Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
1410 
1411  --i;
1412  e = Ops.size();
1413  continue;
1414  }
1415 
1416  // Check for X and -X in the operand list.
1417  if (!BinaryOperator::isNeg(TheOp))
1418  continue;
1419 
1421  unsigned FoundX = FindInOperandList(Ops, i, X);
1422  if (FoundX == i)
1423  continue;
1424 
1425  // Remove X and -X from the operand list.
1426  if (Ops.size() == 2)
1427  return Constant::getNullValue(X->getType());
1428 
1429  Ops.erase(Ops.begin()+i);
1430  if (i < FoundX)
1431  --FoundX;
1432  else
1433  --i; // Need to back up an extra one.
1434  Ops.erase(Ops.begin()+FoundX);
1435  ++NumAnnihil;
1436  --i; // Revisit element.
1437  e -= 2; // Removed two elements.
1438  }
1439 
1440  // Scan the operand list, checking to see if there are any common factors
1441  // between operands. Consider something like A*A+A*B*C+D. We would like to
1442  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1443  // To efficiently find this, we count the number of times a factor occurs
1444  // for any ADD operands that are MULs.
1445  DenseMap<Value*, unsigned> FactorOccurrences;
1446 
1447  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1448  // where they are actually the same multiply.
1449  unsigned MaxOcc = 0;
1450  Value *MaxOccVal = 0;
1451  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1452  BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1453  if (!BOp)
1454  continue;
1455 
1456  // Compute all of the factors of this added value.
1457  SmallVector<Value*, 8> Factors;
1458  FindSingleUseMultiplyFactors(BOp, Factors, Ops);
1459  assert(Factors.size() > 1 && "Bad linearize!");
1460 
1461  // Add one to FactorOccurrences for each unique factor in this op.
1462  SmallPtrSet<Value*, 8> Duplicates;
1463  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1464  Value *Factor = Factors[i];
1465  if (!Duplicates.insert(Factor)) continue;
1466 
1467  unsigned Occ = ++FactorOccurrences[Factor];
1468  if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1469 
1470  // If Factor is a negative constant, add the negated value as a factor
1471  // because we can percolate the negate out. Watch for minint, which
1472  // cannot be positivified.
1473  if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
1474  if (CI->isNegative() && !CI->isMinValue(true)) {
1475  Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1476  assert(!Duplicates.count(Factor) &&
1477  "Shouldn't have two constant factors, missed a canonicalize");
1478 
1479  unsigned Occ = ++FactorOccurrences[Factor];
1480  if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1481  }
1482  }
1483  }
1484 
1485  // If any factor occurred more than one time, we can pull it out.
1486  if (MaxOcc > 1) {
1487  DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
1488  ++NumFactor;
1489 
1490  // Create a new instruction that uses the MaxOccVal twice. If we don't do
1491  // this, we could otherwise run into situations where removing a factor
1492  // from an expression will drop a use of maxocc, and this can cause
1493  // RemoveFactorFromExpression on successive values to behave differently.
1494  Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
1495  SmallVector<WeakVH, 4> NewMulOps;
1496  for (unsigned i = 0; i != Ops.size(); ++i) {
1497  // Only try to remove factors from expressions we're allowed to.
1498  BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1499  if (!BOp)
1500  continue;
1501 
1502  if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
1503  // The factorized operand may occur several times. Convert them all in
1504  // one fell swoop.
1505  for (unsigned j = Ops.size(); j != i;) {
1506  --j;
1507  if (Ops[j].Op == Ops[i].Op) {
1508  NewMulOps.push_back(V);
1509  Ops.erase(Ops.begin()+j);
1510  }
1511  }
1512  --i;
1513  }
1514  }
1515 
1516  // No need for extra uses anymore.
1517  delete DummyInst;
1518 
1519  unsigned NumAddedValues = NewMulOps.size();
1520  Value *V = EmitAddTreeOfValues(I, NewMulOps);
1521 
1522  // Now that we have inserted the add tree, optimize it. This allows us to
1523  // handle cases that require multiple factoring steps, such as this:
1524  // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
1525  assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
1526  (void)NumAddedValues;
1527  if (Instruction *VI = dyn_cast<Instruction>(V))
1528  RedoInsts.insert(VI);
1529 
1530  // Create the multiply.
1531  Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
1532 
1533  // Rerun associate on the multiply in case the inner expression turned into
1534  // a multiply. We want to make sure that we keep things in canonical form.
1535  RedoInsts.insert(V2);
1536 
1537  // If every add operand included the factor (e.g. "A*B + A*C"), then the
1538  // entire result expression is just the multiply "A*(B+C)".
1539  if (Ops.empty())
1540  return V2;
1541 
1542  // Otherwise, we had some input that didn't have the factor, such as
1543  // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
1544  // things being added by this operation.
1545  Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1546  }
1547 
1548  return 0;
1549 }
1550 
1551 namespace {
1552  /// \brief Predicate tests whether a ValueEntry's op is in a map.
1553  struct IsValueInMap {
1554  const DenseMap<Value *, unsigned> &Map;
1555 
1556  IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1557 
1558  bool operator()(const ValueEntry &Entry) {
1559  return Map.find(Entry.Op) != Map.end();
1560  }
1561  };
1562 }
1563 
1564 /// \brief Build up a vector of value/power pairs factoring a product.
1565 ///
1566 /// Given a series of multiplication operands, build a vector of factors and
1567 /// the powers each is raised to when forming the final product. Sort them in
1568 /// the order of descending power.
1569 ///
1570 /// (x*x) -> [(x, 2)]
1571 /// ((x*x)*x) -> [(x, 3)]
1572 /// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1573 ///
1574 /// \returns Whether any factors have a power greater than one.
1575 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1576  SmallVectorImpl<Factor> &Factors) {
1577  // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1578  // Compute the sum of powers of simplifiable factors.
1579  unsigned FactorPowerSum = 0;
1580  for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1581  Value *Op = Ops[Idx-1].Op;
1582 
1583  // Count the number of occurrences of this value.
1584  unsigned Count = 1;
1585  for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1586  ++Count;
1587  // Track for simplification all factors which occur 2 or more times.
1588  if (Count > 1)
1589  FactorPowerSum += Count;
1590  }
1591 
1592  // We can only simplify factors if the sum of the powers of our simplifiable
1593  // factors is 4 or higher. When that is the case, we will *always* have
1594  // a simplification. This is an important invariant to prevent cyclicly
1595  // trying to simplify already minimal formations.
1596  if (FactorPowerSum < 4)
1597  return false;
1598 
1599  // Now gather the simplifiable factors, removing them from Ops.
1600  FactorPowerSum = 0;
1601  for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1602  Value *Op = Ops[Idx-1].Op;
1603 
1604  // Count the number of occurrences of this value.
1605  unsigned Count = 1;
1606  for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1607  ++Count;
1608  if (Count == 1)
1609  continue;
1610  // Move an even number of occurrences to Factors.
1611  Count &= ~1U;
1612  Idx -= Count;
1613  FactorPowerSum += Count;
1614  Factors.push_back(Factor(Op, Count));
1615  Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
1616  }
1617 
1618  // None of the adjustments above should have reduced the sum of factor powers
1619  // below our mininum of '4'.
1620  assert(FactorPowerSum >= 4);
1621 
1622  std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1623  return true;
1624 }
1625 
1626 /// \brief Build a tree of multiplies, computing the product of Ops.
1628  SmallVectorImpl<Value*> &Ops) {
1629  if (Ops.size() == 1)
1630  return Ops.back();
1631 
1632  Value *LHS = Ops.pop_back_val();
1633  do {
1634  LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1635  } while (!Ops.empty());
1636 
1637  return LHS;
1638 }
1639 
1640 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1641 ///
1642 /// Given a vector of values raised to various powers, where no two values are
1643 /// equal and the powers are sorted in decreasing order, compute the minimal
1644 /// DAG of multiplies to compute the final product, and return that product
1645 /// value.
1646 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1647  SmallVectorImpl<Factor> &Factors) {
1648  assert(Factors[0].Power);
1649  SmallVector<Value *, 4> OuterProduct;
1650  for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1651  Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1652  if (Factors[Idx].Power != Factors[LastIdx].Power) {
1653  LastIdx = Idx;
1654  continue;
1655  }
1656 
1657  // We want to multiply across all the factors with the same power so that
1658  // we can raise them to that power as a single entity. Build a mini tree
1659  // for that.
1660  SmallVector<Value *, 4> InnerProduct;
1661  InnerProduct.push_back(Factors[LastIdx].Base);
1662  do {
1663  InnerProduct.push_back(Factors[Idx].Base);
1664  ++Idx;
1665  } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1666 
1667  // Reset the base value of the first factor to the new expression tree.
1668  // We'll remove all the factors with the same power in a second pass.
1669  Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1670  if (Instruction *MI = dyn_cast<Instruction>(M))
1671  RedoInsts.insert(MI);
1672 
1673  LastIdx = Idx;
1674  }
1675  // Unique factors with equal powers -- we've folded them into the first one's
1676  // base.
1677  Factors.erase(std::unique(Factors.begin(), Factors.end(),
1678  Factor::PowerEqual()),
1679  Factors.end());
1680 
1681  // Iteratively collect the base of each factor with an add power into the
1682  // outer product, and halve each power in preparation for squaring the
1683  // expression.
1684  for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1685  if (Factors[Idx].Power & 1)
1686  OuterProduct.push_back(Factors[Idx].Base);
1687  Factors[Idx].Power >>= 1;
1688  }
1689  if (Factors[0].Power) {
1690  Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1691  OuterProduct.push_back(SquareRoot);
1692  OuterProduct.push_back(SquareRoot);
1693  }
1694  if (OuterProduct.size() == 1)
1695  return OuterProduct.front();
1696 
1697  Value *V = buildMultiplyTree(Builder, OuterProduct);
1698  return V;
1699 }
1700 
1701 Value *Reassociate::OptimizeMul(BinaryOperator *I,
1703  // We can only optimize the multiplies when there is a chain of more than
1704  // three, such that a balanced tree might require fewer total multiplies.
1705  if (Ops.size() < 4)
1706  return 0;
1707 
1708  // Try to turn linear trees of multiplies without other uses of the
1709  // intermediate stages into minimal multiply DAGs with perfect sub-expression
1710  // re-use.
1711  SmallVector<Factor, 4> Factors;
1712  if (!collectMultiplyFactors(Ops, Factors))
1713  return 0; // All distinct factors, so nothing left for us to do.
1714 
1715  IRBuilder<> Builder(I);
1716  Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1717  if (Ops.empty())
1718  return V;
1719 
1720  ValueEntry NewEntry = ValueEntry(getRank(V), V);
1721  Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1722  return 0;
1723 }
1724 
1725 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
1727  // Now that we have the linearized expression tree, try to optimize it.
1728  // Start by folding any constants that we found.
1729  Constant *Cst = 0;
1730  unsigned Opcode = I->getOpcode();
1731  while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1732  Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1733  Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1734  }
1735  // If there was nothing but constants then we are done.
1736  if (Ops.empty())
1737  return Cst;
1738 
1739  // Put the combined constant back at the end of the operand list, except if
1740  // there is no point. For example, an add of 0 gets dropped here, while a
1741  // multiplication by zero turns the whole expression into zero.
1742  if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1743  if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1744  return Cst;
1745  Ops.push_back(ValueEntry(0, Cst));
1746  }
1747 
1748  if (Ops.size() == 1) return Ops[0].Op;
1749 
1750  // Handle destructive annihilation due to identities between elements in the
1751  // argument list here.
1752  unsigned NumOps = Ops.size();
1753  switch (Opcode) {
1754  default: break;
1755  case Instruction::And:
1756  case Instruction::Or:
1757  if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1758  return Result;
1759  break;
1760 
1761  case Instruction::Xor:
1762  if (Value *Result = OptimizeXor(I, Ops))
1763  return Result;
1764  break;
1765 
1766  case Instruction::Add:
1767  if (Value *Result = OptimizeAdd(I, Ops))
1768  return Result;
1769  break;
1770 
1771  case Instruction::Mul:
1772  if (Value *Result = OptimizeMul(I, Ops))
1773  return Result;
1774  break;
1775  }
1776 
1777  if (Ops.size() != NumOps)
1778  return OptimizeExpression(I, Ops);
1779  return 0;
1780 }
1781 
1782 /// EraseInst - Zap the given instruction, adding interesting operands to the
1783 /// work list.
1784 void Reassociate::EraseInst(Instruction *I) {
1785  assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1786  SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1787  // Erase the dead instruction.
1788  ValueRankMap.erase(I);
1789  RedoInsts.remove(I);
1790  I->eraseFromParent();
1791  // Optimize its operands.
1792  SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
1793  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1794  if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1795  // If this is a node in an expression tree, climb to the expression root
1796  // and add that since that's where optimization actually happens.
1797  unsigned Opcode = Op->getOpcode();
1798  while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1799  Visited.insert(Op))
1800  Op = Op->use_back();
1801  RedoInsts.insert(Op);
1802  }
1803 }
1804 
1805 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1806 /// instructions is not allowed.
1807 void Reassociate::OptimizeInst(Instruction *I) {
1808  // Only consider operations that we understand.
1809  if (!isa<BinaryOperator>(I))
1810  return;
1811 
1812  if (I->getOpcode() == Instruction::Shl &&
1813  isa<ConstantInt>(I->getOperand(1)))
1814  // If an operand of this shift is a reassociable multiply, or if the shift
1815  // is used by a reassociable multiply or add, turn into a multiply.
1816  if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1817  (I->hasOneUse() &&
1818  (isReassociableOp(I->use_back(), Instruction::Mul) ||
1819  isReassociableOp(I->use_back(), Instruction::Add)))) {
1820  Instruction *NI = ConvertShiftToMul(I);
1821  RedoInsts.insert(I);
1822  MadeChange = true;
1823  I = NI;
1824  }
1825 
1826  // Floating point binary operators are not associative, but we can still
1827  // commute (some) of them, to canonicalize the order of their operands.
1828  // This can potentially expose more CSE opportunities, and makes writing
1829  // other transformations simpler.
1830  if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
1831  // FAdd and FMul can be commuted.
1832  if (I->getOpcode() != Instruction::FMul &&
1833  I->getOpcode() != Instruction::FAdd)
1834  return;
1835 
1836  Value *LHS = I->getOperand(0);
1837  Value *RHS = I->getOperand(1);
1838  unsigned LHSRank = getRank(LHS);
1839  unsigned RHSRank = getRank(RHS);
1840 
1841  // Sort the operands by rank.
1842  if (RHSRank < LHSRank) {
1843  I->setOperand(0, RHS);
1844  I->setOperand(1, LHS);
1845  }
1846 
1847  return;
1848  }
1849 
1850  // Do not reassociate boolean (i1) expressions. We want to preserve the
1851  // original order of evaluation for short-circuited comparisons that
1852  // SimplifyCFG has folded to AND/OR expressions. If the expression
1853  // is not further optimized, it is likely to be transformed back to a
1854  // short-circuited form for code gen, and the source order may have been
1855  // optimized for the most likely conditions.
1856  if (I->getType()->isIntegerTy(1))
1857  return;
1858 
1859  // If this is a subtract instruction which is not already in negate form,
1860  // see if we can convert it to X+-Y.
1861  if (I->getOpcode() == Instruction::Sub) {
1862  if (ShouldBreakUpSubtract(I)) {
1863  Instruction *NI = BreakUpSubtract(I);
1864  RedoInsts.insert(I);
1865  MadeChange = true;
1866  I = NI;
1867  } else if (BinaryOperator::isNeg(I)) {
1868  // Otherwise, this is a negation. See if the operand is a multiply tree
1869  // and if this is not an inner node of a multiply tree.
1870  if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1871  (!I->hasOneUse() ||
1872  !isReassociableOp(I->use_back(), Instruction::Mul))) {
1874  RedoInsts.insert(I);
1875  MadeChange = true;
1876  I = NI;
1877  }
1878  }
1879  }
1880 
1881  // If this instruction is an associative binary operator, process it.
1882  if (!I->isAssociative()) return;
1883  BinaryOperator *BO = cast<BinaryOperator>(I);
1884 
1885  // If this is an interior node of a reassociable tree, ignore it until we
1886  // get to the root of the tree, to avoid N^2 analysis.
1887  unsigned Opcode = BO->getOpcode();
1888  if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
1889  return;
1890 
1891  // If this is an add tree that is used by a sub instruction, ignore it
1892  // until we process the subtract.
1893  if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1894  cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
1895  return;
1896 
1897  ReassociateExpression(BO);
1898 }
1899 
1900 void Reassociate::ReassociateExpression(BinaryOperator *I) {
1901 
1902  // First, walk the expression tree, linearizing the tree, collecting the
1903  // operand information.
1905  MadeChange |= LinearizeExprTree(I, Tree);
1907  Ops.reserve(Tree.size());
1908  for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1909  RepeatedValue E = Tree[i];
1910  Ops.append(E.second.getZExtValue(),
1911  ValueEntry(getRank(E.first), E.first));
1912  }
1913 
1914  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1915 
1916  // Now that we have linearized the tree to a list and have gathered all of
1917  // the operands and their ranks, sort the operands by their rank. Use a
1918  // stable_sort so that values with equal ranks will have their relative
1919  // positions maintained (and so the compiler is deterministic). Note that
1920  // this sorts so that the highest ranking values end up at the beginning of
1921  // the vector.
1922  std::stable_sort(Ops.begin(), Ops.end());
1923 
1924  // OptimizeExpression - Now that we have the expression tree in a convenient
1925  // sorted form, optimize it globally if possible.
1926  if (Value *V = OptimizeExpression(I, Ops)) {
1927  if (V == I)
1928  // Self-referential expression in unreachable code.
1929  return;
1930  // This expression tree simplified to something that isn't a tree,
1931  // eliminate it.
1932  DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
1933  I->replaceAllUsesWith(V);
1934  if (Instruction *VI = dyn_cast<Instruction>(V))
1935  VI->setDebugLoc(I->getDebugLoc());
1936  RedoInsts.insert(I);
1937  ++NumAnnihil;
1938  return;
1939  }
1940 
1941  // We want to sink immediates as deeply as possible except in the case where
1942  // this is a multiply tree used only by an add, and the immediate is a -1.
1943  // In this case we reassociate to put the negation on the outside so that we
1944  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1945  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1946  cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1947  isa<ConstantInt>(Ops.back().Op) &&
1948  cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
1949  ValueEntry Tmp = Ops.pop_back_val();
1950  Ops.insert(Ops.begin(), Tmp);
1951  }
1952 
1953  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
1954 
1955  if (Ops.size() == 1) {
1956  if (Ops[0].Op == I)
1957  // Self-referential expression in unreachable code.
1958  return;
1959 
1960  // This expression tree simplified to something that isn't a tree,
1961  // eliminate it.
1962  I->replaceAllUsesWith(Ops[0].Op);
1963  if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1964  OI->setDebugLoc(I->getDebugLoc());
1965  RedoInsts.insert(I);
1966  return;
1967  }
1968 
1969  // Now that we ordered and optimized the expressions, splat them back into
1970  // the expression tree, removing any unneeded nodes.
1971  RewriteExprTree(I, Ops);
1972 }
1973 
1974 bool Reassociate::runOnFunction(Function &F) {
1975  // Calculate the rank map for F
1976  BuildRankMap(F);
1977 
1978  MadeChange = false;
1979  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1980  // Optimize every instruction in the basic block.
1981  for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1982  if (isInstructionTriviallyDead(II)) {
1983  EraseInst(II++);
1984  } else {
1985  OptimizeInst(II);
1986  assert(II->getParent() == BI && "Moved to a different block!");
1987  ++II;
1988  }
1989 
1990  // If this produced extra instructions to optimize, handle them now.
1991  while (!RedoInsts.empty()) {
1992  Instruction *I = RedoInsts.pop_back_val();
1994  EraseInst(I);
1995  else
1996  OptimizeInst(I);
1997  }
1998  }
1999 
2000  // We are done with the rank map.
2001  RankMap.clear();
2002  ValueRankMap.clear();
2003 
2004  return MadeChange;
2005 }
bool isNilpotent() const
Definition: Instruction.h:290
use_iterator use_end()
Definition: Value.h:152
STATISTIC(NumChanged,"Number of insts reassociated")
raw_ostream & errs()
void reserve(unsigned N)
Definition: SmallVector.h:425
static PassRegistry * getPassRegistry()
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1306
static BinaryOperator * LowerNegateToMultiply(Instruction *Neg)
The main container class for the LLVM Intermediate Representation.
Definition: Module.h:112
iterator end()
Definition: Function.h:397
enable_if_c<!is_simple_type< Y >::value, typename cast_retty< X, const Y >::ret_type >::type dyn_cast(const Y &Val)
Definition: Casting.h:266
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty)
Definition: Constants.cpp:2120
bool insert(PtrType Ptr)
Definition: SmallPtrSet.h:253
void operator<(const Optional< T > &X, const Optional< U > &Y)
Poison comparison between two Optional objects. Clients needs to explicitly compare the underlying va...
iterator insert(iterator I, const T &Elt)
Definition: SmallVector.h:537
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:116
arg_iterator arg_end()
Definition: Function.h:418
F(f)
void setDebugLoc(const DebugLoc &Loc)
setDebugLoc - Set the debug location information for this instruction.
Definition: Instruction.h:175
op_iterator op_begin()
Definition: User.h:116
static void FindSingleUseMultiplyFactors(Value *V, SmallVectorImpl< Value * > &Factors, const SmallVectorImpl< ValueEntry > &Ops)
static Constant * getNullValue(Type *Ty)
Definition: Constants.cpp:111
StringRef getName() const
Definition: Value.cpp:167
iterator begin()
Definition: BasicBlock.h:193
void WriteAsOperand(raw_ostream &, const Value *, bool PrintTy=true, const Module *Context=0)
Definition: AsmWriter.cpp:1179
static const Value * getNegArgument(const Value *BinOp)
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0)
Definition: Constants.cpp:1679
T LLVM_ATTRIBUTE_UNUSED_RESULT pop_back_val()
Definition: SmallVector.h:430
static bool isUnmovableInstruction(Instruction *I)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:421
FunctionPass * createReassociatePass()
void setName(const Twine &Name)
Definition: Value.cpp:175
ID
LLVM Calling Convention Representation.
Definition: CallingConv.h:26
static Value * OptimizeAndOrXor(unsigned Opcode, SmallVectorImpl< ValueEntry > &Ops)
LLVMContext & getContext() const
getContext - Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool count(PtrType Ptr) const
count - Return true if the specified pointer is in the set.
Definition: SmallPtrSet.h:264
bool LLVM_ATTRIBUTE_UNUSED_RESULT empty() const
Definition: SmallVector.h:56
std::pair< Value *, APInt > RepeatedValue
bool isAssociative() const
static Value * createAndInstr(Instruction *InsertBefore, Value *Opnd, const APInt &ConstOpnd)
bool isFloatingPointTy() const
Definition: Type.h:162
void replaceAllUsesWith(Value *V)
Definition: Value.cpp:303
void takeName(Value *V)
Definition: Value.cpp:239
iterator begin()
Definition: Function.h:395
const char * getOpcodeName() const
Definition: Instruction.h:85
static const Value * getNotArgument(const Value *BinOp)
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition: APInt.cpp:515
#define P(N)
static Value * buildMultiplyTree(IRBuilder<> &Builder, SmallVectorImpl< Value * > &Ops)
Build a tree of multiplies, computing the product of Ops.
INITIALIZE_PASS(Reassociate,"reassociate","Reassociate expressions", false, false) FunctionPass *llvm
LLVM Basic Block Representation.
Definition: BasicBlock.h:72
bool isVectorTy() const
Definition: Type.h:229
LLVM Constant Representation.
Definition: Constant.h:41
static Value * NegateValue(Value *V, Instruction *BI)
APInt Or(const APInt &LHS, const APInt &RHS)
Bitwise OR function for APInt.
Definition: APInt.h:1845
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=0)
Definition: Local.cpp:266
static Value * EmitAddTreeOfValues(Instruction *I, SmallVectorImpl< WeakVH > &Ops)
APInt Xor(const APInt &LHS, const APInt &RHS)
Bitwise XOR function for APInt.
Definition: APInt.h:1850
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:476
const DebugLoc & getDebugLoc() const
getDebugLoc - Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:178
op_iterator op_end()
Definition: User.h:118
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1252
NUW NUW NUW NUW Exact static Exact BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", Instruction *InsertBefore=0)
Value * getOperand(unsigned i) const
Definition: User.h:88
bool isCommutative() const
Definition: Instruction.h:269
arg_iterator arg_begin()
Definition: Function.h:410
static bool isNot(const Value *V)
static Constant * getAllOnesValue(Type *Ty)
Get the all ones value.
Definition: Constants.cpp:163
void append(in_iter in_start, in_iter in_end)
Definition: SmallVector.h:445
static UndefValue * get(Type *T)
Definition: Constants.cpp:1334
iterator erase(iterator I)
Definition: SmallVector.h:478
static unsigned CarmichaelShift(unsigned Bitwidth)
std::vector< NodeType * >::reverse_iterator rpo_iterator
BinaryOps getOpcode() const
Definition: InstrTypes.h:326
unsigned getIntegerBitWidth() const
Definition: Type.cpp:178
Class for constant integers.
Definition: Constants.h:51
iterator end()
Definition: BasicBlock.h:195
Type * getType() const
Definition: Value.h:111
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:659
static Constant * get(Type *Ty, uint64_t V, bool isSigned=false)
Definition: Constants.cpp:492
void setPreservesCFG()
Definition: Pass.cpp:249
const BasicBlock & getEntryBlock() const
Definition: Function.h:380
void setOperand(unsigned i, Value *Val)
Definition: User.h:92
raw_ostream & dbgs()
dbgs - Return a circular-buffered debug stream.
Definition: Debug.cpp:101
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:591
void initializeReassociatePass(PassRegistry &)
static bool isNeg(const Value *V)
Class for arbitrary precision integers.
Definition: APInt.h:75
bool isIntegerTy() const
Definition: Type.h:196
Instruction * use_back()
Definition: Instruction.h:49
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition: APInt.h:365
APInt And(const APInt &LHS, const APInt &RHS)
Bitwise AND function for APInt.
Definition: APInt.h:1840
static Constant * getNeg(Constant *C, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2010
use_iterator use_begin()
Definition: Value.h:150
bool isAllOnesValue() const
Determine if all bits are set.
Definition: APInt.h:340
User * use_back()
Definition: Value.h:154
static BinaryOperator * BreakUpSubtract(Instruction *Sub)
bool isIdempotent() const
Definition: Instruction.h:278
static void PrintOps(Instruction *I, const SmallVectorImpl< ValueEntry > &Ops)
Definition: Reassociate.cpp:64
static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode)
#define I(x, y, z)
Definition: MD5.cpp:54
bool hasOneUse() const
Definition: Value.h:161
static Constant * getShl(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
Definition: Constants.cpp:2100
const Type * getScalarType() const
Definition: Type.cpp:51
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=0)
unsigned getPrimitiveSizeInBits() const
Definition: Type.cpp:117
static int const Threshold
static BinaryOperator * ConvertShiftToMul(Instruction *Shl)
bool use_empty() const
Definition: Value.h:149
Module * getParent()
Definition: GlobalValue.h:286
LLVM Value Representation.
Definition: Value.h:66
static unsigned FindInOperandList(SmallVectorImpl< ValueEntry > &Ops, unsigned i, Value *X)
unsigned getOpcode() const
getOpcode() returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:83
A vector that has set insertion semantics.
Definition: SetVector.h:37
void clearSubclassOptionalData()
Definition: Value.h:246
void moveBefore(Instruction *MovePos)
Definition: Instruction.cpp:91
static BinaryOperator * isReassociableOp(Value *V, unsigned Opcode)
#define DEBUG(X)
Definition: Debug.h:97
static bool ShouldBreakUpSubtract(Instruction *Sub)
static APInt getNullValue(unsigned numBits)
Get the '0' value.
Definition: APInt.h:457
static Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty)
Definition: Constants.cpp:2143
static bool LinearizeExprTree(BinaryOperator *I, SmallVectorImpl< RepeatedValue > &Ops)
static RegisterPass< NVPTXAllocaHoisting > X("alloca-hoisting","Hoisting alloca instructions in non-entry ""blocks to the entry block")
const BasicBlock * getParent() const
Definition: Instruction.h:52